
ests of the foundations of quantum physics

- Schrödinger cats, Bell's inequalities, EPR paradox, decoherence, quantum measurement, quantum jumps (single atom/ion experiments)
- Precision measurements
- Enhanced interferometry with nonclassical light
- Quantum information
- Quantum computing, quantum communication, quantum networks

Outline of Lectures

- Quantisation of the electromagnetic (EM) field
- Number states, coherent states, squeezed states
- Quantum correlations and photon statistics
- Field correlation functions, optical coherence, photon correlation measurements, homodyne measurements
- Representations of the EM field
- Number state-, P-, Q- and Wigner representations, optical homodyne tomography
- Quantum phenomena in simple nonlinear optical systems
- Degenerate and nondegenerate parametric amplification, squeezing, nonclassical correlations, EPR paradox, teleportation
- Master equation methods
- Derivation of the master equation, computation of expectation values and correlation functions, equivalent c-number equations, stochastic differential equations, quantum trajectories
- Inputs and outputs in quantum optical systems
- Cavity modes, correlation functions, spectrum of squeezing
- Interaction of radiation with atoms
- Two-state atoms, spontaneous emission, resonance fluorescence antibunching
- Cavity quantum electrodynamics (cavity QED)
- Jaynes-Cummings model, quantum collapses and revivals, cavity-enhanced spontaneous emission, transmission spectra
- Quantum network operations in cavity QED
- Quantum state transfer, conditional quantum dynamics, microtoroid cavity QED

Suggested Reading

- D.F. Walls and G.J. Milburn, Quantum Optics (1994)
- H.J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (1999)
- H.J. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields (2007)
- C.W. Gardiner and P. Zoller, Quantum Noise, 2nd Ed. (1999)
- L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (1995)

Quantum \& Atom Optics at Auckland

Theory

- Howard Carmichael, Matthew Collett, SP

Experiment (cold atoms)

- Maarten Hoogerland, Rainer Leonhardt

Theoretical Methods in Quantum Optics 1:

 Quantisation of the Electromagnetic Field
Scott Parkins

Department of Physics, University of Auckland, New Zealand
29 September, 2008

Outline

Classical electromagnetic theory is very successful in accounting for a wide variety of optical phenomena. However, there are phenomena, typically involving small photon numbers, for which the field needs to be treated quantum mechanically. In the following sections, we take up the problem of quantising the free electromagnetic field and investigate some of its properties.

Topics

- Classical Fields: Maxwell's Equations
- Field Quantisation
- Spectrum of the Energy and Number States
- Coherent States
- Quadrature Phase Operators and Phase-Space Diagrams
- Squeezed States
- Variance in the Electric Field
\qquad

Define

$$
c_{k}=\left(\frac{\hbar}{2 \omega_{k} \epsilon_{0}}\right)^{1 / 2} a_{k}
$$

so that the amplitude a_{k} is dimensionless. Then,

$$
\mathbf{E}(\mathbf{r}, t)=\mathrm{i} \sum_{k}\left(\frac{\hbar \omega_{k}}{2 \epsilon_{0}}\right)^{1 / 2}\left[a_{k} \mathbf{u}_{k}(\mathbf{r}) \mathrm{e}^{-\mathrm{i} \omega_{k} t}-a_{k}^{*} \mathbf{u}_{k}^{*}(\mathbf{r}) \mathrm{e}^{\mathrm{i} \omega_{k} t}\right]
$$

The Hamiltonian for the EM field is

$$
\begin{aligned}
H & =\frac{1}{2} \int_{V}\left[\epsilon_{0} \mathbf{E}(\mathbf{r}, t)^{2}+\frac{1}{\mu_{0}} \mathbf{B}(\mathbf{r}, t)^{2}\right] \mathrm{d} \mathbf{r} \\
& =\frac{1}{2} \sum_{k} \hbar \omega_{k}\left(a_{k}^{*} a_{k}+a_{k} a_{k}^{*}\right)
\end{aligned}
$$

- Hamiltonian for an assembly of independent harmonic oscillators

Field Quantisation

$a_{k} \rightarrow \hat{a}_{k}$ and $a_{k}^{*} \rightarrow \hat{a}_{k}^{\dagger}$ (mutually adjoint operators).
Commutation relations

$$
\left[\hat{a}_{k}, \hat{a}_{k^{\prime}}\right]=\left[\hat{a}_{k}^{\dagger}, \hat{a}_{k^{\prime}}^{\dagger}\right]=0, \quad\left[\hat{a}_{k}, \hat{a}_{k^{\prime}}^{\dagger}\right]=\delta_{k k^{\prime}}
$$

Hamiltonian

$$
\hat{H}=\sum_{k} \hbar \omega_{k}\left(\hat{a}_{k}^{\dagger} \hat{a}_{k}+\frac{1}{2}\right)
$$

- Dynamics of field amplitudes described by ensemble of independent quantised harmonic oscillators.
- State vector $|\Psi\rangle_{k}$ for each oscillator mode .
- State of entire field defined in tensor product space of Hilbert spaces for all modes.
- Zero-point energy $\hbar \omega_{k} / 2$ (uncertainty principle).

Spectrum of the Energy and Number States

Determine from eigenvalues n_{k} and eigenstates $\left|n_{k}\right\rangle$ of operator $\hat{n}_{k}=\hat{a}_{k}^{\dagger} \hat{a}_{k}$:

$$
\hat{n}_{k}\left|n_{k}\right\rangle=n_{k}\left|n_{k}\right\rangle
$$

Consider the state $\hat{a}_{k}^{\dagger}\left|n_{k}\right\rangle$. Using $\left[\hat{a}_{k}^{\dagger}, \hat{n}_{k}\right]=-\hat{a}_{k}^{\dagger}$ gives

$$
\hat{n}_{k} \hat{a}_{k}^{\dagger}\left|n_{k}\right\rangle=\hat{a}_{k}^{\dagger}\left(\hat{n}_{k}+1\right)\left|n_{k}\right\rangle=\left(n_{k}+1\right) \hat{a}_{k}^{\dagger}\left|n_{k}\right\rangle
$$

So, $\hat{a}_{k}^{\dagger}\left|n_{k}\right\rangle$ is also an eigenstate of \hat{n}_{k}, with eigenvalue $\left(n_{k}+1\right)$, i.e.,

$$
\hat{a}_{k}^{\dagger}\left|n_{k}\right\rangle=g_{k}\left|n_{k}+1\right\rangle
$$

Taking norms and using $\left[\hat{a}_{k}, \hat{a}_{k}^{\dagger}\right]=1$ gives $\left|g_{k}\right|=\sqrt{n_{k}+1}$.
Hence, up to an arbitrary phase factor

$$
\hat{a}_{k}^{\dagger}\left|n_{k}\right\rangle=\sqrt{n_{k}+1}\left|n_{k}+1\right\rangle
$$

Repeat argument \Rightarrow eigenvalues $n_{k}, n_{k}+1, n_{k}+2, \ldots$ (unbounded).
Scott Parkins (University of Auckland)

Quantisation of the EM Field

Consider the state $\hat{a}_{k}\left|n_{k}\right\rangle$. Using $\left[\hat{a}_{k}, \hat{n}_{k}\right]=\hat{a}_{k}$ gives

$$
\hat{n}_{k} \hat{a}_{k}\left|n_{k}\right\rangle=\hat{a}_{k}\left(\hat{n}_{k}-1\right)\left|n_{k}\right\rangle=\left(n_{k}-1\right) \hat{a}_{k}\left|n_{k}\right\rangle
$$

So, $\hat{a}_{k}\left|n_{k}\right\rangle$ is also an eigenstate of \hat{n}_{k}, with eigenvalue $\left(n_{k}-1\right)$, i.e.,

$$
\hat{a}_{k}\left|n_{k}\right\rangle=d_{k}\left|n_{k}-1\right\rangle
$$

Taking norms and using $\left[\hat{a}_{k}, \hat{a}_{k}^{\dagger}\right]=1$ gives $\left|d_{k}\right|=\sqrt{n_{k}}$.
Hence, up to an arbitrary phase factor

$$
\hat{a}_{k}\left|n_{k}\right\rangle=\sqrt{n_{k}}\left|n_{k}-1\right\rangle
$$

Repeat argument \Rightarrow eigenvalues $n_{k}, n_{k}-1, n_{k}-2, \ldots$.
But, sequence cannot become negative: $\left\langle n_{k}\right| \hat{a}_{k}^{\dagger} \hat{a}_{k}\left|n_{k}\right\rangle=n_{k} \geq 0$.
Lowest eigenvalue is 0 and

$$
a_{k}\left|0_{k}\right\rangle=0
$$

Hence, spectrum of number operator \hat{n}_{k} is the set of non-negative integers $0,1,2, \ldots$.

Energy eigenvalues for mode k

$$
E_{n_{k}}=\left(n_{k}+1 / 2\right) \hbar \omega_{k} \quad\left(n_{k}=0,1,2, \ldots\right)
$$

Eigenstates: Number or Fock states

$$
\left|n_{k}\right\rangle=\frac{\left(\hat{a}_{k}^{\dagger}\right)^{n_{k}}}{\left(n_{k}!\right)^{1 / 2}}\left|0_{k}\right\rangle \quad\left(n_{k}=0,1,2, \ldots\right)
$$

- The Fock states are orthogonal, $\left\langle n_{k} \mid m_{k}\right\rangle=\delta_{m n}$, and complete,

$$
\sum_{n_{k}=0}^{\infty}\left|n_{k}\right\rangle\left\langle n_{k}\right|=1
$$

- Form a complete set of basis vectors for a Hilbert space.

Photons

Discrete excitations or quanta of the EM field, corresponding to the occupation numbers $\left\{n_{k}\right\}$, e.g., state $\left|\ldots, 0,0,1_{k}, 0,0, \ldots\right\rangle$ described as a state with one photon in mode k.

Annihilation and creation operators

Operators \hat{a}_{k} and \hat{a}_{k}^{\dagger} lower and raise the photon occupation number of a state by unity. Known as photon annihilation operator, and photon creation operator, respectively.

Notes

- Difficult to generate pure photon number states with more than a few photons.
- Most optical fields are either a superposition or mixture of number states.
- For the description of such states, alternative and more appropriate representations have been developed, e.g., the coherent states.

Coherent States

- Of particular importance in practical applications of the quantum theory of light.
- Closest quantum-mechanical approach to a classical electromagnetic field of definite complex amplitude.
- Enable a close correspondence to be made between quantum and classical correlation functions.
- Particularly appropriate for the description of fields generated by coherent sources, such as lasers and parametric oscillators.
- First discovered in connection with the quantum harmonic oscillator by Schrödinger (1926), who referred to them as states of minimum uncertainty product.
- Relevance to quantum treatment of optical coherence and adoption in quantum optics due largely to Glauber (1963), who coined the name 'coherent state'.

Fock representation of the coherent state

The coherent states are defined as eigenstates of the annihilation operator:

$$
\hat{\mathbf{a}}|\alpha\rangle=\alpha|\alpha\rangle
$$

$$
\left(\text { Note: }\langle\alpha| \hat{a}^{\dagger}=\alpha^{*}\langle\alpha|\right)
$$

with α a complex number.

The Fock states form a complete set, so we can write

$$
|\alpha\rangle=\sum_{n=0}^{\infty} c_{n}|n\rangle
$$

Substituting this form in $\hat{a}|\alpha\rangle=\alpha|\alpha\rangle$ gives

$$
\sum_{n=1}^{\infty} c_{n} \sqrt{n}|n-1\rangle=\alpha \sum_{n=0}^{\infty} c_{n}|n\rangle
$$

Photon number distribution

The probability $P(n)$ that n photons will

 be found in the state $|\alpha\rangle$ is$$
P(n)=|\langle n \mid \alpha\rangle|^{2}=\frac{\exp \left(-|\alpha|^{2}\right)|\alpha|^{2 n}}{n!}
$$

i.e., a Poisson distribution in n, with mean $|\alpha|^{2}$.

Note:
Since the number n corresponds to the eigenvalue of the number operator \hat{n}, we have

$$
\begin{aligned}
\langle\hat{n}\rangle & =\langle\alpha| \hat{n}|\alpha\rangle=\sum_{n} n P(n)=|\alpha|^{2} \\
\left\langle\hat{n}^{2}\right\rangle & =\langle\alpha| \hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger}|\alpha\rangle=\langle\alpha| \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a}+\hat{a}^{\dagger}\left[\hat{a}, \hat{a}^{\dagger}\right] \hat{\mathbf{a}}|\alpha\rangle=|\alpha|^{4}+|\alpha|^{2}
\end{aligned}
$$

Coherent state as a displaced vacuum state

One can show that

$$
|\alpha\rangle=\exp \left(\alpha \hat{a}^{\dagger}-\alpha^{*} \hat{a}\right)|0\rangle \equiv \hat{D}(\alpha)|0\rangle
$$

where $\hat{D}(\alpha)$ is the displacement operator.
This involves the use of the Baker-Hausdorff operator identity:

$$
\exp (\hat{A}+\hat{B})=\exp (\hat{A}) \exp (\hat{B}) \exp (-[\hat{A}, \hat{B}] / 2)
$$

provided that $[\hat{A},[\hat{A}, \hat{B}]]=0=[\hat{B},[\hat{A}, \hat{B}]]$. So,
$\hat{D}(\alpha)|0\rangle=\exp \left(-|\alpha|^{2} / 2\right) \exp \left(\alpha \hat{a}^{\dagger}\right) \exp \left(-\alpha^{*} \hat{a}\right)|0\rangle$
$=\exp \left(-|\alpha|^{2} / 2\right) \exp \left(\alpha \hat{a}^{\dagger}\right)|0\rangle \quad($ since $\hat{a}|0\rangle=0)$
$=\exp \left(-|\alpha|^{2} / 2\right) \sum_{n=0}^{\infty} \frac{\alpha^{n}\left(\hat{a}^{\dagger}\right)^{n}}{n!}|0\rangle$
$=\exp \left(-|\alpha|^{2} / 2\right) \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle$

Properties of the displacement operator

- $\hat{D}^{\dagger}(\alpha)=\hat{D}^{-1}(\alpha)=\hat{D}(-\alpha)$
- $\hat{D}^{\dagger}(\alpha) \hat{a} \hat{D}(\alpha)=\hat{a}+\alpha, \quad \hat{D}^{\dagger}(\alpha) \hat{a}^{\dagger} \hat{D}(\alpha)=\hat{a}^{\dagger}+\alpha^{*}$
- $\hat{D}^{\dagger}(\alpha) f\left(\hat{a}, \hat{a}^{\dagger}\right) \hat{D}(\alpha)=f\left(\hat{a}+\alpha, \hat{a}^{\dagger}+\alpha^{*}\right)$ for any function $f\left(\hat{a}, \hat{a}^{\dagger}\right)$ having a power series expansion
- $\hat{D}(\alpha) \hat{D}(\beta)=\exp \left[\left(\alpha \beta^{*}-\alpha^{*} \beta\right) / 2\right] \hat{D}(\alpha+\beta)$

Scalar product

The scalar product of two coherent states is
$\langle\alpha \mid \beta\rangle=\exp \left(\alpha^{*} \beta-|\alpha|^{2} / 2-|\beta|^{2} / 2\right), \quad|\langle\alpha \mid \beta\rangle|^{2}=\exp \left(-|\alpha-\beta|^{2}\right)$

Notice that no two coherent states are actually orthogonal to each other, but if α and β are very different from each other, the two states are almost orthogonal.

Completeness formula

The coherent states satisfy the completeness relation

$$
\frac{1}{\pi} \int|\alpha\rangle\langle\alpha| \mathrm{d}^{2} \alpha=1 \quad\left(\mathrm{~d}^{2} \alpha=\mathrm{d}(\operatorname{Re} \alpha) \mathrm{d}(\operatorname{Im} \alpha)\right)
$$

so they form a basis for the representation of other states, i.e., if $|\psi\rangle$ is an arbitrary state, then

$$
|\psi\rangle=\frac{1}{\pi} \int|\alpha\rangle\langle\alpha \mid \psi\rangle \mathrm{d}^{2} \alpha
$$

Note:
The set of coherent states is usually said to be over-complete, in the sense that the states form a basis and yet are expressible in terms of each other (due to their non-orthogonality).

Time evolution

In the Schrödinger picture any state evolves in time according to

$$
|\psi(t)\rangle=\exp (-\mathrm{i} \hat{H} t / \hbar)|\psi(0)\rangle
$$

Consider $|\psi(0)\rangle=|\alpha\rangle$. Taking $\hat{H}=\hbar \omega(\hat{n}+1 / 2)$, we have

$$
\begin{aligned}
|\psi(t)\rangle & =\exp (-\mathrm{i} \omega t / 2) \exp (-\mathrm{i} \omega t \hat{n})|\alpha\rangle \\
& =\exp (-\mathrm{i} \omega t / 2) \exp \left(-|\alpha|^{2} / 2\right) \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}} \exp (-\mathrm{i} \omega t \hat{n})|n\rangle \\
& =\exp (-\mathrm{i} \omega t / 2) \exp \left(-|\alpha|^{2} / 2\right) \sum_{n=0}^{\infty} \frac{\left(\alpha \mathrm{e}^{-\mathrm{i} \omega t}\right)^{n}}{\sqrt{n!}}|n\rangle \\
& =\exp (-\mathrm{i} \omega t / 2)\left|\alpha \mathrm{e}^{-\mathrm{i} \omega t}\right\rangle
\end{aligned}
$$

Apart from a phase factor, this is just another coherent state of amplitude $\alpha \mathrm{e}^{-\mathrm{i} \omega t}$. Thus the coherent state evolves into other coherent states continuously and periodically.

The time dependence of the expectation values of the annihilation and creation operators is given by

$$
\langle\psi(t)| \hat{\mathrm{a}}|\psi(t)\rangle=\alpha \mathrm{e}^{-\mathrm{i} \omega t}, \quad\langle\psi(t)| \hat{a}^{\dagger}|\psi(t)\rangle=\alpha^{*} \mathrm{e}^{\mathrm{i} \omega t}
$$

For the canonically conjugate operators \hat{q} and \hat{p}, defined by

$$
\hat{q}=\sqrt{\frac{\hbar}{2 \omega}}\left(\hat{a}^{\dagger}+\hat{a}\right), \quad \hat{p}=i \sqrt{\frac{\hbar \omega}{2}}\left(\hat{a}^{\dagger}-\hat{a}\right)
$$

we find

$$
\begin{aligned}
\langle\psi(t)| \hat{q}|\psi(t)\rangle & =\sqrt{2 \hbar / \omega}|\alpha| \cos (\omega t-\theta) \\
\langle\psi(t)| \hat{p}|\psi(t)\rangle & =-\sqrt{2 \hbar \omega}|\alpha| \sin (\omega t-\theta)
\end{aligned}
$$

where we write $\alpha=|\alpha| \mathrm{e}^{\mathrm{i} \theta}$.
This behaviour is reminiscent of a classical harmonic oscillator of frequency ω, with a well-defined complex amplitude α.

Canonical uncertainty product

The variance of \hat{q} for a coherent state is
$\left\langle(\Delta \hat{q}(t))^{2}\right\rangle \equiv\langle\psi(t)|(\Delta \hat{q})^{2}|\psi(t)\rangle \equiv\langle\psi(t)| \hat{q}^{2}|\psi(t)\rangle-\langle\psi(t)| \hat{q}|\psi(t)\rangle^{2}=\frac{\hbar}{2 \omega}$
and that of \hat{p} is

$$
\left\langle(\Delta \hat{p}(t))^{2}\right\rangle=\frac{\hbar \omega}{2}
$$

The product of the uncertainties is then

$$
\left\langle(\Delta \hat{q}(t))^{2}\right\rangle^{1 / 2}\left\langle(\Delta \hat{p}(t))^{2}\right\rangle^{1 / 2}=\frac{1}{2} \hbar
$$

which is the minimum allowed by quantum mechanics.

Hence, the coherent state is a minimum uncertainty state, behaving as nearly like a classical field as is possible.

Notes:

- The uncertainties in the canonical variables are independent of the eigenvalue α.
- Whether $\left\langle(\Delta \hat{q}(t))^{2}\right\rangle$ is appreciable or not compared with $\langle\hat{q}(t)\rangle^{2}$ depends on the magnitude $|\alpha|$.
- The departure from classical behaviour is unimportant when $|\alpha| \gg 1$, but is significant when $|\alpha| \lesssim 1$.

Quadrature Phase Operators \＆Phase－Space

Diagrams

Quadrature phase operators

The（Hermitian）quadrature phase operators，\hat{X}_{1}, \hat{X}_{2} ，are defined by

$$
\hat{a}=\frac{1}{2}\left(\hat{X}_{1}+i \hat{X}_{2}\right)
$$

i．e．，as the real and imaginary parts of the complex amplitude． They obey the commutation relation $\left[\hat{X}_{1}, \hat{X}_{2}\right]=2 \mathrm{i}$ ，with the corresponding uncertainty relation

$$
\left\langle\left(\Delta \hat{X}_{1}\right)^{2}\right\rangle^{1 / 2}\left\langle\left(\Delta \hat{X}_{2}\right)^{2}\right\rangle^{1 / 2} \geq 1
$$

This relation with the equals sign defines a family of minimum uncertainty states．The coherent states are a particular example with

$$
\left\langle\left(\Delta \hat{X}_{1}\right)^{2}\right\rangle=\left\langle\left(\Delta \hat{X}_{2}\right)^{2}\right\rangle=1
$$

Squeeze operator

The squeezed states may be generated from the vacuum by the operation of the unitary squeeze operator

$$
\hat{S}(\epsilon)=\exp \left[\frac{1}{2} \epsilon^{*} \hat{a}^{2}-\frac{1}{2} \epsilon\left(\hat{a}^{\dagger}\right)^{2}\right] \quad \text { with } \epsilon=r \mathrm{e}^{2 i \phi}
$$

Properties of the squeeze operator：
－$\hat{S}^{\dagger}(\epsilon)=\hat{S}^{-1}(\epsilon)=\hat{S}(-\epsilon)$
－$\hat{S}^{\dagger}(\epsilon) \hat{a} \hat{S}(\epsilon)=\hat{a} \cosh (r)-\hat{a}^{\dagger} \mathrm{e}^{2 i \phi} \sinh (r)$
－$\hat{S}^{\dagger}(\epsilon)\left(\hat{Y}_{1}+\mathrm{i} \hat{Y}_{2}\right) \hat{S}(\epsilon)=\hat{Y}_{1} \mathrm{e}^{-r}+\mathrm{i} \hat{Y}_{2} \mathrm{e}^{r}$ where $\hat{Y}_{1}+\mathrm{i} \hat{Y}_{2}=\left(\hat{X}_{1}+\mathrm{i} \hat{X}_{2}\right) \mathrm{e}^{-\mathrm{i} \phi}$ is a rotated complex amplitude．
－The squeeze operator attenuates one component of the（rotated） complex amplitude and amplifies the other component．Degree of attenuation／amplification determined by $r=|\epsilon|=$ squeeze factor．

The squeezed state $|\alpha, \epsilon\rangle$ is obtained by first squeezing the vacuum and then displacing it:

$$
|\alpha, \epsilon\rangle=\hat{D}(\alpha) \hat{S}(\epsilon)|0\rangle
$$

- Expectation values and variances:
$\left\langle\hat{X}_{1}+\mathrm{i} \hat{X}_{2}\right\rangle=\left\langle\hat{Y}_{1}+\mathrm{i} \hat{Y}_{2}\right\rangle \mathrm{e}^{\mathrm{i} \phi}=2 \alpha$

$$
\begin{aligned}
& \left\langle\left(\Delta \hat{Y}_{1}\right)^{2}\right\rangle=\mathrm{e}^{-2 r}, \quad\left\langle\left(\Delta \hat{Y}_{2}\right)^{2}\right\rangle=\mathrm{e}^{2 r} \\
& \langle\hat{n}\rangle=|\alpha|^{2}+\sinh ^{2}(r)
\end{aligned}
$$

- The squeezed state has unequal uncertainties for Y_{1} and Y_{2}, producing an 'error ellipse' in phase space.
- The principal axes of the ellipse lie along the Y_{1} and Y_{2} axes, and the
 principal radii are ΔY_{1} and ΔY_{2}.

Photon number distribution for the squeezed state $|\alpha, \epsilon\rangle$

$P(n)=(n!\mu)^{-1}\left|\frac{\nu}{2 \mu}\right|^{n}\left|H_{n}\left(\frac{\beta}{\sqrt{2 \mu \nu}}\right)\right|^{2} \exp \left(-|\beta|^{2}+\frac{\nu}{2 \mu} \beta^{2}+\frac{\nu^{*}}{2 \mu} \beta^{\beta^{2}}\right)$
where $H_{n}(x)$ are Hermite polynomials and

$$
\nu=\mathrm{e}^{2 i \phi} \sinh (r), \quad \mu=\cosh (r), \quad \beta=\mu \alpha+\nu \alpha^{*} .
$$

This distribution may be broader or narrower than a Poissonian distribution, depending on whether the reduced fluctuations occur in the phase $\left(X_{2}\right)$ or amplitude $\left(X_{1}\right)$ quadrature of the field.

Expt: Breitenbach, Schiller, Mlynek, Nature 387, 471 (1997)

 29 September, $2008 \quad 30 / 35$

Note

A squeezed vacuum ($\alpha=0$) contains only even numbers of photons, since $H_{n}(0)=0$ for n odd.

Expt: Breitenbach, Schiller, Mlynek, Nature 387, 471 (1997)

Enhanced measurement sensitivity with squeezed states

(An experimentalist's view)

Volume 59, number 3 physical review letters
Precision Measurement beyond the Shot-Noise Limit
Min Xiao, Ling-An Wu, and H. J . Kimble
Deparment of Physics Uniersity of Texas a a Austin, Austin, Texas 7812

 $\underset{\substack{\text { improvement } \\ \text { squezering. }}}{ }$

- The variance of the electric field for a coherent state $\left[V\left(X_{1}\right)=V\left(X_{2}\right)=1\right]$ is a constant with time.
- While the coherent state error circle rotates about the origin at frequency ω, it has a constant projection on the axis defining the electric field
- For a squeezed state, the rotation of the error ellipse leads to a variance that oscillates with frequency 2ω.

Variance in the Electric Field

The electric field for a single mode of the EM field may be written (for a quantisation volume \mathcal{V}) as

$$
\hat{E}(\mathbf{r}, t)=\left(\frac{\hbar \omega}{2 \epsilon_{0} \mathcal{V}}\right)^{1 / 2}\left[\hat{X}_{1} \sin (\omega t-\mathbf{k} \cdot \mathbf{r})-\hat{X}_{2} \cos (\omega t-\mathbf{k} \cdot \mathbf{r})\right]
$$

The variance $V(E) \equiv\left\langle(\Delta \hat{E})^{2}\right\rangle$ is

$$
\begin{gathered}
V(E)=\left(\frac{2 \hbar \omega}{\epsilon_{0} \mathcal{V}}\right)\{ \\
V\left(X_{1}\right) \sin ^{2}(\omega t-\mathbf{k} \cdot \mathbf{r})+V\left(X_{2}\right) \cos ^{2}(\omega t-\mathbf{k} \cdot \mathbf{r}) \\
\\
\left.-V\left(X_{1}, X_{2}\right) \sin [2(\omega t-\mathbf{k} \cdot \mathbf{r})]\right\}
\end{gathered}
$$

where $V\left(X_{1}, X_{2}\right)=\frac{1}{2}\left\langle\hat{X}_{1} \hat{X}_{2}+\hat{X}_{2} \hat{X}_{1}\right\rangle-\left\langle\hat{X}_{1}\right\rangle\left\langle\hat{X}_{2}\right\rangle$.
For a minimum uncertainty state $V\left(X_{1}, X_{2}\right)=0$, and hence

$$
V(E)=\left(2 \hbar \omega / \epsilon_{0} \mathcal{V}\right)\left[V\left(X_{1}\right) \sin ^{2}(\omega t-\mathbf{k} \cdot \mathbf{r})+V\left(X_{2}\right) \cos ^{2}(\omega t-\mathbf{k} \cdot \mathbf{r})\right]
$$

Theoretical Methods in Quantum Optics 2:
Quantum Correlations and Photon Statistics

Scott Parkins

Department of Physics, University of Auckland, New Zealand
29 September, 2008

Outline

We now consider correlation functions of the electromagnetic field and how they may be used in a general definition of optical coherence.

Topics

- Field-Correlation Functions
- Correlation Functions and Optical Coherence
- Photon Correlation Measurements
- Phase-Dependent Correlation Functions

Field-Correlation Functions

Experiments which detect photons ordinarily do so by absorbing them in one way or another \Rightarrow the field we measure is that associated with photon annihilation, i.e., $\hat{\mathbf{E}}^{(+)}(\mathbf{r}, t)$.
We take the probability for the detector to absorb a photon at position \mathbf{r} and time t to be proportional to

$$
\left.T_{i f}=\left|\langle f| \hat{E}^{(+)}(\mathbf{r}, t)\right| i\right\rangle\left.\right|^{2}
$$

where $|i\rangle$ and $|f\rangle$ are the initial and final states of the field.
We consider a single vector component of the field,

$$
\hat{E}^{(+)}(\mathbf{r}, t)=\tilde{\mathbf{e}}_{d}^{*} \cdot \hat{\mathbf{E}}^{(+)}(\mathbf{r}, t), \quad \hat{E}^{(-)}(\mathbf{r}, t)=\tilde{\mathbf{e}}_{d} \cdot \hat{\mathbf{E}}^{(-)}(\mathbf{r}, t)
$$

with $\tilde{\mathbf{e}}_{d}$ a unit vector defining the particular polarisation to which the detector is sensitive.

The total count rate, or average field intensity, is obtained by summing over a complete set of final states:

$$
\begin{aligned}
I(\mathbf{r}, t)=\sum_{f} T_{i f} & =\sum_{f}\langle i| \hat{E}^{(-)}(\mathbf{r}, t)|f\rangle\langle f| \hat{E}^{(+)}(\mathbf{r}, t)|i\rangle \\
& =\langle i| \hat{E}^{(-)}(\mathbf{r}, t) \hat{E}^{(+)}(\mathbf{r}, t)|i\rangle
\end{aligned}
$$

where we have used the completeness relation $\sum_{f}|f\rangle\langle f|=1$.
This result assumes a pure initial state $|i\rangle$. For an initial mixed state described by the density operator $\hat{\rho}=\sum_{i} P_{i}|i\rangle\langle i|$,

$$
I(\mathbf{r}, t)=\sum_{i} P_{i}\langle i| \hat{E}^{(-)}(\mathbf{r}, t) \hat{E}^{(+)}(\mathbf{r}, t)|i\rangle=\operatorname{Tr}\left\{\hat{\rho} \hat{E}^{(-)}(\mathbf{r}, t) \hat{E}^{(+)}(\mathbf{r}, t)\right\}
$$

- If the field is initially in the vacuum state, $\hat{\rho}=|0\rangle\langle 0|$, then

$$
I(\mathbf{r}, t)=\langle 0| \hat{E}^{(-)}(\mathbf{r}, t) \hat{E}^{(+)}(\mathbf{r}, t)|0\rangle=0
$$

The normal ordering of the operators (i.e., all â's to the right of all \hat{a}^{\dagger} 's) yields zero intensity for the vacuum.

- Hence, the intensity appears in terms of a field-correlation function.
- More generally, the correlation between the field at the space-time points $x \equiv(\mathbf{r}, t)$ and $x^{\prime} \equiv\left(\mathbf{r}^{\prime}, t^{\prime}\right)$ may be written as the correlation function

$$
G^{(1)}\left(x, x^{\prime}\right)=\operatorname{Tr}\left\{\rho \hat{E}^{(-)}(x) \hat{E}^{(+)}\left(x^{\prime}\right)\right\}
$$

- This first-order correlation function of the field is sufficient to account for classical interference experiments.
- For experiments involving, e.g., intensity correlations, it is necessary to define higher-order correlation functions.
- The n th-order correlation function of the field is defined by

$$
\begin{aligned}
& \mathcal{G}^{(n)}\left(x_{1} \ldots x_{n}, x_{n+1} \ldots x_{2 n}\right) \\
& \quad=\operatorname{Tr}\left\{\rho \hat{E}^{(-)}\left(x_{1}\right) \ldots \hat{E}^{(-)}\left(x_{n}\right) \hat{E}^{(+)}\left(x_{n+1}\right) \ldots \hat{E}^{(+)}\left(x_{2 n}\right)\right\}
\end{aligned}
$$

Correlation Functions and Optical Coherence

Properties of the correlation functions

For any linear operator \hat{A}, we must have $\operatorname{Tr}\left\{\hat{\rho} \hat{A}^{\dagger} \hat{A}\right\} \geq 0$.

- Choosing $\hat{A}=\hat{E}^{(+)}(x)$ gives $G^{(1)}(x, x) \geq 0$
- Choosing $\hat{A}=\hat{E}^{(+)}\left(x_{n}\right) \ldots \hat{E}^{(+)}\left(x_{1}\right)$ gives

$$
G^{(n)}\left(x_{1} \ldots x_{n}, x_{n} \ldots x_{1}\right) \geq 0
$$

- Choosing $\hat{A}=\sum_{j=1}^{n} \lambda_{j} \hat{E}^{(+)}\left(x_{j}\right)$, where $\left\{\lambda_{j}\right\}$ is an arbitrary set of complex numbers, gives

$$
\sum_{i j} \lambda_{i}^{*} \lambda_{j} G^{(1)}\left(x_{i}, x_{j}\right) \geq 0
$$

i.e., the set of correlation functions $G^{(1)}\left(x_{i}, x_{j}\right)$ forms a matrix of coefficients for a positive definite quadratic form. Such a matrix has a positive determinant, $\operatorname{det}\left[G^{(1)}\left(x_{i}, x_{j}\right)\right] \geq 0$.
For $n=2$ this gives

$$
G^{(1)}\left(x_{1}, x_{1}\right) G^{(1)}\left(x_{2}, x_{2}\right) \geq\left|G^{(1)}\left(x_{1}, x_{2}\right)\right|^{2}
$$

- For the case of two beams (1 and 2), an interesting inequality arises from the choice

$$
\hat{A}=\lambda_{1} \hat{E}_{1}^{(-)}(x) \hat{E}_{1}^{(+)}(x)+\lambda_{2} \hat{E}_{2}^{(-)}(x) \hat{E}_{2}^{(+)}(x)
$$

which gives

$$
\begin{aligned}
& \left|\left\langle\hat{E}_{1}^{(-)}(x) \hat{E}_{1}^{(+)}(x) \hat{E}_{2}^{(-)}(x) \hat{E}_{2}^{(+)}(x)\right\rangle\right|^{2} \\
& \quad \leq\left\langle\left[\hat{E}_{1}^{(-)}(x) \hat{E}_{1}^{(+)}(x)\right]^{2}\right\rangle\left\langle\left[\hat{E}_{2}^{(-)}(x) \hat{E}_{2}^{(+)}(x)\right]^{2}\right\rangle
\end{aligned}
$$

This proves useful in contrasting classical and quantum predictions for certain optical systems (see later).

The field incident on the screen at position \mathbf{r} and time t is a superposition of the fields emanating from the two pin holes:

$$
\hat{E}^{(+)}(\mathbf{r}, t)=u_{1} \hat{E}_{1}^{(+)}\left(x_{1}\right)+u_{2} \hat{E}_{2}^{(+)}\left(x_{2}\right)
$$

where $x_{i}=\left(\mathbf{r}_{i}, t-s_{i} / c\right)$, and the coefficients $u_{1,2}$, inversely proportional to $s_{1,2}$, respectively, depend on the geometry of the experiment.

The intensity at the screen is proportional to
$I=\operatorname{Tr}\left\{\hat{\rho} \hat{E}^{(-)}(\mathbf{r}, t) \hat{E}^{(+)}(\mathbf{r}, t)\right\}$

$$
=\left|u_{1}\right|^{2} G^{(1)}\left(x_{1}, x_{1}\right)+\left|u_{2}\right|^{2} G^{(1)}\left(x_{2}, x_{2}\right)+2 \operatorname{Re}\left\{u_{1}^{*} u_{2} G^{(1)}\left(x_{1}, x_{2}\right)\right\}
$$

- First two terms = intensities from each pinhole separately.
- Third term= interference term.
- $G^{(1)}\left(x_{1}, x_{2}\right)$ in general takes on complex values. Assuming $u_{2} \simeq u_{1}$ and absorbing these factors into the normalisation, then writing

$$
G^{(1)}\left(x_{1}, x_{2}\right)=\left|G^{(1)}\left(x_{1}, x_{2}\right)\right| e^{i \Psi\left(x_{1}, x_{2}\right)}
$$

gives

$$
I=G^{(1)}\left(x_{1}, x_{1}\right)+G^{(1)}\left(x_{2}, x_{2}\right)+2\left|G^{(1)}\left(x_{1}, x_{2}\right)\right| \cos \left\{\Psi\left(x_{1}, x_{2}\right)\right\}
$$

- Interference fringes arise from the oscillations of the cosine term. The envelope of the fringes is described by the correlation function $G^{(1)}\left(x_{1}, x_{2}\right)$.

First-order optical coherence

- The idea of coherence in optics was first associated with the possibility of producing interference fringes when two fields are superposed.
- The highest degree of optical coherence was associated with a field which exhibits fringes with maximum visibility, i.e., the larger $G^{(1)}\left(x_{1}, x_{2}\right)$ the more coherent the field.
- The magnitude of $\left|G^{(1)}\left(x_{1}, x_{2}\right)\right|$ is limited by the relation

$$
\left|G^{(1)}\left(x_{1}, x_{2}\right)\right| \leq\left[G^{(1)}\left(x_{1}, x_{1}\right) G^{(1)}\left(x_{2}, x_{2}\right)\right]^{1 / 2}
$$

- The best possible fringe contrast occurs with the equality sign, so the necessary condition for full coherence is

$$
\left|G^{(1)}\left(x_{1}, x_{2}\right)\right|=\left[G^{(1)}\left(x_{1}, x_{1}\right) G^{(1)}\left(x_{2}, x_{2}\right)\right]^{1 / 2}
$$

First-order optical coherence

It is common to use the normalised correlation function

$$
g^{(1)}\left(x_{1}, x_{2}\right)=\frac{G^{(1)}\left(x_{1}, x_{2}\right)}{\left[G^{(1)}\left(x_{1}, x_{1}\right) G^{(1)}\left(x_{2}, x_{2}\right)\right]^{1 / 2}}
$$

in terms of which the condition for full first-order coherence becomes

$$
\left|g^{(1)}\left(x_{1}, x_{2}\right)\right|=1 \quad \text { or } \quad g^{(1)}\left(x_{1}, x_{2}\right)=\mathrm{e}^{\mathrm{i} \psi\left(x_{1}, x_{2}\right)}
$$

Visibility

The visibility of the fringes is given by

$$
v=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }} \equiv\left|g^{(1)}\left(x_{1}, x_{2}\right)\right| \frac{2\left(I_{1} I_{2}\right)^{1 / 2}}{I_{1}+I_{2}}
$$

with $I_{i}=G^{(1)}\left(x_{i}, x_{i}\right)$.

- If the fields incident on the pinholes have equal intensities, the fringe visibility is simply equal to $\left|g^{(1)}\right|$.
- Hence, the condition for first-order optical coherence $\left|g^{(1)}\right|=1$ corresponds to the condition of maximum fringe visibility.

General definition of first-order coherence

A more general definition of first-order coherence of the field is that the first-order correlation function factorises:

$$
G^{(1)}\left(x_{1}, x_{2}\right)=\varepsilon^{(-)}\left(x_{1}\right) \varepsilon^{(+)}\left(x_{2}\right)
$$

For a field in an eigenstate of the operator $\hat{E}^{(+)}$this factorisation holds; coherent states are an example of such a field.

General definition of n th-order coherence

Similarly, the condition for nth-order optical coherence is that the nth-order correlation function factorises:
$G^{(n)}\left(x_{1} \ldots x_{n}, x_{n+1} \ldots x_{2 n}\right)=\varepsilon^{(-)}\left(x_{1}\right) \ldots \varepsilon^{(-)}\left(x_{n}\right) \varepsilon^{(+)}\left(x_{n+1}\right) \ldots \varepsilon^{(+)}\left(x_{2 n}\right)$
Again, the coherent states possess n th-order optical coherence.

- In essence, these experiments measure the joint probability of detecting a photon at time t and another at time $t+\tau$.
- This may be written as an intensity or photon-number correlation function, i.e., the measured quantity is the normally-ordered correlation function

$$
\begin{aligned}
G^{(2)}(\tau) & =\left\langle\hat{E}^{(-)}(t) \hat{E}^{(-)}(t+\tau) \hat{E}^{(+)}(t+\tau) \hat{E}^{(+)}(t)\right\rangle \\
& =\langle: \hat{l}(t) \hat{l}(t+\tau):\rangle \propto\langle: \hat{n}(t) \hat{n}(t+\tau):\rangle
\end{aligned}
$$

Note that we assume a stationary field, i.e., $G^{(2)}(t, \tau)=G^{(2)}(\tau)$.

Normalised second-order correlation function
 $$
g^{(2)}(\tau)=\frac{G^{(2)}(\tau)}{\left|G^{(1)}(0)\right|^{2}}
$$

- For a field that possesses second-order coherence

$$
G^{(2)}(\tau)=\varepsilon^{(-)}(t) \varepsilon^{(-)}(t+\tau) \varepsilon^{(+)}(t+\tau) \varepsilon^{(+)}(t)=\left[G^{(1)}(0)\right]^{2}
$$

$$
\text { and } g^{(2)}(\tau)=1
$$

Classical fields

For a fluctuating classical (single mode) field we may introduce a probability distribution $P(\varepsilon)$ describing the probability of the field $E^{(+)}(\varepsilon, t)$ having the amplitude ε, where

$$
E^{(+)}(\varepsilon, t)=\mathrm{i}\left(\frac{\hbar \omega}{2 \epsilon_{0} V}\right)^{1 / 2} \varepsilon \mathrm{e}^{-\mathrm{i} \omega t}
$$

For zero time delay, $\tau=0$, we may write for this single-mode field

$$
g^{(2)}(0)=1+\frac{\left.\int P(\varepsilon)\left(|\varepsilon|^{2}-\left.\langle | \varepsilon\right|^{2}\right\rangle\right)^{2} d^{2} \varepsilon}{\left.\left(\left.\langle | \varepsilon\right|^{2}\right\rangle\right)^{2}}
$$

An important point to note is that for classical fields the probability distribution $P(\varepsilon)$ is positive, and hence one must have $g^{(2)}(0) \geq 1$.

Field with Gaussian statistics

For a stationary field obeying Gaussian statistics, with zero mean amplitude, $\left\langle E^{(-)}(\varepsilon, t)\right\rangle=0$ (i.e., a chaotic field),

$$
\begin{aligned}
&\left\langle E^{(-)}\right.\left.(\varepsilon, t) E^{(-)}(\varepsilon, t+\tau) E^{(+)}(\varepsilon, t+\tau) E^{(+)}(\varepsilon, t)\right\rangle \\
&=\left\langle E^{(-)}(\varepsilon, t) E^{(-)}(\varepsilon, t+\tau)\right\rangle\left\langle E^{(+)}(\varepsilon, t+\tau) E^{(+)}(\varepsilon, t)\right\rangle \\
& \quad+\left\langle E^{(-)}(\varepsilon, t) E^{(+)}(\varepsilon, t)\right\rangle\left\langle E^{(-)}(\varepsilon, t+\tau) E^{(+)}(\varepsilon, t+\tau)\right\rangle \\
& \quad+\left\langle E^{(-)}(\varepsilon, t) E^{(+)}(\varepsilon, t+\tau)\right\rangle\left\langle E^{(-)}(\varepsilon, t+\tau) E^{(+)}(\varepsilon, t)\right\rangle
\end{aligned}
$$

For fields with no phase-dependent fluctuations the first term is zero. Then,

$$
G^{(2)}(\tau)=G^{(1)}(0)^{2}+\left|G^{(1)}(\tau)\right|^{2} \quad \text { or } \quad g^{(2)}(\tau)=1+\left|g^{(1)}(\tau)\right|^{2}
$$

Now, $G^{(1)}(\tau)$ is the Fourier transform of the spectrum of the field:

$$
S(\omega)=\int_{-\infty}^{\infty} \mathrm{d} \tau \mathrm{e}^{-\mathrm{i} \omega \tau} \mathrm{G}^{(1)}(\tau)
$$

Hence, for a field with a Lorentzian spectrum

$$
g^{(2)}(\tau)=1+\mathrm{e}^{-\gamma \tau}
$$

and for a field with a Gaussian spectrum

$$
g^{(2)}(\tau)=1+\mathrm{e}^{-\gamma^{2} \tau^{2}}
$$

where γ is the spectral linewidth.

- For $\tau \gg \tau_{\mathrm{c}}=\gamma^{-1}$ (the correlation time of the light), the correlation function factorises and $g^{(2)}(\tau) \rightarrow 1$.
- The increased value of $g^{(2)}(\tau)$ for $\tau<\tau_{\mathrm{c}}$ for chaotic light over coherent light $\left[g^{(2)}(0)_{\text {chaotic }}=2 g^{(2)}(0)_{\text {coherent }}\right]$ is due to the increased intensity fluctuations in the chaotic light field.
- There is a high probability that the photon that triggers the counter arrives during a high intensity fluctuation, hence there is a high probability that a second photon will be detected arbitrarily soon.

Photon bunching

- This effect is called photon bunching and was first detected by Hanbury-Brown and Twiss.
- Later experiments showed excellent agreement with the theoretical predictions.

- Note, however, that the above analysis does not rely on any quantisation of the field, but may be deduced from a purely classical analysis with a fluctuating field amplitude.

Quantum mechanical fields

We now consider some single-mode quantum-mechanical fields, for which

$$
g^{(2)}(0)=\frac{\left\langle\hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a}\right\rangle}{\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle^{2}}=1+\frac{V(n)-\bar{n}}{\bar{n}^{2}}
$$

with $V(n)=\left\langle\left(\hat{a}^{\dagger} \hat{a}\right)^{2}\right\rangle-\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle^{2}$.

- Coherent state: For a coherent state $|\alpha\rangle, V(n)=\bar{n}$ and

$$
g^{(2)}(0)=1
$$

- Number state: For a number state $|n\rangle, V(n)=0$ and

$$
g^{(2)}(0)=1-\frac{1}{n}, \quad n>1
$$

$g^{(2)}(0)<1$ will always exhibit antibunching on some time scale

- A value of $g^{(2)}(0)$ less than unity could not have been predicted by a classical analysis, i.e., photon antibunching is a feature peculiar to the quantum mechanical nature of the EM field.

Phase-Dependent Correlation Functions

- The "even-ordered" correlation functions, such as the second-order correlation function $G^{(2)}$, contain no phase information and are a measure of the fluctuations in the photon number.
- The "odd-ordered" correlation functions $G^{(n, m)}\left(x_{1} \ldots x_{n}, x_{n+1} \ldots x_{n+m}\right)$ with $n \neq m$ contain information about the phase fluctuations of the field. For example, the variances in the quadrature phases, $V\left(X_{1}\right), V\left(X_{2}\right)$, depend on these functions.
Comparison of photon counting sequences

Homodyne measurements

- The usual scheme for making quadrature phase measurements involves mixing (or homodyning) the signal field $\left(E_{1}\right)$ with a reference signal $\left(E_{2}\right)$, known as the local oscillator, before photodetection.

- Homodyning with a reference signal of fixed phase gives the phase sensitivity necessary to yield the quadrature variances.

The photodetector responds to the moments of $\hat{c}^{\dagger} \hat{c}$, so the mean photocurrent in the detector is proportional to

$$
\left\langle\hat{\boldsymbol{c}}^{\dagger} \hat{c}\right\rangle=\eta\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle+(1-\eta)\left\langle\hat{b}^{\dagger} \hat{b}\right\rangle-\mathrm{i} \sqrt{\eta(1-\eta)}\left(\langle\hat{a}\rangle\left\langle\hat{b}^{\dagger}\right\rangle-\left\langle\hat{a}^{\dagger}\right\rangle\langle\hat{b}\rangle\right)
$$

We take the field \hat{E}_{2} to be the local oscillator and assume it to be in a coherent state of large amplitude β (so we may neglect the term $\left.\eta\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle\right)$. Then

$$
\left\langle\hat{\boldsymbol{c}}^{\dagger} \hat{\boldsymbol{c}}\right\rangle \simeq(1-\eta)|\beta|^{2}+|\beta| \sqrt{\eta(1-\eta)}\left\langle\hat{X}_{\theta+\pi / 2}\right\rangle
$$

where $\hat{X}_{\theta} \equiv \hat{a} e^{-\mathrm{i} \theta}+\hat{a}^{\dagger} \mathrm{e}^{\mathrm{i} \theta}$, and θ is the phase of β.

- When the contribution from the reflected local oscillator intensity is subtracted, the mean photocurrent is proportional to the mean quadrature phase amplitude of the signal field defined with respect to the local oscillator phase.
- Fluctuations in the photocurrent will be determined by the variance of $\hat{n}_{c} \equiv \hat{c}^{\dagger} \hat{c}$.
- For an intense local oscillator in a coherent state, this is

$$
V\left(n_{c}\right) \simeq(1-\eta)^{2}|\beta|^{2}+|\beta|^{2} \eta(1-\eta) V\left(X_{\theta+\pi / 2}\right)
$$

- So, the signal-field quadrature variances, which depend on "odd-order" correlation functions, can also be determined from the photocurrent.
where $\hat{c}=\sqrt{\eta} \hat{a}+\mathrm{i} \sqrt{1-\eta} \hat{b}$.
Note: We have included a $\pi / 2$ phase shift between the reflected and transmitted beams at the beamsplitter.
- In balanced homodyne detection, the outputs of a 50:50 beamsplitter are directed to photodetectors and the difference between the measured photocurrents is taken.
- The difference current is proportional to

$$
\left\langle\hat{c}^{\dagger} \hat{c}-\hat{d}^{\dagger} \hat{d}\right\rangle=|\beta|\left\langle\hat{X}_{\theta+\pi / 2}\right\rangle
$$

and the variance

$$
V\left(\hat{c}^{\dagger} \hat{c}-\hat{d}^{\dagger} \hat{d}\right)=|\beta|^{2} V\left(\hat{X}_{\theta+\pi / 2}\right)
$$

Theoretical Methods in Quantum Optics 3:
 Representations of the Electromagnetic Field

Scott Parkins

Department of Physics, University of Auckland, New Zealand

29 September, 2008

Number State Representation

The number states form a complete set and hence we can write

$$
\hat{\rho}=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{n m}|n\rangle\langle m|
$$

- The expansion coefficients $c_{n m}$ are complex and there are an infinite number of them.
- Hence, the general expansion is often not very useful, particularly for problems where the phase-dependent properties of the EM field are important (and hence the full expansion is necessary).
- However, in certain cases where only the photon number distribution is of interest the reduced expansion

$$
\hat{\rho}=\sum_{n=0}^{\infty} P(n)|n\rangle\langle n|
$$

may be used. This is not a general representation for all fields, but may prove useful for certain fields; for example, a chaotic field, which has no phase information, and for which

$$
P(n)=\frac{1}{1+\bar{n}}\left(\frac{\bar{n}}{1+\bar{n}}\right)^{n}
$$

where \bar{n} is the mean number of photons.

Glauber-Sudarshan P Representation

The Glauber-Sudarshan P representation relies on the fact that the coherent states are not orthogonal, forming an overcomplete basis.

As a consequence, it is often possible to expand $\hat{\rho}$ as a diagonal sum over coherent states

$$
\hat{\rho}=\int \mathrm{d}^{2} \alpha|\alpha\rangle\langle\alpha| P(\alpha)
$$

where $\mathrm{d}^{2} \alpha \equiv \mathrm{~d}(\operatorname{Re}\{\alpha\}) \mathrm{d}(\operatorname{Im}\{\alpha\})$.
This representation for $\hat{\rho}$ is appealing because the function $P(\alpha)$ plays a role which is rather analogous to a classical probability distribution.

Notes:

- The nonorthogonality of the coherent states gives

$$
\langle\alpha| \hat{\rho}|\alpha\rangle=\int \mathrm{d}^{2} \beta \mathrm{e}^{-|\beta-\alpha|^{2}} P(\beta)
$$

where we have used $|\langle\alpha \mid \beta\rangle|^{2}=\exp \left(-|\beta-\alpha|^{2}\right)$.

- Hence, $\langle\alpha| \hat{\rho}|\alpha\rangle \neq P(\alpha)$; only when $P(\beta)$ is sufficiently broad compared to the Gaussian 'filter' does it approximate a probability.
- Also, although the probability $\langle\alpha| \hat{\rho}|\alpha\rangle$ must be positive, $P(\alpha)$ is not required to be so. Thus, unlike a classical probability, $P(\alpha)$ can take negative values over a limited range.
- Hence, $\boldsymbol{P}(\alpha)$ is often referred to as a quasidistribution function.
so $P(\alpha)$ is also normalised like a classical probability distribution.

Can we find a P representation for any density operator?

Consider

$$
\begin{aligned}
\operatorname{Tr}\left(\hat{\rho} \mathrm{e}^{\mathrm{i} z^{*} \hat{a}^{\dagger}} \mathrm{e}^{\mathrm{iz} \hat{a}}\right) & =\operatorname{Tr}\left\{\left[\int \mathrm{d}^{2} \alpha|\alpha\rangle\langle\alpha| P(\alpha)\right] \mathrm{e}^{\mathrm{i} z^{*} \hat{a}^{\dagger}} \mathrm{e}^{\mathrm{iza}}\right\} \\
& =\int \mathrm{d}^{2} \alpha P(\alpha) \mathrm{e}^{\mathrm{i} z^{*} \alpha^{*}} \mathrm{e}^{\mathrm{i} z \alpha}
\end{aligned}
$$

This is just a 2-D Fourier transform. The inverse transform gives

$$
P(\alpha)=\frac{1}{\pi^{2}} \int \mathrm{~d}^{2} z \operatorname{Tr}\left(\hat{\rho} \mathrm{e}^{\mathrm{i} z^{*} \hat{a}^{\dagger}} \mathrm{e}^{\mathrm{iz} \hat{a}}\right) \mathrm{e}^{-\mathrm{i} z^{*} \alpha^{*}} \mathrm{e}^{-\mathrm{i} z \alpha}
$$

If the Fourier transform of the function defined by the trace exists for a given density operator $\hat{\rho}$, we have our P distribution representing that density operator.

Coherent state $\hat{\rho}=\left|\alpha_{0}\right\rangle\left\langle\alpha_{0}\right|$

$$
\begin{aligned}
P(\alpha) & =\frac{1}{\pi^{2}} \int \mathrm{~d}^{2} z \mathrm{e}^{-\mathrm{i} z^{*}\left(\alpha^{*}-\alpha_{0}^{*}\right)} \mathrm{e}^{-\mathrm{i} z\left(\alpha-\alpha_{0}\right)} \\
& =\delta^{(2)}\left(\alpha-\alpha_{0}\right) \equiv \delta\left(x-x_{0}\right) \delta\left(y-y_{0}\right)
\end{aligned}
$$

where $\alpha=x+\mathrm{i} y$ and $\alpha_{0}=x_{0}+\mathrm{i} y_{0}$.

Chaotic (thermal) state $\hat{\rho}=\sum_{n} P(n)|n\rangle\langle n|$

$$
P(\alpha)=\frac{1}{\pi \bar{n}} \exp \left(-\frac{|\alpha|^{2}}{\bar{n}}\right)
$$

where \bar{n} is the mean photon number.

Number state $\hat{\rho}=|I\rangle\langle I|$

$$
P(\alpha)=\frac{1}{\pi^{2}} \int \mathrm{~d}^{2} z\left[\sum_{k=0}^{I} \frac{(-1)^{k}|z|^{2 k}}{k!} \frac{l!}{k!(I-k)!}\right] \mathrm{e}^{-\mathrm{i} z^{*} \alpha^{*}} \mathrm{e}^{-\mathrm{i} z \alpha}
$$

Noting that

$$
\delta^{(2)}(\alpha)=\frac{1}{\pi^{2}} \int \mathrm{~d}^{2} z \mathrm{e}^{-\mathrm{i} z^{*} \alpha^{*}} \mathrm{e}^{-\mathrm{i} z \alpha}
$$

and using the ordinary rules of differentiation inside the integral, we may write

$$
P(\alpha)=\sum_{k=0}^{I} \frac{I!}{k!(I-k)!} \frac{1}{k!} \frac{\partial^{2 k}}{\partial \alpha^{k} \partial \alpha^{* k}} \delta^{(2)}(\alpha)
$$

This (generalised) function is much more singular than any classical probability distribution \Longleftrightarrow the number state $|/\rangle$ is a quantum state of the field having no classical counterpart.

Quantum characteristic functions

The normally ordered quantum characteristic function is defined by

$$
\chi_{\mathrm{N}}\left(z, z^{*}\right)=\operatorname{Tr}\left(\hat{\rho} \mathrm{e}^{\mathrm{i} z^{*} \hat{a} \dagger} \mathrm{e}^{\mathrm{i} z \hat{a}}\right)
$$

Analogous to a classical characteristic function, one may write for the normally-ordered moments:

$$
\left\langle\hat{a}^{\dagger p} \hat{a}^{q}\right\rangle=\operatorname{Tr}\left(\hat{\rho} \hat{a}^{\dagger p} \hat{a}^{q}\right)=\left.\frac{\partial^{p+q}}{\partial\left(\mathrm{i} z^{*}\right)^{p} \partial(\mathrm{iz})^{q}} \chi_{\mathrm{N}}\left(z, z^{*}\right)\right|_{z=z^{*}=0}
$$

- We have

$$
P\left(\alpha, \alpha^{*}\right)=\frac{1}{\pi^{2}} \int \mathrm{~d}^{2} z_{\chi_{\mathrm{N}}}\left(z, z^{*}\right) \mathrm{e}^{-\mathrm{i} z^{*} \alpha^{*}} \mathrm{e}^{-\mathrm{i} z \alpha}
$$

We may also define the antinormally ordered characteristic function

$$
\chi_{\mathrm{A}}\left(z, z^{*}\right)=\operatorname{Tr}\left(\hat{\rho} \mathrm{e}^{\mathrm{i} z \hat{a}} \mathrm{e}^{\mathrm{i} z^{*} \hat{a}}\right)
$$

and the symmetrically ordered characteristic function

$$
\chi_{\mathrm{S}}\left(z, z^{*}\right)=\operatorname{Tr}\left(\hat{\rho} \mathrm{e}^{\mathrm{i} z^{*} \hat{a}^{\dagger}+\mathrm{i} z \hat{a}}\right)
$$

Relationship between $Q\left(\alpha, \alpha^{*}\right)$ and $P\left(\alpha, \alpha^{*}\right)$

$$
\begin{aligned}
& \text { ship between } Q\left(\alpha, \alpha^{*}\right) \text { and } P\left(\alpha, \alpha^{*}\right) \\
& \begin{aligned}
Q\left(\alpha, \alpha^{*}\right)=\frac{1}{\pi}\langle\alpha| \hat{\rho}|\alpha\rangle & =\frac{1}{\pi} \int \mathrm{~d}^{2} \beta P\left(\beta, \beta^{*}\right)|\langle\alpha \mid \beta\rangle|^{2} \\
& =\frac{1}{\pi} \int \mathrm{~d}^{2} \beta P\left(\beta, \beta^{*}\right) \mathrm{e}^{-|\alpha-\beta|^{2}}
\end{aligned}
\end{aligned}
$$

So, the Q function is a Gaussian convolution of the P function, which accounts for its more well-behaved properties

$$
\begin{aligned}
Q\left(\alpha, \alpha^{*}\right) & =\frac{1}{\pi^{2}} \int \mathrm{~d}^{2} z \operatorname{Tr}\left[\hat{\rho} \mathrm{e}^{\mathrm{i} z \hat{a}}\left(\frac{1}{\pi} \int \mathrm{~d}^{2} \lambda|\lambda\rangle\langle\lambda|\right) \mathrm{e}^{\mathrm{i} z^{*} \hat{a}^{\dagger}}\right] \mathrm{e}^{-\mathrm{i} z^{*} \alpha^{*}} \mathrm{e}^{-\mathrm{i} z \alpha} \\
& =\frac{1}{\pi} \int \mathrm{~d}^{2} \lambda\langle\lambda| \hat{\rho}|\lambda\rangle\left[\frac{1}{\pi^{2}} \int \mathrm{~d}^{2} z \mathrm{e}^{\mathrm{i} z^{*}\left(\lambda^{*}-\alpha^{*}\right)} \mathrm{e}^{\mathrm{i} z(\lambda-\alpha)}\right] \\
& =\frac{1}{\pi} \int \mathrm{~d}^{2} \lambda\langle\lambda| \hat{\rho}|\lambda\rangle \delta^{(2)}(\lambda-\alpha) \\
& =\frac{1}{\pi}\langle\alpha| \hat{\rho}|\alpha\rangle \geq 0
\end{aligned}
$$

Thus, $\pi Q\left(\alpha, \alpha^{*}\right)$ is strictly a probability - the probability for observing the coherent state $|\alpha\rangle$.

In contrast to the P distribution, which gives the normally ordered moments, the Q distribution gives the antinormally ordered moments

$$
\left\langle\hat{a}^{q} \hat{a}^{\dagger p}\right\rangle=\int \mathrm{d}^{2} \alpha Q\left(\alpha, \alpha^{*}\right) \alpha^{* p} \alpha^{q}
$$

The Q representation has a simple relationship to the coherent states:

Examples:

Coherent state $|\beta\rangle$

$$
Q\left(\alpha, \alpha^{*}\right)=\frac{1}{\pi}|\langle\alpha \mid \beta\rangle|^{2}=\frac{1}{\pi} \mathrm{e}^{-|\alpha-\beta|^{2}}
$$

Number state |n)

$$
Q\left(\alpha, \alpha^{*}\right)=\frac{1}{\pi}|\langle\alpha \mid n\rangle|^{2}=\frac{1}{\pi} \frac{|\alpha|^{2 n} \mathrm{e}^{-|\alpha|^{2}}}{n!}
$$

Wigner Representation

The Wigner distribution $W\left(\alpha, \alpha^{*}\right)$ is the Fourier transform of the symmetrically ordered characteristic function $\chi_{\mathrm{S}}\left(z, z^{*}\right)$:

$$
W\left(\alpha, \alpha^{*}\right)=\pi^{-2} \int \mathrm{~d}^{2} z \chi_{\mathrm{S}}\left(z, z^{*}\right) \mathrm{e}^{-\mathrm{i} z^{*} \alpha^{*}} \mathrm{e}^{-\mathrm{i} z \alpha}
$$

The moments of $W\left(\alpha, \alpha^{*}\right)$ are equal to the averages of symmetrically ordered products of creation and annihilation operators:

$$
\left\langle\left(\hat{a}^{\dagger p} \hat{a}^{q}\right) \mathrm{s}\right\rangle=\int \mathrm{d}^{2} \alpha W\left(\alpha, \alpha^{*}\right) \alpha^{* p} \alpha^{q}
$$

where $\left(\hat{a}^{\dagger p} \hat{a}^{q}\right)_{\mathrm{S}}$ denotes the average of $(p+q)!/(p!q!)$ possible orderings of p creation operators and q annihilation operators. For example,
$\left(\hat{a}^{\dagger} \hat{a}\right)_{S}=\frac{1}{2}\left(\hat{a}^{\dagger} \hat{a}+\hat{a} \hat{a}^{\dagger}\right), \quad\left(\hat{a}^{\dagger 2} \hat{a}\right)_{S}=\frac{1}{3}\left(\hat{a}^{\dagger 2} \hat{a}+\hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger}+\hat{a} \hat{a}^{\dagger 2}\right), \quad \ldots$

Relationship between $W\left(\alpha, \alpha^{*}\right)$ and $P\left(\alpha, \alpha^{*}\right)$
Noting that $\chi_{\mathrm{s}}\left(z, z^{*}\right)=\chi_{\mathrm{N}}\left(z, z^{*}\right) \exp \left(-|z|^{2} / 2\right)$ (Baker-Hausdorff theorem), we can write

$$
\begin{aligned}
W\left(\alpha, \alpha^{*}\right) & =\frac{1}{\pi^{2}} \int \mathrm{~d}^{2} z \chi_{\mathrm{N}}\left(z, z^{*}\right) \mathrm{e}^{-|z|^{2} / 2} \mathrm{e}^{-\mathrm{i} z^{*} \alpha^{*}} \mathrm{e}^{-\mathrm{i} z \alpha} \\
& =\frac{1}{\pi^{2}} \int \mathrm{~d}^{2} z \int \mathrm{~d}^{2} \beta P\left(\beta, \beta^{*}\right) \mathrm{e}^{\mathrm{i} z^{*} \beta^{*}} \mathrm{e}^{\mathrm{i} z \beta} \mathrm{e}^{-|z|^{2} / 2} \mathrm{e}^{-\mathrm{i} z^{*} \alpha^{*}} \mathrm{e}^{-\mathrm{i} z \alpha} \\
& =\frac{1}{\pi^{2}} \int \mathrm{~d}^{2} \beta P\left(\beta, \beta^{*}\right) \int \mathrm{d}^{2} z \mathrm{e}^{-|z|^{2} / 2+\mathrm{i} z^{*}\left(\beta^{*}-\alpha^{*}\right)+\mathrm{i} z(\beta-\alpha)} \\
& =\frac{2}{\pi} \int \mathrm{~d}^{2} \beta P\left(\beta, \beta^{*}\right) \mathrm{e}^{-2|\beta-\alpha|^{2}}
\end{aligned}
$$

So, the Wigner function is also a Gaussian convolution of the P function, although the Gaussian is narrower than for the Q function.

Coherent state $\left|\alpha_{0}\right\rangle=\left|(1 / 2)\left[x_{1}^{(0)}+i x_{2}^{(0)}\right]\right\rangle$

$$
W\left(\alpha, \alpha^{*}\right)=\frac{2}{\pi} \exp \left(-2\left|\alpha-\alpha_{0}\right|^{2}\right)
$$

or, in terms of quadrature variables,

$$
W\left(x_{1}, x_{2}\right)=\frac{2}{\pi} \exp \left[-\frac{1}{2}\left(x_{1}-x_{1}^{(0)}\right)^{2}-\frac{1}{2}\left(x_{2}-x_{2}^{(0)}\right)^{2}\right]
$$

The contour of the Wigner function can be defined by

$$
\left(x_{1}-x_{1}^{(0)}\right)^{2}+\left(x_{2}-x_{2}^{(0)}\right)^{2}=1
$$

which we identify with the error area introduced earlier in the context of quadrature phase diagrams, i.e., the error area for the coherent state $\left|\alpha_{0}\right\rangle$ is a circle with radius one centred on the point $\left(x_{1}^{(0)}, x_{2}^{(0)}\right)$.

Squeezed state $\left|\alpha_{0}, r\right\rangle$

$$
W\left(x_{1}, x_{2}\right)=\frac{2}{\pi} \exp \left[-\frac{1}{2}\left(x_{1}-x_{1}^{(0)}\right)^{2} \mathrm{e}^{-2 r}-\frac{1}{2}\left(x_{2}-x_{2}^{(0)}\right)^{2} \mathrm{e}^{2 r}\right]
$$

The contour of the Wigner function is

$$
\frac{\left(x_{1}-x_{1}^{(0)}\right)^{2}}{\mathrm{e}^{2 r}}+\frac{\left(x_{2}-x_{2}^{(0)}\right)^{2}}{\mathrm{e}^{-2 r}}=1
$$

i.e., an ellipse with the lengths of the major and minor axes given by e^{r} and e^{-r}, respectively.

(a) Coherent state $|\alpha=2\rangle$, (b) squeezed state $|\alpha=2, r=0.6\rangle$,
(c) number state $|n=1\rangle$, and (d) the number state $|n=2\rangle$.

Writing $\hat{a}=\left(\hat{X}_{1}+\mathrm{i} \hat{X}_{2}\right) / 2$ and $\alpha=(x+\mathrm{i} y) / 2$, one can show that the Wigner function can be rewritten in terms of the matrix elements of $\hat{\rho}$ in the \hat{X}_{1} representation as

$$
W(x, y)=\frac{2}{\pi} \int \mathrm{~d} x_{1}^{\prime}\left\langle x-x_{1}^{\prime}\right| \hat{\rho}\left|x+x_{1}^{\prime}\right\rangle \mathrm{e}^{\mathrm{i} x_{1}^{\prime} y}
$$

Hence one can show that

$$
\frac{1}{4} \int \mathrm{~d} y W(x, y)=\langle x| \hat{\rho}|x\rangle \quad \text { and } \quad \frac{1}{4} \int \mathrm{~d} x W(x, y)=\langle y| \hat{\rho}|y\rangle
$$

i.e., the probability densities in x and y respectively are obtained by integrating out the other variable, as for a classical joint probability density.

Optical Homodyne Tomography

physical review a

 volume 40, number 5
rafid commencations

Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase
Abeilung fiir Theoretische Physil

It is shown that the probability dececived 5 June 1989

 ed quadrature phas is s.awn for every θ in the interval $0 \leq \theta<\pi$, then the quasiprobability dis-
ributions can be obtained.

Generalised quadrature operators $\hat{X}_{\theta}=\hat{X}_{1} \cos \theta+\hat{X}_{2} \sin \theta$, $\hat{P}_{\theta}=-\hat{X}_{1} \sin \theta+\hat{X}_{2} \cos \theta$

$$
P_{\theta}\left(x_{\theta}\right)=\frac{1}{4} \int \mathrm{~d} p_{\theta} W\left(x_{\theta} \cos \theta-p_{\theta} \sin \theta, x_{\theta} \sin \theta+p_{\theta} \cos \theta\right)
$$

Given distributions $P_{\theta}\left(x_{\theta}\right)$ for a finite set of $\theta \in[0, \pi)$, can use inverse Radon transform to determine $W(x, y)$.
\qquad 1 MARCH 1993
Measurement of the Wigner Distribution and the Density Matrix of a Light Mode Using Optical Homodyne Tomography: Application to Squeezed States and the Vacuum
D. T. Smithey M. Beck, and M. G. Raymer
Deparment of Phssics and Chemical Physicc l nest

 the density matrix
measured mode.

Quantum State Reconstruction of the Single-Photon Fock State
A. I. Lvovsk,** H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schillert

We have reconstructed the quantum state of ppical pulses containing single photons suing the method
of phase-randomized pulsed optical homodyne tomography. The singlephoton Fock state 11 was preparced using conditional measurements on photon pairs born in the process of parametric down-conversion.
A probabiity
distribution of the phasese-veraged electic fied
anplitudes sith A probabiity distribution of the phase-averaged edectric field amplitudes with a strongly non-Gaussia
shape is obtained with he total detection efficiency of $(55 \pm 1) \%$. The angle-averaged Wigner functio Teconstructed from this distribution sha
around the origin of the phase space.

Degenerate Parametric Amplification

- One of the simplest interactions in nonlinear optics is where a photon of frequency 2ω is converted into two photons each with frequency ω.

- This process, known as parametric down conversion, may occur in a medium with a second-order nonlinear susceptibility $\chi^{(2)}$ and describes the operation of a parametric amplifier.
- In a degenerate parametric amplifier a signal at frequency ω is amplified by pumping a $\chi^{(2)}$ medium (with a laser) at the frequency 2ω.

Model

- Consider a simple model where the pump mode at frequency 2ω is treated classically (i.e., the pump field is assumed to be in a large-amplitude coherent state).
- The signal mode at frequency ω is described by the annihilation operator â.
- The Hamiltonian for the system is then taken to be

$$
\hat{H}=\hbar \omega \hat{a}^{\dagger} \hat{a}-\frac{1}{2} \mathrm{i} \hbar \chi\left(\hat{a}^{2} \mathrm{e}^{2 i \omega t}-\hat{a}^{\dagger 2} \mathrm{e}^{-2 i \omega t}\right)
$$

where χ is a constant proportional to the second-order nonlinear susceptibility and to the amplitude of the pump field.

In the interaction picture the Hamiltonian becomes

$$
\hat{H}_{I}=-\frac{1}{2} i \hbar \chi\left(\hat{a}^{2}-\hat{a}^{\dagger 2}\right)
$$

Note: Moving to the interaction picture can be viewed as transforming to a frame rotating at frequency ω.

The Heisenberg equations of motion are

$$
\frac{\mathrm{d} \hat{\mathrm{a}}}{\mathrm{~d} t}=\frac{1}{\mathrm{i} \hbar}\left[\hat{\mathrm{a}}, \hat{H}_{\mathrm{I}}\right]=\chi \hat{a}^{\dagger}, \quad \frac{\mathrm{d} \hat{a}^{\dagger}}{\mathrm{d} t}=\frac{1}{\mathrm{i} \hbar}\left[\hat{a}^{\dagger}, \hat{H}_{\mathrm{I}}\right]=\chi \hat{\mathrm{a}}
$$

which have the solution

$$
\hat{a}(t)=\hat{a}(0) \cosh (\chi t)+\hat{a}^{\dagger}(0) \sinh (\chi t)
$$

which takes the form of the generator of the squeezing transformation.

Introducing the quadrature phase operators, $\hat{X}_{1}=\hat{a}+\hat{a}^{\dagger}$ and $\hat{X}_{2}=-\mathrm{i}\left(\hat{a}-\hat{a}^{\dagger}\right)$ one finds

$$
\hat{X}_{1}(t)=\mathrm{e}^{\chi t} \hat{X}_{1}(0), \quad \hat{X}_{2}(t)=\mathrm{e}^{-\chi t} \hat{X}_{2}(0)
$$

i.e., the parametric amplifier is a phase-sensitive amplifier that amplifies one quadrature and attenuates the other.

The parametric amplifier also reduces (increases) the noise in the \hat{X}_{2} $\left(\hat{X}_{1}\right)$ quadrature. The variances $V\left(X_{i}, t\right)$ satisfy

$$
V\left(X_{1}, t\right)=\mathrm{e}^{2 \chi t} V\left(X_{1}, 0\right), \quad V\left(X_{2}, t\right)=\mathrm{e}^{-2 \chi t} V\left(X_{2}, 0\right)
$$

For initial vacuum or coherent states $V\left(X_{i}, 0\right)=1$, and hence

$$
V\left(X_{1}, t\right)=\mathrm{e}^{2 \chi t}, \quad V\left(X_{2}, t\right)=\mathrm{e}^{-2 \chi t}
$$

with the product of the variances satisfying the minimum uncertainty relation, $V\left(X_{1}\right) V\left(X_{2}\right)=1$.

- Thus, the deamplified quadrature has less quantum noise than the vacuum level.
- The amount of squeezing or noise reduction is proportional to the strength of the nonlinearity, the amplitude of the pump field, and the interaction time.

Non-Degenerate Parametric Amplification

- In the nondegenerate parametric amplifier a pump mode at frequency 2ω interacts in a nonlinear optical medium with two modes at frequencies ω_{1} and ω_{2}, such that $2 \omega=\omega_{1}+\omega_{2}$.
- It is conventional to designate one mode as the signal and the other as the idler.
- Note that in some cases the signal and idler modes may differ in polarisation rather than in frequency.

Model

- Consider again a simple model where the pump mode at frequency 2ω is treated classically.
- The Hamiltonian for this system can be written as

$$
\hat{H}=\hbar \omega_{1} \hat{a}_{1}^{\dagger} \hat{a}_{1}+\hbar \omega_{2} \hat{a}_{2}^{\dagger} \hat{a}_{2}+\mathrm{i} \hbar \chi\left(\hat{a}_{1}^{\dagger} \hat{a}_{2}^{\dagger} \mathrm{e}^{-2 i \omega t}-\hat{a}_{1} \hat{a}_{2} \mathrm{e}^{2 \mathrm{i} \omega t}\right)
$$

where $\hat{a}_{1}\left(\hat{a}_{2}\right)$ is the annihilation operator for the signal (idler) mode.

- The coupling constant χ is proportional to the second-order susceptibility of the medium and to the (coherent) amplitude of the pump.

The following (Schwarz) inequality then holds:

$$
\begin{aligned}
& \int \mathrm{d}^{2} \alpha_{1} \int \mathrm{~d}^{2} \alpha_{2}\left|\alpha_{1}\right|^{2}\left|\alpha_{2}\right|^{2} P\left(\alpha_{1}, \alpha_{2}\right) \\
& \leq {\left[\int \mathrm{d}^{2} \alpha_{1} \int \mathrm{~d}^{2} \alpha_{2}\left|\alpha_{1}\right|^{4} P\left(\alpha_{1}, \alpha_{2}\right)\right]^{1 / 2} } \\
& \times\left[\int \mathrm{d}^{2} \alpha_{1} \int \mathrm{~d}^{2} \alpha_{2}\left|\alpha_{2}\right|^{4} P\left(\alpha_{1}, \alpha_{2}\right)\right]^{1 / 2}
\end{aligned}
$$

or, expressed in terms of operators:

$$
\left\langle\hat{a}_{1}^{\dagger} \hat{a}_{1} \hat{a}_{2}^{\dagger} \hat{a}_{2}\right\rangle \leq\left[\left\langle\hat{a}_{1}^{\dagger 2} \hat{a}_{1}^{2}\right\rangle\left\langle\hat{a}_{2}^{\dagger 2} \hat{a}_{2}^{2}\right\rangle\right]^{1 / 2}
$$

This is known as the Cauchy-Schwarz inequality. If the two modes are symmetric, then this reduces to

$$
\left\langle\hat{a}_{1}^{\dagger} \hat{a}_{1} \hat{a}_{2}^{\dagger} \hat{a}_{2}\right\rangle \leq\left\langle\hat{a}_{1}^{\dagger 2} \hat{a}_{1}^{2}\right\rangle
$$

A stronger inequality may be derived for quantum fields; in particular, from the general result $\operatorname{Tr}\left(\hat{\rho} \hat{A}^{\dagger} \hat{A}\right) \geq 0$ for a linear operator \hat{A} (see earlier), we have

$$
\left\langle\hat{a}_{1}^{\dagger} \hat{a}_{1} \hat{a}_{2}^{\dagger} \hat{a}_{2}\right\rangle^{2} \leq\left\langle\left(\hat{a}_{1}^{\dagger} \hat{a}_{1}\right)^{2}\right\rangle\left\langle\left(\hat{a}_{2}^{\dagger} \hat{a}_{2}\right)^{2}\right\rangle
$$

or, for a symmetrical system,

$$
\left\langle\hat{a}_{1}^{\dagger} \hat{a}_{1} \hat{a}_{2}^{\dagger} \hat{a}_{2}\right\rangle \leq\left\langle\hat{a}_{1}^{\dagger 2} \hat{a}_{1}^{2}\right\rangle+\left\langle\hat{a}_{1}^{\dagger} \hat{a}_{1}\right\rangle
$$

So, a violation of the Cauchy-Schwarz inequality is clearly possible in a quantum system.

A clear experimental demonstration of this violation has been performed, e.g., by Zou et al. [Opt. Commun. 84, 351 (1991)].

Violation of classical probability in parametric down-conversion X.Y. Zou, L.J. Wang and L. Mande!

Received 23 April 1991

Einstein-Podolsky-Rosen (EPR) paradox

- The nondegenerate parametric amplifier can also be used to prepare states of the sort discussed in the EPR paradox.
may 15, 1935
physical review
volume ${ }^{4}$
Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

	quantum mechanics is not complete
	es cannot
With of physial quantity is the possibiily of prediciting	of the probem of making pred on the basis of measurements
vith certainty, without disturbing the	${ }_{\text {on }}^{\text {ond }}$
by non-commuting operators, the knowledge of	
edge of the other. Then either (1)	

- In the original treatment two systems are prepared in a correlated state.
- One of two canonically conjugate variables is measured on one system and the correlation is such that the value for a physical variable in the second system may be inferred with certainty.
which corresponds to the maximum violation of the Cauchy-Schwarz inequality allowed by quantum mechanics. Thus, the nondegenerate parametric amplifier exhibits quantum mechanical correlations that violate certain classical inequalities.

Consider the (generalised) quadrature variables

$$
\hat{X}_{i}^{\theta}=\hat{a}_{i} \mathrm{e}^{\mathrm{i} \theta}+\hat{a}_{i}^{\dagger} e^{-\mathrm{i} \mathrm{\theta} \theta} \quad(i=1,2)
$$

These obey the commutation relation

$$
\left[\hat{X}_{i}^{\theta}, \hat{X}_{i}^{\theta+\pi / 2}\right]=-2 i
$$

and are thus directly analogous to the position and momentum operators discussed in the original EPR paper.

- So, as time proceeds a measurement of \hat{X}_{1}^{θ} yields an increasingly certain value for \hat{X}_{2}^{ϕ}.
- However, one could equally well have measured $\hat{X}_{1}^{\theta-\pi / 2}$ which would yield an increasingly certain value for $\hat{X}_{2}^{\phi+\pi / 2}$.
- Thus, certain values for two noncommuting observables, \hat{X}_{2}^{ϕ} and $\hat{X}_{2}^{\phi+\pi / 2}$, may be obtained without in any way disturbing system 2 .
- This outcome constitutes the centre of the EPR argument.

In reality no measurement enables a perfect inference to be made.
As a measure of the degree of correlation between the two modes, we consider the quantity

$$
V(\theta, \phi)=\frac{1}{2}\left\langle\left(\hat{X}_{1}^{\theta}-\hat{X}_{2}^{\phi}\right)^{2}\right\rangle
$$

If $V(\theta, \phi)=0$ then \hat{X}_{1}^{θ} is perfectly correlated with \hat{X}_{2}^{ϕ} which means that a measurement of \hat{X}_{1}^{θ} can be used to infer a value of \hat{X}_{2}^{ϕ} with certainty.

Using the solutions for the mode operators one finds

$$
\begin{aligned}
V(\theta, \phi) & =\cosh (2 \chi t)-\sinh (2 \chi t) \cos (\theta+\phi) \\
& =\mathrm{e}^{-2 \chi t} \text { for } \theta+\phi=0
\end{aligned}
$$

So, when $\theta+\phi=0$, for long times $V(\theta, \phi)$ becomes increasingly small, reflecting the build up of correlation between the signal and idler fields. [The initial value $V(\theta, \phi)=1$ corresponds to uncorrelated systems.]

- To quantify the extent of the apparent paradox, we can define the variances $V_{\text {inf }}\left(X_{2}^{\phi}\right)$ and $V_{\text {inf }}\left(X_{2}^{\phi+\pi / 2}\right)$ which determine the error in inferring \hat{X}_{2}^{ϕ} and $\hat{X}_{2}^{\phi+\pi / 2}$ from measurements on \hat{X}_{1}^{θ} and $\hat{X}_{1}^{\theta-\pi / 2}$.
- In the case of direct measurements made on ($\hat{X}_{2}^{\phi}, \hat{X}_{2}^{\phi+\pi / 2}$), quantum mechanics would suggest

$$
V\left(X_{2}^{\phi}\right) V\left(X_{2}^{\phi+\pi / 2}\right) \geq 1
$$

- However, the variances in the inferred values are not constrained. Thus, whenever

$$
V_{\mathrm{inf}}\left(X_{2}^{\phi}\right) V_{\mathrm{inf}}\left(X_{2}^{\phi+\pi / 2}\right) \leq 1
$$

one can claim an EPR correlation paradoxically less than expected by direct measurement on the same state.

Ou et al. performed an experimental test of this for a nondegenerate parametric amplifier, obtaining a lowest value of
$V_{\text {inf }}\left(X_{2}^{\phi}\right) V_{\text {inf }}\left(X_{2}^{\phi+\pi / 2}\right)=0.7 \pm 0.01$.

> Volume 68, Number $25 \quad$ physical review Letters 22 June 1992 Realization of te Einst P.
-
(b)

The Wigner function is then

$$
\begin{aligned}
W\left(\alpha_{1}, \alpha_{2}, t\right)= & \frac{1}{\pi^{4}} \int \mathrm{~d}^{2} z_{1} \int \mathrm{~d}^{2} z_{2} \mathrm{e}^{-\mathrm{i} z_{1}^{*} \alpha_{1}^{*}-\mathrm{i} z_{1} \alpha_{1}} \mathrm{e}^{-\mathrm{i} z_{2}^{*} \alpha_{2}^{*}-\mathrm{i} z_{2} \alpha_{2}} \chi \mathrm{~s}\left(z_{1}, z_{2}, t\right) \\
= & \frac{4}{\pi^{2}} \exp \left[-2\left|\alpha_{1} \cosh (\chi t)-\alpha_{2}^{*} \sinh (\chi t)\right|^{2}\right. \\
& \left.-2\left|\alpha_{2} \cosh (\chi t)-\alpha_{1}^{*} \sinh (\chi t)\right|^{2}\right] \\
= & \frac{4}{\pi^{2}} \exp \left[-\frac{1}{2}\left(\frac{\left|\alpha_{1}+\alpha_{2}^{*}\right|^{2}}{\mathrm{e}^{2 \chi t}}+\frac{\left|\alpha_{1}-\alpha_{2}^{*}\right|^{2}}{\mathrm{e}^{-2 \chi t}}\right)\right]
\end{aligned}
$$

which shows that squeezing occurs in a linear combination of the two modes. Note also the following limit, with $\alpha_{j}=x_{j}+i y_{j}$,

$$
W\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \rightarrow C \delta\left(x_{1}-x_{2}\right) \delta\left(y_{1}+y_{2}\right) \quad \text { as } \quad \chi t \rightarrow \infty
$$

which corresponds precisely to the state originally envisioned by EPR.

Wigner function

- The full quantum correlations present in the parametric amplifier may be represented using a quasiprobability distribution.
- If both modes of the amplifier are initially in the vacuum state no Glauber-Sudarshan P function for the total system exists at any time.
- However, a Wigner function does exist.

The appropriate two-mode characteristic function is given by

$$
\begin{aligned}
\chi_{\mathrm{S}}\left(z_{1}, z_{2}, t\right) & =\langle 0,0| \mathrm{e}^{\mathrm{i} z_{1}^{*} \mathrm{a}_{1}^{\dagger}(t)+\mathrm{i} z_{1} \hat{a}_{1}(t)} \mathrm{e}^{\mathrm{i} z_{2}^{*} \hat{a}_{2}^{\dagger}(t)+\mathrm{i} z_{2} \hat{a}_{2}(t)}|0,0\rangle \\
& =\mathrm{e}^{-\frac{1}{2}\left|z_{1}(t)\right|^{2}-\frac{1}{2}\left|z_{2}(t)\right|^{2}}
\end{aligned}
$$

where

$$
\begin{aligned}
& z_{1}(t)=z_{1}^{*} \cosh (\chi t)+z_{2} \sinh (\chi t) \\
& z_{2}(t)=z_{2}^{*} \cosh (\chi t)+z_{1} \sinh (\chi t)
\end{aligned}
$$

restancharticles

Outline

In all physical processes there is an associated loss mechanism. In the context of quantum optics, specific sources of loss include, e.g., imperfect mirrors and atomic spontaneous emission. We now consider one particular way of including losses in the quantum mechanical equations of motion - the master equation approach. In this approach, the system of interest is coupled to a heat bath or reservoir, which describes the environment into which the system loses energy.

Topics

- The Master Equation
- System Operator Expectation Values
- Correlation Functions: Quantum Regression Formula

The Master Equation

We begin with a Hamiltonian of the general form

$$
\hat{H}=\hat{H}_{\mathrm{S}}+\hat{H}_{\mathrm{R}}+\hat{H}_{\mathrm{SR}}
$$

- $\hat{H}_{\mathrm{S}}, \hat{H}_{\mathrm{R}}$ are Hamiltonians for the system and reservoir.
- $\hat{H}_{S R}$ describes the interaction between them.

Let $\hat{w}(t)$ be the density operator for the total system $S \oplus R$.
We define the reduced density operator $\hat{\rho}(t)=\operatorname{Tr}_{R}[\hat{w}(t)]$, where the trace is only taken over the reservoir states.

If \hat{O} is an operator in S we can calculate its average in the Schrödinger picture if we have knowledge of $\hat{\rho}(t)$ alone, i.e.,

$$
\langle\hat{O}\rangle=\operatorname{Tr}_{\mathrm{S}_{\oplus \mathrm{R}}}[\hat{O} \hat{w}(t)]=\operatorname{Tr}_{\mathrm{S}}\left\{\hat{O} \operatorname{Tr}_{\mathrm{R}}[\hat{w}(t)]\right\}=\operatorname{Tr}_{\mathrm{S}}[\hat{O} \hat{\rho}(t)]
$$

Our objective is to obtain an equation for $\hat{\rho}(t)$ with the properties of the reservoir R entering only as parameters.

- The Schrödinger equation for $\hat{w}(t)$ is

$$
\dot{\hat{w}}(t)=\frac{1}{\mathrm{i} \hbar}[\hat{H}, \hat{w}(t)]
$$

- Transform into the interaction picture,

$$
\tilde{w}(t)=\mathrm{e}^{\mathrm{i}\left(\hat{H}_{\mathrm{S}}+\hat{H}_{\mathrm{R}}\right) t / \hbar} \hat{w}(t) \mathrm{e}^{-\mathrm{i}\left(\hat{H}_{\mathrm{S}}+\hat{H}_{\mathrm{R}}\right) t / \hbar}
$$

to give

$$
\dot{\tilde{w}}(t)=\frac{1}{\mathrm{i} \hbar}\left[\tilde{H}_{\mathrm{SR}}(t), \tilde{w}(t)\right]
$$

where now $\tilde{H}_{\mathrm{SR}}(t)$ is explicitly time-dependent:

$$
\tilde{H}_{\mathrm{SR}}(t)=\mathrm{e}^{\mathrm{i}\left(\hat{H}_{\mathrm{S}}+\hat{H}_{\mathrm{R}}\right) t / \hbar} \hat{H}_{\mathrm{SR}} \mathrm{e}^{-\mathrm{i}\left(\hat{H}_{\mathrm{S}}+\hat{H}_{\mathrm{R}}\right) t / \hbar}
$$

- Now integrate formally to give

$$
\tilde{w}(t)=\tilde{w}(0)+\frac{1}{i \hbar} \int_{0}^{t} \mathrm{~d} t^{\prime}\left[\tilde{H}_{\mathrm{SR}}\left(t^{\prime}\right), \tilde{w}\left(t^{\prime}\right)\right]
$$

- Substitute this expression for $\tilde{w}(t)$ into original equation:

$$
\dot{\tilde{w}}(t)=\frac{1}{\mathrm{i} \hbar}\left[\tilde{H}_{\mathrm{SR}}(t), \tilde{w}(0)\right]-\frac{1}{\hbar^{2}} \int_{0}^{t} \mathrm{~d} t^{\prime}\left[\tilde{H}_{\mathrm{SR}}(t),\left[\tilde{H}_{\mathrm{SR}}\left(t^{\prime}\right), \tilde{w}\left(t^{\prime}\right)\right]\right]
$$

- This equation is exact, and in this form we can identify reasonable approximations to make.

Assumption

We assume that the interaction is turned on at $t=0$ and that no correlations exist between S and R at this initial time. Then

$$
\hat{w}(0)=\tilde{w}(0)=\hat{\rho}(0) \hat{R}_{0}
$$

where \hat{R}_{0} is an initial reservoir density operator.

- Then, noting that

$$
\begin{aligned}
\operatorname{Tr}_{\mathrm{R}}[\tilde{w}(t)] & =\mathrm{e}^{\mathrm{i} \hat{H}_{\mathrm{S}} t / \hbar} \operatorname{Tr}_{\mathrm{R}}\left[\mathrm{e}^{\mathrm{i} \hat{H}_{\mathrm{R}} t / \hbar} \hat{w}(t) \mathrm{e}^{-\mathrm{i} \hat{H}_{\mathrm{R}} t / \hbar}\right] \mathrm{e}^{-\mathrm{i} \hat{H}_{\mathrm{S}} t / \hbar} \\
& =\mathrm{e}^{\mathrm{i} \hat{H}_{\mathrm{s}} t / \hbar} \hat{\rho}(t) \mathrm{e}^{-\mathrm{i} \hat{H}_{\mathrm{S}} t / \hbar}=\tilde{\rho}(t)
\end{aligned}
$$

tracing over the reservoir gives

$$
\dot{\tilde{\rho}}(t)=-\frac{1}{\hbar^{2}} \int_{0}^{t} \mathrm{~d} t^{\prime} \operatorname{Tr}_{\mathrm{R}}\left\{\left[\tilde{H}_{\mathrm{SR}}(t),\left[\tilde{H}_{\mathrm{SR}}\left(t^{\prime}\right), \tilde{w}\left(t^{\prime}\right)\right]\right]\right\}
$$

Note

For simplicity, we have eliminated the term $(1 / \mathrm{i} \hbar) \operatorname{Tr}_{\mathrm{R}}\left\{\left[\tilde{H}_{\mathrm{SR}}(t), \hat{w}(0)\right]\right\}$ with the assumption that

$$
\operatorname{Tr}_{\mathrm{R}}\left[\tilde{H}_{\mathrm{SR}}(t) \hat{R}_{0}\right]=0
$$

This is guaranteed if the reservoir operators coupling to S have zero mean in the state \hat{R}_{0} - this can always be arranged by simply including $\operatorname{Tr}_{\mathrm{R}}\left(\tilde{H}_{\mathrm{SR}} \hat{R}_{0}\right)$ in the system Hamiltonian \hat{H}_{S}

- While we have assumed that \tilde{w} factorises at $t=0$, at later times correlations between S and R may arise due to their coupling through $\hat{H}_{\text {SR }}$.
- However, we also assume that this coupling is very weak, and at all times $\hat{w}(t)$ should only show deviations of order $\hat{H}_{S R}$ from an uncorrelated state.
- Furthermore, R is a large system whose state should be virtually unaffected by its coupling to S. We therefore write

$$
\tilde{w}(t)=\tilde{\rho}(t) \hat{R}_{0}+O\left(\hat{H}_{\mathrm{SR}}\right)
$$

Note

Markovian behaviour seems reasonable on physical grounds.

- Potentially, S can depend on its past history because its earlier states become imprinted as changes in the reservoir state (through \hat{H}_{SR}) and are then reflected back on the future evolution of S as it interacts with the changed reservoir.
- If, however, the reservoir is a large system maintained in thermal equilibrium, we do not expect it to preserve the minor changes brought about by its interaction with S for very long; not for long enough to significantly affect the future evolution of S.
- It is a question of reservoir correlation time versus the time scale for significant change in S.

Let us consider a more specific model:

$$
\hat{H}_{\mathrm{SR}}=\hbar \sum_{i} \hat{s}_{i} \hat{\Gamma}_{i} \quad \text { or } \quad \tilde{H}_{\mathrm{SR}}(t)=\hbar \sum_{i} \tilde{s}_{i}(t) \tilde{\Gamma}_{i}(t)
$$

where $\left\{\hat{s}_{i}\right\}$ are operators in the Hilbert space of S and $\left\{\hat{\Gamma}_{i}\right\}$ are operators in the Hilbert space of R. In the Born approximation

$$
\begin{aligned}
\dot{\tilde{\rho}}(t)= & -\sum_{i, j} \int_{0}^{t} \mathrm{~d} t^{\prime} \operatorname{Tr}_{\mathrm{R}}\left\{\left[\tilde{s}_{i}(t) \tilde{\Gamma}_{i}(t),\left[\tilde{s}_{j}\left(t^{\prime}\right) \tilde{\Gamma}_{j}\left(t^{\prime}\right), \tilde{\rho}\left(t^{\prime}\right) \hat{R}_{0}\right]\right]\right\} \\
= & -\sum_{i, j} \int_{0}^{t} \mathrm{~d} t^{\prime}\left[\tilde{s}_{i}(t) \tilde{s}_{j}\left(t^{\prime}\right) \tilde{\rho}^{\prime}\left(t^{\prime}\right)-\tilde{s}_{j}\left(t^{\prime}\right) \tilde{\rho}\left(t^{\prime}\right) \tilde{s}_{i}(t)\right]\left\langle\tilde{\Gamma}_{i}(t) \tilde{\Gamma}_{j}\left(t^{\prime}\right)\right\rangle_{\mathrm{R}} \\
& -\sum_{i, j} \int_{0}^{t} \mathrm{~d} t^{\prime}\left[\tilde{\rho}\left(t^{\prime}\right) \tilde{s}_{j}\left(t^{\prime}\right) \tilde{s}_{i}(t)-\tilde{s}_{i}(t) \tilde{\rho}\left(t^{\prime}\right) \tilde{s}_{j}\left(t^{\prime}\right)\right]\left\langle\tilde{\Gamma}_{j}\left(t^{\prime}\right) \tilde{\Gamma}_{i}(t)\right\rangle_{\mathrm{R}}
\end{aligned}
$$

where we have used the cyclic property of the trace, i.e.,
$\operatorname{Tr}(\hat{A} \hat{B} \hat{C})=\operatorname{Tr}(\hat{C} \hat{A} \hat{B})=\operatorname{Tr}(\hat{B} \hat{C} \hat{A})$.

The properties of the reservoir enter through the correlation functions

$$
\left\langle\tilde{\Gamma}_{i}(t) \tilde{\Gamma}_{j}\left(t^{\prime}\right)\right\rangle_{\mathrm{R}}=\operatorname{tr}_{\mathrm{R}}\left[\hat{R}_{0} \tilde{\Gamma}_{i}(t) \tilde{\Gamma}_{j}\left(t^{\prime}\right)\right], \quad\left\langle\tilde{\Gamma}_{j}\left(t^{\prime}\right) \tilde{\Gamma}_{i}(t)\right\rangle_{\mathrm{R}}=\operatorname{tr}_{\mathrm{R}}\left[\hat{R}_{0} \tilde{\Gamma}_{j}\left(t^{\prime}\right) \tilde{\Gamma}_{i}(t)\right]
$$

- We can justify the replacement of $\tilde{\rho}\left(t^{\prime}\right)$ by $\tilde{\rho}(t)$ if these correlation functions decay very rapidly on the time scale on which $\tilde{\rho}(t)$ varies; e.g., if

$$
\left\langle\tilde{\Gamma}_{i}(t) \tilde{\Gamma}_{j}\left(t^{\prime}\right)\right\rangle_{\mathbf{R}} \sim \delta\left(t-t^{\prime}\right)
$$

- So, the Markov approximation relies on the existence of two widely separated time scales: a slow time scale for the dynamics of the system S , and a fast time scale characterising the decay of reservoir correlation functions.

Master equation for a cavity mode driven by thermal light

- Consider a ring cavity with the reservoir comprised of travelling-wave modes that satisfy periodic boundary conditions at $z=-L^{\prime} / 2$ and $z=L^{\prime} / 2$.
- The (single) cavity mode, system S , couples to the reservoir through a partially transmitting mirror at $z=0$.

Hamiltonians:

$$
\begin{aligned}
\hat{H}_{\mathrm{S}} & =\hbar \omega_{\mathrm{C}} \hat{a}^{\dagger} \hat{a} \\
\hat{H}_{\mathrm{R}} & =\sum_{j} \hbar \omega_{j} \hat{r}_{j}^{\dagger} \hat{r}_{j} \\
\hat{H}_{\mathrm{SR}} & =\sum_{j} \hbar\left(\kappa_{j}^{*} \hat{a}_{j}^{\dagger}+\kappa_{j} \hat{a}^{\dagger} \hat{r}_{j}\right)=\hbar\left(\hat{a}^{\dagger} \hat{\Gamma}^{\dagger}+\hat{a}^{\dagger} \hat{\Gamma}\right)
\end{aligned}
$$

- The system S is a harmonic oscillator with frequency ω_{c} and annihilation operator \hat{a}.
- The reservoir is a collection of harmonic oscillators with frequencies ω_{j} and annihilation operators \hat{r}_{j}. These reservoir oscillators couple to the cavity mode oscillator with coupling constants κ_{j}.
- The interaction is modelled in the rotating-wave approximation. This amounts to neglecting terms of the form $\hat{a} \hat{\Gamma}$ or $\hat{a}^{\dagger} \hat{\Gamma}^{\dagger}$, which are energy non-conserving.

The reservoir is taken to be in thermal equilibrium at temperature T, so

$$
\hat{R}_{0}=\prod_{j} \mathrm{e}^{-\hbar \omega_{j} j_{j}^{\dagger} \hat{r}_{j} / k_{\mathrm{B}} T}\left(1-\mathrm{e}^{-\hbar \omega_{j} / k_{\mathrm{B}} T}\right)
$$

where k_{B} is Boltzmann's constant.
The interaction Hamiltonian corresponds to

$$
\begin{aligned}
& \hat{s}_{1}=\hat{a}, \quad \hat{s}_{2}=\hat{a}^{\dagger} \\
& \hat{\Gamma}_{1}=\hat{\Gamma}^{\dagger}=\sum_{j} \kappa_{j}^{*} \hat{r}_{j}^{\dagger}, \quad \hat{\Gamma}_{2}=\hat{\Gamma}=\sum_{j} \kappa_{j} \hat{r}_{j}
\end{aligned}
$$

and in the interaction picture

$$
\begin{aligned}
& \tilde{s}_{1}(t)=\mathrm{e}^{\mathrm{i} \omega_{\mathrm{c}} \hat{a}^{\dagger} \hat{a} t} \hat{a} \mathrm{e}^{-\mathrm{i} \omega_{\mathrm{c}} \hat{a}^{\dagger} \hat{a} t}=\hat{a} \mathrm{e}^{-\mathrm{i} \omega_{\mathrm{c}} t}, \quad \tilde{s}_{2}(t)=\hat{a}^{\dagger} \mathrm{e}^{\mathrm{i} \omega_{\mathrm{c}} t} \\
& \tilde{\Gamma}_{1}(t)=\tilde{\Gamma}^{\dagger}(t)=\sum_{j} \kappa_{j}^{*} \hat{r}_{j}^{\dagger} \mathrm{e}^{\mathrm{i} \omega_{j} t}, \quad \tilde{\Gamma}_{2}(t)=\tilde{\Gamma}(t)=\sum_{j} \kappa_{j} \hat{r}_{j} \mathrm{e}^{-\mathrm{i} \omega_{j} t}
\end{aligned}
$$

The master equation in the Born approximation is then

$$
\begin{aligned}
\dot{\tilde{\rho}}(t)=-\int_{0}^{t} \mathrm{~d} t^{\prime} & \left\{\left[\hat{a} \hat{a} \tilde{\rho}\left(t^{\prime}\right)-\hat{a} \tilde{\rho}\left(t^{\prime}\right) \hat{a}\right] \mathrm{e}^{-i \omega_{\mathrm{c}}\left(t+t^{\prime}\right)}\left\langle\tilde{\Gamma}^{\dagger}(t) \tilde{\Gamma}^{\dagger}\left(t^{\prime}\right)\right\rangle_{\mathrm{R}}+\right.\text { h.c. } \\
+ & {\left[\hat{a}^{\dagger} \hat{a}^{\dagger} \tilde{\rho}\left(t^{\prime}\right)-\hat{a}^{\dagger} \tilde{\rho}\left(t^{\prime}\right) \hat{a}^{\dagger}\right] \mathrm{e}^{\mathrm{i} \omega_{\mathrm{c}}\left(t+t^{\prime}\right)}\left\langle\tilde{\Gamma}(t) \tilde{\Gamma}\left(t^{\prime}\right)\right\rangle_{\mathrm{R}}+\text { h.c. } } \\
+ & {\left[\hat{a} \hat{a}^{\dagger} \tilde{\rho}\left(t^{\prime}\right)-\hat{a}^{\dagger} \tilde{\rho}\left(t^{\prime}\right) \hat{\mathrm{a}}\right] \mathrm{e}^{-i \omega_{\mathrm{c}}\left(t-t^{\prime}\right)}\left\langle\tilde{\Gamma}^{\dagger}(t) \tilde{\Gamma}\left(t^{\prime}\right)\right\rangle_{\mathrm{R}}+\text { h.c. } } \\
+ & {\left.\left[\hat{a}^{\dagger} \hat{a} \tilde{\rho}\left(t^{\prime}\right)-\hat{a} \tilde{\rho}\left(t^{\prime}\right) \hat{a}^{\dagger}\right] \mathrm{e}^{\mathrm{i} \omega_{\mathrm{c}}\left(t-t^{\prime}\right)}\left\langle\tilde{\Gamma}(t) \tilde{\Gamma}^{\dagger}\left(t^{\prime}\right)\right\rangle_{\mathrm{R}}+\text { h.c. }\right\} }
\end{aligned}
$$

where the reservoir correlation functions are explicitly:

$$
\begin{aligned}
\left\langle\tilde{\Gamma}^{\dagger}(t) \tilde{\Gamma}^{\dagger}\left(t^{\prime}\right)\right\rangle_{\mathrm{R}} & =\left\langle\tilde{\Gamma}(t) \tilde{\Gamma}\left(t^{\prime}\right)\right\rangle_{\mathrm{R}}=0 \\
\left\langle\tilde{\Gamma}^{\dagger}(t) \tilde{\Gamma}\left(t^{\prime}\right)\right\rangle_{\mathrm{R}} & =\sum_{j}\left|\kappa_{j}\right|^{2} \mathrm{e}^{\mathrm{i} \omega_{j}\left(t-t^{\prime}\right)} \bar{n}\left(\omega_{j}, T\right) \\
\left\langle\tilde{\Gamma}(t) \tilde{\Gamma}^{\dagger}\left(t^{\prime}\right)\right\rangle_{\mathrm{R}} & =\sum_{j}\left|\kappa_{j}\right|^{2} \mathrm{e}^{-\mathrm{i} \omega_{j}\left(t-t^{\prime}\right)}\left[\bar{n}\left(\omega_{j}, T\right)+1\right] \\
\text { with } \bar{n}\left(\omega_{j}, T\right) & =\operatorname{Tr}_{\mathrm{R}}\left(\hat{R}_{0} \hat{r}_{j}^{\dagger} \hat{r}_{j}\right)=\frac{\mathrm{e}^{-\hbar \omega_{j} / k_{\mathrm{B}} T}}{1-\mathrm{e}^{-\hbar \omega_{j} / k_{\mathrm{B}} T}}=\frac{1}{\mathrm{e}^{\hbar \omega_{j} / k_{\mathrm{B}} T}-1}
\end{aligned}
$$

So, we can replace $\tilde{\rho}(t-\tau)$ by $\tilde{\rho}(t)$ in the integrals. Then

$$
\dot{\tilde{\rho}}=\alpha\left(\hat{a} \tilde{\rho}^{\rho} \hat{a}^{\dagger}-\hat{a}^{\dagger} \hat{a} \tilde{\rho}\right)+\beta\left(\hat{a} \tilde{\rho} \hat{a}^{\dagger}+\hat{a}^{\dagger} \tilde{\rho} \hat{a}-\hat{a}^{\dagger} \hat{a} \tilde{\rho}-\tilde{\rho} \hat{a} \hat{a}^{\dagger}\right)+\text { h.c. }
$$

where $\tilde{\rho} \equiv \tilde{\rho}(t)$, with

$$
\begin{aligned}
& \alpha=\int_{0}^{t} \mathrm{~d} \tau \int_{0}^{\infty} \mathrm{d} \omega \mathrm{e}^{-\mathrm{i}\left(\omega-\omega_{\mathrm{c}}\right) \tau} g(\omega)|\kappa(\omega)|^{2} \\
& \beta=\int_{0}^{t} \mathrm{~d} \tau \int_{0}^{\infty} \mathrm{d} \omega \mathrm{e}^{-\mathrm{i}\left(\omega-\omega_{\mathrm{c}}\right) \tau} g(\omega)|\kappa(\omega)|^{2} \bar{n}(\omega, T)
\end{aligned}
$$

- Now, t is a time typical of the time scale for changes in $\tilde{\rho}$, while the τ integration is dominated by much shorter times characterising the decay of reservoir correlations.
- So, we can extend the τ integration to infinity and use

$$
\lim _{t \rightarrow \infty} \int_{0}^{t} \mathrm{~d} \tau \mathrm{e}^{-\mathrm{i}\left(\omega-\omega_{\mathrm{c}}\right) \tau}=\pi \delta\left(\omega-\omega_{\mathrm{c}}\right)+\mathrm{i} \frac{\mathrm{P}}{\omega_{\mathrm{c}}-\omega}
$$

where P indicates the Cauchy principal value. This gives

$$
\begin{aligned}
\alpha & =\pi g\left(\omega_{\mathrm{c}}\right)\left|\kappa\left(\omega_{\mathrm{c}}\right)\right|^{2}+\mathrm{i} \Delta \\
\beta & =\pi g\left(\omega_{\mathrm{c}}\right)\left|\kappa\left(\omega_{\mathrm{c}}\right)\right|^{2} \bar{n}\left(\omega_{\mathrm{c}}\right)+\mathrm{i} \Delta^{\prime}
\end{aligned}
$$

with

$$
\Delta=\mathrm{P} \int_{0}^{\infty} \mathrm{d} \omega \frac{g(\omega)|\kappa(\omega)|^{2}}{\omega_{\mathrm{c}}-\omega}, \quad \Delta^{\prime}=\mathrm{P} \int_{0}^{\infty} \mathrm{d} \omega \frac{g(\omega)|\kappa(\omega)|^{2}}{\omega_{\mathrm{c}}-\omega} \bar{n}(\omega, T)
$$

- Define

$$
\kappa=\pi g\left(\omega_{\mathrm{c}}\right)\left|\kappa\left(\omega_{\mathrm{c}}\right)\right|^{2}, \quad \bar{n}=\bar{n}\left(\omega_{\mathrm{c}}, T\right)
$$

We finally obtain our master equation:

$$
\begin{array}{r}
\dot{\tilde{\rho}}=-\mathrm{i} \Delta\left[\hat{a}^{\dagger} \hat{a}, \tilde{\rho}\right]+\kappa\left(2 \hat{a} \tilde{\rho}^{\prime} \hat{a}^{\dagger}-\hat{a}^{\dagger} \hat{a} \tilde{\rho}-\tilde{\rho} \hat{a}^{\dagger} \hat{a}\right) \\
+2 \kappa \bar{n}\left(\hat{a} \tilde{\rho} \hat{a}^{\dagger}+\hat{a}^{\dagger} \tilde{\rho} \hat{a}-\hat{a}^{\dagger} \hat{a} \tilde{\rho}-\tilde{\rho} \hat{a} \hat{a}^{\dagger}\right)
\end{array}
$$

Transform back to the Schrödinger picture using

$$
\dot{\hat{\rho}}=\frac{1}{\mathrm{i} \hbar}\left[\hat{H}_{\mathrm{s}}, \hat{\rho}\right]+\mathrm{e}^{-\mathrm{i} \hat{H}_{\mathrm{s}} t / \hbar} \dot{\tilde{\rho}} \mathrm{e}^{\mathrm{i} \hat{H}_{\mathrm{s}} t / \hbar}
$$

Master equation for a cavity mode driven by thermal light

$$
\begin{aligned}
\dot{\hat{\rho}}=-\mathrm{i} \omega_{\mathrm{c}}^{\prime}\left[\hat{a}^{\dagger} \hat{a}, \hat{\rho}\right] & +\kappa(\bar{n}+1)\left(2 \hat{a} \hat{\rho} \hat{a}^{\dagger}-\hat{a}^{\dagger} \hat{a} \hat{\rho}-\hat{\rho} \hat{a}^{\dagger} \hat{a}\right) \\
& +\kappa \bar{n}\left(2 \hat{a}^{\dagger} \hat{\rho} \hat{a}-\hat{a} \hat{a}^{\dagger} \hat{\rho}-\hat{\rho} \hat{a} \hat{a}^{\dagger}\right)
\end{aligned}
$$

[^0]
Correlation Functions: Quantum Regression Formula

Remaining with the example of a single (cavity) field mode, correlation functions of particular interest are

$$
\begin{array}{ll}
G^{(1)}(t, t+\tau) & \propto\left\langle\hat{a}^{\dagger}(t) \hat{a}(t+\tau)\right\rangle \\
G^{(2)}(t, t+\tau) & \propto\left\langle\hat{a}^{\dagger}(t) \hat{a}^{\dagger}(t+\tau) \hat{a}(t+\tau) \hat{a}(t)\right\rangle
\end{array}
$$

- The first-order correlation function is required for calculating the spectrum of the field.
- The second-order correlation function gives information about the photon statistics (e.g., describes photon bunching or antibunching).
- Note that while we would normally associate a single mode with a single frequency, here we are considering a mode defined in a lossy optical cavity, which therefore has a finite linewidth.

Note:

The master equation for the reduced density operator $\hat{\rho}$ can be written formally as

$$
\dot{\hat{\rho}}=\mathcal{L} \hat{\rho}
$$

with formal solution $\hat{\rho}(t)=\mathrm{e}^{\mathcal{L} t} \hat{\rho}(0)$.
Here \mathcal{L} is a generalised Liouvillian, or "superoperator"; \mathcal{L} operates on operators rather than on states.
For the damped harmonic oscillator, the action of \mathcal{L} on an arbitrary operator \hat{O} is defined by

$$
\begin{array}{r}
\mathcal{L} \hat{O} \equiv-i \omega_{0}\left[\hat{a}^{\dagger} \hat{a}, \hat{O}\right]+\kappa\left(2 \hat{a} \hat{O} \hat{a}^{\dagger}-\hat{a}^{\dagger} \hat{a} \hat{O}-\hat{O}_{\hat{a}}{ }^{\dagger} \hat{a}\right) \\
\\
+2 \kappa \bar{n}\left(\hat{a} \hat{O} \hat{a}^{\dagger}+\hat{a}^{\dagger} \hat{O} \hat{a}-\hat{a}^{\dagger} \hat{a} \hat{O}-\hat{O} \hat{a} \hat{a}^{\dagger}\right)
\end{array}
$$

Quantum regression formula

In the Born-Markov approximation, one can derive the following formal expressions for the two-time correlation functions ($\tau \geq 0$):

$$
\begin{aligned}
\left\langle\hat{O}_{1}(t) \hat{O}_{2}(t+\tau)\right\rangle & =\operatorname{Tr}_{\mathrm{S}}\left\{\hat{O}_{2}(0) \mathrm{e}^{\mathcal{L} \tau}\left[\hat{\rho}(t) \hat{O}_{1}(0)\right]\right\} \\
\left\langle\hat{O}_{1}(t+\tau) \hat{O}_{2}(t)\right\rangle & =\operatorname{Tr}\left\{\hat{O}_{1}(0) \mathrm{e}^{\mathcal{L} \tau}\left[\hat{\rho}(t) \hat{O}_{2}(0)\right]\right\} \\
\left\langle\hat{O}_{1}(t) \hat{O}_{2}(t+\tau) \hat{O}_{3}(t)\right\rangle & =\operatorname{Tr}\left\{\hat{O}_{2}(0) \mathrm{e}^{\mathcal{L} \tau}\left[\hat{O}_{3}(0) \hat{\rho}(t) \hat{O}_{1}(0)\right]\right\}
\end{aligned}
$$

Note:
The 1st and 2nd equations are just special cases of the 3rd formula, with either \hat{O}_{1} or \hat{O}_{3} set equal to the unit operator.

Quantum regression formula for a complete set of operators

A more convenient form of the quantum regression theorem exists which directly relates the equations of motion for two-time correlation functions to the equations of motion for one-time averages of system operators.

We assume that there exists a complete set of system operators \hat{A}_{μ}, $\mu=1,2, \ldots$, in the sense that we can write

$$
\left\langle\dot{\hat{A}}_{\mu}\right\rangle=\operatorname{Tr}_{\mathrm{S}}\left(\hat{A}_{\mu} \dot{\hat{\rho}}\right)=\sum_{\lambda} M_{\mu \lambda}\left\langle\hat{A}_{\lambda}\right\rangle
$$

where the $M_{\mu \lambda}$ are constants. Thus, the expectation values $\left\langle\hat{\boldsymbol{A}}_{\mu}\right\rangle$ obey a coupled set of linear equations with the evolution matrix \mathbf{M} defined by the elements $M_{\mu \lambda}$. In vector notation,

$$
\langle\dot{\mathbf{A}}\rangle=\mathbf{M}\langle\mathbf{A}\rangle
$$

where $\hat{\mathbf{A}}$ is the column vector of operators $\left\{\hat{\boldsymbol{A}}_{\mu}\right\}$.

Using the formal expression of the quantum regression formula,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left\langle\hat{O}_{1}(t) \hat{A}_{\mu}(t+\tau)\right\rangle & =\operatorname{Tr}_{\mathrm{S}}\left\{\hat{A}_{\mu}(0)\left(\mathcal{L} \mathrm{e}^{\mathcal{L} \tau}\left[\hat{\rho}(t) \hat{O}_{1}(0)\right]\right)\right\} \\
& =\sum_{\lambda} M_{\mu \lambda} \operatorname{Tr}_{\mathrm{S}}\left\{\hat{A}_{\lambda}(0)\left(\mathrm{e}^{\mathcal{L} \tau}\left[\hat{\rho}(t) \hat{O}_{1}(0)\right]\right)\right\} \\
& =\sum_{\lambda} M_{\mu \lambda}\left\langle\hat{O}_{1}(t) \hat{A}_{\lambda}(t+\tau)\right\rangle
\end{aligned}
$$

$$
\text { or } \quad \frac{\mathrm{d}}{\mathrm{~d} \tau}\left\langle\hat{O}_{1}(t) \hat{\mathbf{A}}(t+\tau)\right\rangle=\mathbf{M}\left\langle\hat{O}_{1}(t) \hat{\mathbf{A}}(t+\tau)\right\rangle
$$

where \hat{O}_{1} can be any system operator, not necessarily one of the \hat{A}_{μ}.
Hence, for each operator \hat{O}_{1}, the set of correlation functions $\left\{\left\langle\hat{O}_{1}(t) \hat{A}_{\mu}(t+\tau)\right\rangle\right\}$, with $\tau \geq 0$, satisfies the same equations (as functions of τ) as do the averages $\left\langle\hat{A}_{\mu}(t+\tau)\right\rangle$.

Similarly, one can show ($\tau \geq 0$)

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left\langle\hat{\mathbf{A}}(t+\tau) \hat{O}_{2}(t)\right\rangle=\mathbf{M}\left\langle\hat{\mathbf{A}}(t+\tau) \hat{O}_{2}(t)\right\rangle
$$

and

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left\langle\hat{O}_{1}(t) \hat{\mathbf{A}}(t+\tau) \hat{O}_{2}(t)\right\rangle=\mathbf{M}\left\langle\hat{O}_{1}(t) \hat{\mathbf{A}}(t+\tau) \hat{O}_{2}(t)\right\rangle
$$

Correlation functions for the damped harmonic oscillator
For the mean oscillator amplitude we have

$$
\langle\dot{\hat{\mathbf{a}}}\rangle=-\left(\mathrm{i} \omega_{0}+\kappa\right)\langle\hat{\mathbf{a}}\rangle
$$

Then, with $\hat{A}_{1}=\hat{a}$ and $\hat{O}_{1}=\hat{a}^{\dagger}$, we may write

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left\langle\hat{a}^{\dagger}(t) \hat{\mathrm{a}}(t+\tau)\right\rangle=-\left(\mathrm{i} \omega_{0}+\kappa\right)\left\langle\hat{a}^{\dagger}(t) \hat{a}(t+\tau)\right\rangle
$$

and thus

$$
\begin{aligned}
\left\langle\hat{a}^{\dagger}(t) \hat{a}(t+\tau)\right\rangle & =\left\langle\hat{a}^{\dagger}(t) \hat{a}(t)\right\rangle \mathrm{e}^{-\left(\mathrm{i} \omega_{0}+\kappa\right) \tau} \\
& =\left[\langle\hat{n}(0)\rangle \mathrm{e}^{-\kappa t}+\bar{n}\left(1-\mathrm{e}^{-2 \kappa t}\right)\right] \mathrm{e}^{-\left(\mathrm{i} \omega_{0}+\kappa\right) \tau}
\end{aligned}
$$

In the long-time (stationary) limit

$$
\left\langle\hat{a}^{\dagger}(t) \hat{a}(t+\tau)\right\rangle_{\mathbf{s s}} \equiv \lim _{t \rightarrow \infty}\left\langle\hat{a}^{\dagger}(t) \hat{a}(t+\tau)\right\rangle=\bar{n} \mathrm{e}^{-\left(i \omega_{0}+\kappa\right) \tau}
$$

The Fourier transform of this correlation function gives the spectrum of the light at the cavity output, which is simply a Lorentzian with full-width at half-maximum $2 k$.
Similarly, in the stationary limit

$$
\begin{aligned}
\left\langle\hat{a}^{\dagger}(0) \hat{a}^{\dagger}(\tau) \hat{a}(\tau) \hat{a}(0)\right\rangle & \equiv \lim _{t \rightarrow \infty}\left\langle\hat{a}^{\dagger}(t) \hat{a}^{\dagger}(t+\tau) \hat{a}(t+\tau) \hat{a}(t)\right\rangle \\
& =\bar{n}^{2}\left(1+\mathrm{e}^{-2 \kappa \tau}\right)
\end{aligned}
$$

This expression describes the photon bunching associated with thermal light; at zero delay $(\tau=0)$ the correlation function has twice the value it has for long delays $(\kappa \tau \gg 1)$.

Equivalent c-Number Equations

Glauber-Sudarshan representation

An operator master equation may be transformed to a c-number equation using the Glauber-Sudarshan representation for $\hat{\rho}$.

Consider again the damped harmonic oscillator:

$$
\begin{array}{r}
\dot{\hat{\rho}}=-\mathrm{i} \omega_{0}\left[\hat{a}^{\dagger} \hat{a}, \hat{\rho}\right]+\kappa\left(2 \hat{a} \hat{\rho} \hat{a}^{\dagger}-\hat{a}^{\dagger} \hat{a} \hat{\rho}-\hat{\rho} \hat{a}^{\dagger} \hat{a}\right) \\
+2 \kappa \bar{n}\left(\hat{a} \hat{\rho} \hat{a}^{\dagger}+\hat{a}^{\dagger} \hat{\rho} \hat{a}-\hat{a}^{\dagger} \hat{a} \hat{\rho}-\hat{\rho} \hat{a} \hat{a}^{\dagger}\right)
\end{array}
$$

We substitute the diagonal representation for $\hat{\rho}$,

$$
\hat{\rho}=\int \mathrm{d}^{2} \alpha|\alpha\rangle\langle\alpha| P(\alpha)
$$

The action of the operators \hat{a} and \hat{a}^{\dagger} on $|\alpha\rangle\langle\alpha|$ (from both the right and left) is replaced by multiplication by the complex variables α and α^{*}, and by the action of partial derivatives with respect to these variables.
This is achieved using $\hat{a}|\alpha\rangle=\alpha|\alpha\rangle$, and the results

$$
\begin{aligned}
\frac{\partial}{\partial \alpha}|\alpha\rangle\langle\alpha| & =\frac{\partial}{\partial \alpha}\left(\mathrm{e}^{-|\alpha|^{2}} \mathrm{e}^{\alpha \hat{a}^{\dagger}}|0\rangle\langle 0| \mathrm{e}^{\alpha^{*} \hat{a}}\right)=\left(\hat{a}^{\dagger}-\alpha^{*}\right)|\alpha\rangle\langle\alpha| \\
\frac{\partial}{\partial \alpha^{*}}|\alpha\rangle\langle\alpha| & =\frac{\partial}{\partial \alpha^{*}}\left(\mathrm{e}^{-|\alpha|^{2}} \mathrm{e}^{\alpha \hat{a}^{\dagger}}|0\rangle\langle 0| \mathrm{e}^{\alpha^{*} \hat{a}}\right)=|\alpha\rangle\langle\alpha|(\hat{a}-\alpha)
\end{aligned}
$$

So,

$$
\begin{aligned}
& \hat{\mathbf{a}}|\alpha\rangle\langle\alpha| \hat{a}^{\dagger}=\alpha|\alpha\rangle\langle\alpha| \alpha^{*}=|\alpha|^{2}|\alpha\rangle\langle\alpha| \\
& \hat{a}^{\dagger} \hat{\mathbf{a}}|\alpha\rangle\langle\alpha|=\hat{a}^{\dagger} \alpha|\alpha\rangle\langle\alpha|=\alpha\left(\frac{\partial}{\partial \alpha}+\alpha^{*}\right)|\alpha\rangle\langle\alpha| \\
& |\alpha\rangle\langle\alpha| \hat{a}^{\dagger} \hat{\mathbf{a}}=|\alpha\rangle\langle\alpha| \alpha^{*} \hat{\mathbf{a}}=\alpha^{*}\left(\frac{\partial}{\partial \alpha^{*}}+\alpha\right)|\alpha\rangle\langle\alpha| \\
& |\alpha\rangle\langle\alpha| \hat{a} \hat{a}^{\dagger}=\left(\frac{\partial}{\partial \alpha^{*}}+\alpha\right)|\alpha\rangle\langle\alpha| \hat{a}^{\dagger}=\left(\frac{\partial}{\partial \alpha^{*}}+\alpha\right) \alpha^{*}|\alpha\rangle\langle\alpha| \\
& \hat{a}^{\dagger}|\alpha\rangle\langle\alpha| \hat{\boldsymbol{a}}=\left(\frac{\partial}{\partial \alpha}+\alpha^{*}\right)|\alpha\rangle\langle\alpha| \hat{\mathbf{a}}=\left(\frac{\partial}{\partial \alpha}+\alpha^{*}\right)\left(\frac{\partial}{\partial \alpha^{*}}+\alpha\right)|\alpha\rangle\langle\alpha|
\end{aligned}
$$

Note:
When taking derivatives with respect to complex variables, it is convenient to read the complex variable and its conjugate as two independent variables. This is allowed because
$\frac{\partial}{\partial \alpha} \alpha^{*}=\left(\frac{\partial}{\partial \alpha^{*}} \alpha\right)^{*}=\frac{1}{2}\left(\frac{\partial}{\partial x}-\mathrm{i} \frac{\partial}{\partial y}\right)(x-\mathrm{i} y)=\frac{1}{2}\left(\frac{\partial}{\partial x} x-\frac{\partial}{\partial y} y\right)=0$
A similar approach is possible when integrating by parts. Explicitly, for given functions $f(\alpha)$ and $g(\alpha)$ (whose product vanishes at infinity), one can show that

$$
\begin{aligned}
\int \mathrm{d}^{2} \alpha f(\alpha) \frac{\partial}{\partial \alpha} g(\alpha) & =-\int \mathrm{d}^{2} \alpha g(\alpha) \frac{\partial}{\partial \alpha} f(\alpha) \\
\int \mathrm{d}^{2} \alpha f(\alpha) \frac{\partial}{\partial \alpha^{*}} g(\alpha) & =-\int \mathrm{d}^{2} \alpha g(\alpha) \frac{\partial}{\partial \alpha^{*}} f(\alpha)
\end{aligned}
$$

Properties of Fokker-Planck equations

A general Fokker-Planck Equation (FPE) in n variables may be written in the form

$$
\frac{\partial}{\partial t} P(\mathbf{x}, t)=\left[-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} A_{i}(\mathbf{x})+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} D_{i j}(\mathbf{x})\right] P(\mathbf{x}, t)
$$

- The first derivative term determines the mean or deterministic motion and is called the drift term; $\mathbf{A} \equiv\left(A_{i}\right)$ is the drift vector.
- The second derivative term, provided its coefficient is positive definite, will cause a broadening or diffusion of $P(\mathbf{x}, t)$ and is called the diffusion term; $\mathbf{D} \equiv\left(D_{i j}\right)$ is the diffusion matrix.

Note: For a positive definite matrix \mathbf{M}, the quadratic form $\mathbf{z}^{\top} \mathbf{M z}$ is positive for all nontrivial \mathbf{z}.

For a cavity mode coupled to a thermal reservoir and initially in a coherent state, i.e., $P(\alpha, 0)=\delta^{(2)}\left(\alpha-\alpha_{0}\right)$, the solution is

$$
P(\alpha, t)=\frac{1}{\pi \bar{n}\left(1-\mathrm{e}^{-2 \kappa t}\right)} \exp \left\{-\frac{\left|\alpha-\alpha_{0} \mathrm{e}^{-\left(\kappa+\mathrm{i} \omega_{0}\right) t}\right|^{2}}{\bar{n}\left(1-\mathrm{e}^{-2 \kappa t}\right)}\right\}
$$

The coherent amplitude decays away and fluctuations from the reservoir cause its P function to assume a Gaussian form characteristic of thermal noise.

which are equivalent to the equations of motion for $\langle\hat{a}\rangle$ and $\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle$ derived directly from the master equation.
Note that we define $\langle\alpha\rangle_{P}=\int \mathrm{d}^{2} \alpha \alpha P(\alpha, t)$.

In general, finding solutions for $P(\alpha, t)$ analytically is impossible, but in certain situations steady state or even time-dependent solutions can be found.
Example: Ornstein-Uhlenbeck process
In the case where the drift term is linear in the variable \mathbf{x} and the diffusion coefficient is a constant, i.e.,

$$
\frac{\partial P}{\partial t}=-\sum_{i=1}^{n} A_{i} \frac{\partial}{\partial x_{i}}\left(x_{i} P\right)+\frac{1}{2} \sum_{i, j=1}^{n} D_{i j} \frac{\partial^{2} P}{\partial x_{i} \partial x_{j}}
$$

a solution to the FPE may be found. in particular, for initial condition $P(\mathbf{x}, 0)=\delta^{(n)}\left(\mathbf{x}-\mathbf{x}^{0}\right)$ the solution is
$P\left(\mathbf{x}, \mathbf{x}^{0}, t\right)=\frac{1}{\pi^{n / 2}\{\operatorname{det}[\sigma(t)]\}^{1 / 2}} \exp \left\{-\sum_{i j}\left[\sigma^{-1}(t)\right]_{j j}\left[x_{i}-x_{i}^{0} \mathrm{e}^{A_{i} t}\right]\left[x_{j}-x_{j}^{0} \mathrm{e}^{A_{j} t}\right]\right\}$

$$
\text { with } \sigma_{i j}(t)=\frac{-2 D_{i j}}{A_{i}+A_{j}}\left\{1-\exp \left[\left(A_{i}+A_{j}\right) t\right]\right\}
$$

The different role of the two terms may be seen in the equations of motion for $\left\langle x_{k}\right\rangle$ and $\left\langle x_{k} x_{l}\right\rangle$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle x_{k}\right\rangle=\left\langle A_{k}\right\rangle, \quad \frac{\mathrm{d}}{\mathrm{~d} t}\left\langle x_{k} x_{l}\right\rangle=\left\langle x_{k} A_{l}\right\rangle+\left\langle x_{l} A_{k}\right\rangle+\frac{1}{2}\left\langle D_{k l}+D_{I k}\right\rangle
$$

We see that A_{k} determines the motion of the mean amplitude whereas $D_{l k}$ enters into the equation for the correlations.

Thus, from the FPE for the damped harmonic oscillator we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\langle\alpha\rangle_{P}=-\left(\kappa+\mathrm{i} \omega_{0}\right)\langle\alpha\rangle_{P}, \quad \frac{\mathrm{~d}}{\mathrm{~d} t}\left\langle\alpha^{*} \alpha\right\rangle_{P}=-2 \kappa\left\langle\alpha^{*} \alpha\right\rangle_{P}+2 \kappa \bar{n}
$$

Solutions of the FPE
\qquad

Notes

－From the above solution we may construct solutions for all initial conditions which have a non－singular P representation．
－It is not，however，possible to construct the solution for the oscillator initially in，e．g．，a squeezed state，since no non－singular P function exists for such states．
－Alternative methods of converting the operator master equation to a c－number equation exist，based on the Q and Wigner functions， which can be used，e．g．，for initial squeezed states．

Stochastic Differential Equations

－The FPE provides a dynamical description in terms of an evolving probability distribution which determines the average quantities that would be measured over an ensemble of experiments．
－An alternative approach to calculating these averages is to find a set of equations whose solutions generate trajectories in phase space，representative of a single experiment．
－Such trajectories must possess an irregular component modelling processes that are not observed in microscopic detail，but which manifest themselves macroscopically as sources of noise and fluctuations．
－These stochastic trajectories can be generated mathematically by stochastic differential equations－equations of motion that contain fluctuating source terms whose properties are defined probabilistically．

A FPE of the form

$$
\frac{\partial}{\partial t} P(\mathbf{x}, t)=\left[-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} A_{i}(\mathbf{x}, t)+\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} D_{i j}(\mathbf{x}, t)\right] P(\mathbf{x}, t)
$$

may be written in a completely equivalent form as the（Langevin） equation

$$
\frac{\mathbf{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A}(\mathbf{x}, t)+\mathbf{B}(\mathbf{x}, t) \mathbf{E}(t)
$$

where the matrix $\mathbf{B}(\mathbf{x}, t)$ is defined by

$$
\mathbf{B}(\mathbf{x}, t) \mathbf{B}(\mathbf{x}, t)^{T}=\mathbf{D}(\mathbf{x}, t)
$$

and $\mathbf{E}(t)$ are fluctuating forces with zero mean，i．e．，$\left\langle E_{i}(t)\right\rangle=0$ ，and δ－correlated in time，i．e．，$\left\langle E_{i}(t) E_{j}\left(t^{\prime}\right)\right\rangle=\delta_{i j} \delta\left(t-t^{\prime}\right)$ ．

Example：

Consider the damped harmonic oscillator，coupled to a thermal reservoir．The FPE is

$$
\frac{\partial P}{\partial t}=\kappa\left(\frac{\partial}{\partial \alpha} \alpha+\frac{\partial}{\partial \alpha^{*}} \alpha^{*}+2 \bar{n} \frac{\partial^{2}}{\partial \alpha \partial \alpha^{*}}\right) P
$$

This describes an Ornstein－Uhlenbeck process（linear drift，constant diffusion）．The diffusion matrix is

$$
\mathbf{D}=2 \kappa \bar{n}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

which may be factored as $\mathbf{D}=\mathbf{B B}^{\top}$ ，where

$$
\mathbf{B}=\sqrt{\kappa \bar{n}}\left(\begin{array}{cc}
\mathrm{i} & 1 \\
-\mathrm{i} & 0
\end{array}\right)
$$

Hence, the equivalent stochastic differential equations are

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{\alpha}{\alpha^{*}}=\left(\begin{array}{cc}
-\kappa & 0 \\
0 & -\kappa
\end{array}\right)\binom{\alpha}{\alpha^{*}}+\sqrt{\kappa \bar{n}}\left(\begin{array}{cc}
\mathrm{i} & 1 \\
-\mathrm{i} & 1
\end{array}\right)\binom{\eta_{1}(t)}{\eta_{2}(t)}
$$

where $\eta_{1}(t)$ and $\eta_{2}(t)$ are independent stochastic "forces" which satisfy $\left\langle\eta_{i}(t) \eta_{j}\left(t^{\prime}\right)\right\rangle=\delta_{i j} \delta\left(t-t^{\prime}\right)$. These equations may be rewritten as
$\frac{\mathrm{d} \alpha}{\mathrm{d} t}=-\kappa \alpha+\sqrt{2 \kappa \bar{n}} \eta(t), \quad \frac{\mathrm{d} \alpha^{*}}{\mathrm{~d} t}=-\kappa \alpha^{*}+\sqrt{2 \kappa \bar{n}} \eta^{*}(t)$
where $\eta(t)=2^{-1 / 2}\left[\eta_{2}(t)+\mathrm{i} \eta_{1}(t)\right]$ is a complex stochastic force term satisfying $\langle\eta(t)\rangle=0$ and $\left\langle\eta(t) \eta^{*}\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right)$.

Limitations

- The approaches outlined above (using P, Q, and Wigner representations) can provide a nice visualisation of quantum fluctuations in certain cases, but in general they are limited.
- In particular, the distributions may not satisfy a Fokker-Planck equation, or may require system-size expansions (i.e., small noise limits) in order to do so.
- This precludes them from being applied to systems, such as those encountered in cavity QED, where quantum fluctuations are large.
- Alternative approaches, i.e., generalised P representations,

$$
\hat{\rho}=\int \mathrm{d}^{2} \alpha \int \mathrm{~d}^{2} \alpha^{\dagger} \frac{|\alpha\rangle\left\langle\alpha^{\dagger}\right|}{\left\langle\alpha^{\dagger} \mid \alpha\right\rangle} P\left(\alpha, \alpha^{\dagger}\right) \text { with }\left(\alpha^{\dagger}\right)^{*} \neq \alpha^{*}
$$

extend the phase space to accommodate large quantum noise, but can suffer from non-physical behaviour.
where $\tau \geq 0$ and 'ss' denotes the steady state

Quantum Trajectories

- This approach is not founded upon a particular representation of the density operator.
- It sets up a quantum stochastic process that is fully equivalent to the master equation (plus the regression formula for correlation functions).
- It provides visualisable realisations (i.e., "trajectories") of quantum fluctuations.
- It has a natural connection with (and formulation in terms of) photoelectron counting measurements.

We aim to simulate a system described by the master equation

$$
\dot{\hat{\rho}}=-\frac{i}{\hbar}\left[\hat{H}_{S}, \hat{\rho}\right]+\mathcal{L} \hat{\rho}
$$

with

$$
\mathcal{L} \hat{\rho}=-\frac{1}{2}\left(\hat{C}^{\dagger} \hat{C} \hat{\rho}+\hat{\rho} \hat{C}^{\dagger} \hat{C}\right)+\hat{C}^{\dagger} \hat{\rho} \hat{C}
$$

where \hat{C} is the system operator that appears in the coupling of the system to the reservoir (for example, â).

We assume that at time t the system is in the state $|\psi(t)\rangle$. The evolution to the state at time $t+\delta t$ occurs in two steps.

- Firstly, assuming small $\delta t,\left|\psi_{1}(t+\delta t)\right\rangle$ is calculated according to

$$
\left|\psi_{1}(t+\delta t)\right\rangle=\left(1-\frac{\mathrm{i} \hat{H}_{\mathrm{eff}} \delta t}{\hbar}\right)|\psi(t)\rangle
$$

with the non-Hermitian effective Hamiltonian

$$
\hat{H}_{\text {eff }}=\hat{H}_{S}-\frac{1}{2} i \hbar \hat{C}^{\dagger} \hat{C}
$$

Because $\hat{H}_{\text {eff }}$ is non-Hermitian, $\left|\psi_{1}(t+\delta t)\right\rangle$ is not normalised, i.e.,

$$
\left\langle\psi_{1}(t+\delta t) \mid \psi_{1}(t+\delta t)\right\rangle=1-\delta f
$$

with

$$
\delta f \simeq \delta t \frac{\mathrm{i}}{\hbar}\langle\psi(t)| \hat{H}_{\mathrm{eff}}-\hat{H}_{\mathrm{eff}}^{\dagger}|\psi(t)\rangle=\delta t\langle\psi(t)| \hat{C}^{\dagger} \hat{C}|\psi(t)\rangle \ll 1
$$

for small δt.

- Secondly, we test for the occurrence of a quantum jump (corresponding, e.g., to a photon emission/detection event).
To decide whether such a jump occurs we choose a random number, ϵ, from a uniform distribution on the interval $[0,1]$.
- If $\delta f<\epsilon$ we deem no jump to occur and renormalise the state at time $t+\delta t$:

$$
|\psi(t+\delta t)\rangle=\frac{\left|\psi_{1}(t+\delta t)\right\rangle}{\sqrt{1-\delta t}}
$$

- If $\delta f>\epsilon$, we deem a jump to occur and set

$$
|\psi(t+\delta t)\rangle=\frac{\hat{C}|\psi(t)\rangle}{\langle\psi(t)| \hat{C}^{\dagger} \hat{C}|\psi(t)\rangle}=\frac{\hat{C}|\psi(t)\rangle}{\sqrt{\delta f / \delta t}}
$$

Averaging over the two possible outcomes for the density operator gives

$$
\begin{aligned}
\hat{\rho}(t+\delta t) & =(1-\delta f) \frac{\left|\psi_{1}(t+\delta t)\right\rangle}{\sqrt{1-\delta f}} \frac{\left\langle\psi_{1}(t+\delta t)\right|}{\sqrt{1-\delta t}}+\delta f \frac{\hat{C}|\psi(t)\rangle}{\sqrt{\delta f / \delta t}} \frac{\langle\psi(t)| \hat{C}^{\dagger}}{\sqrt{\delta f / \delta t}} \\
& =\hat{\rho}(t)-\delta t \frac{\mathrm{i}}{\hbar}\left[\hat{H}_{S}, \hat{\rho}(t)\right]+\delta t \mathcal{L}(\hat{\rho}(t))
\end{aligned}
$$

and taking the limit $\delta t \rightarrow 0$ we find

$$
\frac{\mathrm{d} \hat{\rho}}{\mathrm{~d} t}=-\frac{\mathrm{i}}{\hbar}\left[\hat{H}_{S}, \hat{\rho}\right]+\mathcal{L} \hat{\rho}
$$

which is just the master equation.
In the case where the initial state is not a pure state, one has first to decompose it as a statistical mixture of pure states,
$\hat{\rho}(0)=\sum p_{i}\left|\chi_{i}\right\rangle\left\langle\chi_{i}\right|$, and then randomly choose the initial wave function among the $\left\{\left|\chi_{i}\right\rangle\right\}$ according to the probability distribution $\left\{p_{i}\right\}$.

Damped cavity mode in initial Fock state $|n=9\rangle$

For a damped cavity mode we have

$$
\hat{H}_{S}=\hbar \omega \hat{a}^{\dagger} \hat{a} \quad \text { and } \quad \hat{C}=\sqrt{2 \kappa} \hat{a}
$$

Given an initial state $\hat{\rho}(0)=|9\rangle\langle 9|$, the mean photon number in the mode is given by (dashed line)

$$
\langle\hat{n}(t)\rangle=\mathrm{e}^{-2 \kappa t}\langle\hat{n}(0)\rangle=9 \mathrm{e}^{-2 \kappa t}
$$

Theoretical Methods in Quantum Optics 6: Input-Output Formulation of Optical Cavities

Scott Parkins

Department of Physics, University of Auckland, New Zealand

29 September, 2008

Outline

The master equation provides a means of computing the photon statistics inside an optical cavity, but it is the field external to the cavity that is ultimately measured. By treating the dynamics of the external field explicitly (rather than eliminating it in the role of a passive heat bath), one can derive relationships between the input, output, and intracavity fields.

Topics

- Cavity Modes
- Linear Systems
- Two-Time Correlation Functions
- Spectrum of Squeezing
- Parametric Amplifier

Cavity Modes

We consider a single optical cavity mode coupled to an external, one-dimensional (multimode) field. The total Hamiltonian is

$$
\hat{H}=\hat{H}_{\text {sys }}+\hat{H}_{\text {res }}+\hat{H}_{\text {int }}
$$

where $\hat{H}_{\text {sys }}$ is the free Hamiltonian for the intracavity field mode, $\hat{H}_{\text {res }}$ is the free Hamiltonian for the external (or reservoir) field modes, and

$$
\hat{H}_{\text {int }}=\mathrm{i} \hbar \int_{-\infty}^{\infty} \mathrm{d} \omega \kappa(\omega)\left[\hat{a}^{\dagger} \hat{b}(\omega)-\hat{b}^{\dagger}(\omega) \hat{a}\right]
$$

with \hat{a} and $\hat{b}(\omega)$ annihilation operators for the intracavity and external field, respectively, satisfying commutation relations

$$
\left[\hat{a}, \hat{a}^{\dagger}\right]=1, \quad\left[\hat{b}(\omega), \hat{b}^{\dagger}\left(\omega^{\prime}\right)\right]=\delta\left(\omega-\omega^{\prime}\right)
$$

and $\kappa(\omega)$ a coupling constant.

Note:

The actual physical frequency limits in the integral are $(0, \infty)$. However, for high frequencies we may shift the integration to a frequency Ω characteristic of the system (e.g., the cavity resonance frequency), and the integration limits become $(-\Omega, \infty)$. As Ω is large, extending the lower limit to $-\infty$ is a good approximation.

The Heisenberg equation of motion for $\hat{b}(\omega)$ is

$$
\dot{\hat{b}}(\omega)=-\mathrm{i} \omega \hat{b}(\omega)+\kappa(\omega) \hat{a}
$$

A formal solution may be written in terms of initial $\left(t_{0}\right)$ or final $\left(t_{1}\right)$ conditions (i.e., input or output):

$$
\begin{aligned}
\hat{b}(\omega, t) & =e^{-\mathrm{i} \omega\left(t-t_{0}\right)} \hat{b}\left(\omega, t_{0}\right)+\kappa(\omega) \int_{t_{0}}^{t} \mathrm{~d} t^{\prime} e^{-\mathrm{i} \omega\left(t-t^{\prime}\right)} \hat{a}\left(t^{\prime}\right), \quad t_{0}<t \\
& =e^{-\mathrm{i} \omega\left(t-t_{1}\right)} \hat{b}\left(\omega, t_{1}\right)-\kappa(\omega) \int_{t}^{t_{1}} \mathrm{~d} t^{\prime} e^{-\mathrm{i} \omega\left(t-t^{\prime}\right)} \hat{a}\left(t^{\prime}\right), \quad t<t_{1}
\end{aligned}
$$

We can also substitute for $\hat{b}(\omega, t)$ in terms of the output field (time t_{1}), which leads to

$$
\dot{\hat{a}}(t)=-(\mathrm{i} / \hbar)\left[\hat{a}(t), \hat{H}_{\mathrm{sys}}\right]+\kappa \hat{a}(t)-\sqrt{2 \kappa} \hat{a}_{\text {out }}(t)
$$

with the output field operator defined by

$$
\hat{a}_{\text {out }}(t) \equiv \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{d} \omega e^{-\mathrm{i} \omega\left(t-t_{1}\right)} \hat{b}\left(\omega, t_{1}\right)
$$

which satisfies $\left[\hat{a}_{\text {out }}(t), \hat{a}_{\text {out }}^{\dagger}\left(t^{\prime}\right)\right]=\delta\left(t-t^{\prime}\right)$.

Input-output relation

A relation between the external fields and the intracavity field may be obtained by equating the two expressions for $\dot{\hat{a}}(t)$, which gives

$$
\hat{a}_{\text {out }}(t)+\hat{a}_{\text {in }}(t)=\sqrt{2 \kappa} \hat{a}(t)
$$

This is a boundary condition relating each of the far-field amplitudes outside the cavity to the internal cavity field.

Note:

It is important to note that "interference" terms like, e.g., $\left\langle a(t) a_{\text {in }}\left(t^{\prime}\right)\right\rangle$ and $\left\langle a^{\dagger}(t) a_{\text {in }}\left(t^{\prime}\right)\right\rangle$, may contribute to observed output field moments.

Linear Systems

For many systems of interest, the Heisenberg equations may be linear:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{\mathbf{a}}(t)=\mathbf{A} \hat{\mathbf{a}}(t)-\kappa \hat{\mathbf{a}}(t)+\sqrt{2 \kappa} \hat{\mathbf{a}}_{\text {in }}(t)
$$

where

$$
\hat{\mathbf{a}}(t)=\left[\begin{array}{c}
\hat{a}(t) \\
\hat{a}^{\dagger}(t)
\end{array}\right], \quad \hat{\mathbf{a}}_{\text {in }}(t)=\left[\begin{array}{l}
\hat{a}_{\text {in }}(t) \\
\hat{a}_{\text {in }}^{\dagger}(t)
\end{array}\right]
$$

Define the Fourier transform

$$
\hat{\mathbf{a}}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{d} \omega e^{-\mathrm{i} \omega\left(t-t_{0}\right)} \hat{\mathbf{a}}(\omega) \quad \text { and } \quad \hat{\mathbf{a}}(\omega)=\left[\begin{array}{c}
\hat{\mathbf{a}}(\omega) \\
\hat{a}^{\dagger}(\omega)
\end{array}\right]
$$

where $\hat{\mathbf{a}}^{\dagger}(\omega)$ is the Fourier transform of $\hat{a}^{\dagger}(t)$.
In the Fourier-transformed space, the equations of motion become

$$
[\mathbf{A}+(\mathrm{i} \omega-\kappa) \mathbf{I}] \hat{\mathbf{a}}(\omega)=-\sqrt{2 \kappa} \hat{\mathbf{a}}_{\mathrm{in}}(\omega)
$$

where I is the identity matrix. Using the input-output relation to eliminate the internal mode, we obtain

$$
\hat{\mathbf{a}}_{\text {out }}(\omega)=-[\mathbf{A}+(\mathrm{i} \omega+\kappa) \mathbf{I}][\mathbf{A}+(\mathrm{i} \omega-\kappa) \mathbf{I}]^{-1} \hat{\mathbf{a}}_{\text {in }}(\omega)
$$

Example: One-sided cavity

The only source of loss in the cavity is through the mirror which couples the input and output fields.

$$
\begin{gathered}
|\stackrel{a}{\longleftrightarrow}| \stackrel{\boldsymbol{a}_{\text {out }}}{\stackrel{\boldsymbol{a}_{\text {in }}}{\longleftrightarrow}} \\
\hat{H}_{\text {sys }}=\hbar \omega_{0} \hat{a}^{\dagger} \hat{\boldsymbol{a}} \quad \text { so } \quad \mathbf{A}=\left(\begin{array}{cc}
-i \omega_{0} & 0 \\
0 & \mathrm{i} \omega_{0}
\end{array}\right) \\
\text { and } \quad \hat{\mathbf{a}}_{\text {out }}(\omega)=\frac{\kappa+\mathrm{i}\left(\omega-\omega_{0}\right)}{\kappa-\mathrm{i}\left(\omega-\omega_{0}\right)} \hat{\mathbf{a}}_{\text {in }}(\omega)
\end{gathered}
$$

Hence, there is a frequency dependent phase shift between the output and input.

Two-Time Correlation Functions

If we integrate $\hat{b}(\omega, t)$ over frequency we obtain

$$
\hat{a}_{\text {in }}(t)=\sqrt{\kappa / 2} \hat{a}(t)-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{d} \omega \hat{b}(\omega, t)
$$

Let $\hat{c}(t)$ be any system operator. Then

$$
\left[\hat{c}(t), \sqrt{2 \kappa} \hat{a}_{\text {in }}(t)\right]=\kappa[\hat{c}(t), \hat{a}(t)]
$$

since $[\hat{c}(t), \hat{b}(\omega, t)]=0$. Now, since $\hat{c}(t)$ can only be a function of $\hat{a}_{\text {in }}\left(t^{\prime}\right)$ for earlier times $t^{\prime}<t$ (due to causality), and the input field operators must commute at different times, we have

$$
\left[\hat{c}(t), \sqrt{2 \kappa} \hat{a}_{\text {in }}\left(t^{\prime}\right)\right]=0, \quad t^{\prime}>t
$$

Similarly,

$$
\left[\hat{c}(t), \sqrt{2 \kappa} \hat{a}_{\text {out }}\left(t^{\prime}\right)\right]=0, \quad t^{\prime}<t
$$

Spectrum of Squeezing

The output field from a cavity is a continuum of frequencies. One defines the intensity spectrum of this field as the Fourier transform of the phase-independent correlation function $\left\langle\hat{a}_{\text {out }}^{\dagger}(t), \hat{a}_{\text {out }}\left(t^{\prime}\right)\right\rangle$.
Similarly, the squeezing spectrum can be defined as the Fourier transform of an appropriate phase-dependent correlation function, and it gives the squeezing in the frequency components of an appropriate quadrature phase operator.
We define the output field quadrature phase operators as

$$
\begin{aligned}
& \hat{X}_{1}^{\text {out }}(t)=\hat{a}_{\text {out }}(t) e^{-\mathrm{i}(\theta-\Omega t)}+\hat{a}_{\text {out }}^{\dagger}(t) \mathrm{e}^{\mathrm{i}(\theta-\Omega t)} \\
& \hat{X}_{2}^{\text {out }}(t)=-\mathrm{i}\left[\hat{\mathrm{a}}_{\text {out }}(t) e^{-\mathrm{i}(\theta-\Omega t)}-\hat{a}_{\text {out }}^{\dagger}(t) e^{\mathrm{i}(\theta-\Omega t)}\right]
\end{aligned}
$$

where Ω is the reference frequency (typically the cavity frequency) and θ the reference phase.

The squeezing spectrum is defined as the Fourier transform of the normally-ordered two-time correlation function $\left\langle: \hat{X}_{i}^{\text {out }}(t), \hat{X}_{i}^{\text {out }}(0):\right\rangle$,

$$
\begin{aligned}
S_{i}^{\text {out }}(\omega): & =\int \mathrm{d} t\left\langle: \hat{X}_{i}^{\text {out }}(t), \hat{X}_{i}^{\text {out }}(0):\right\rangle e^{-\mathrm{i} \omega t} \\
& =2 \kappa \int \mathrm{~d} t \mathcal{T}\left\langle: \hat{X}_{i}(t), \hat{X}_{i}(0):\right\rangle e^{-\mathrm{i} \omega t}
\end{aligned}
$$

where \mathcal{T} denotes time ordering and we have used the input-output relations to express the output correlation function in terms of the intracavity quadrature phase operators,

$$
\hat{X}_{1}(t)=\hat{a}(t) \mathrm{e}^{-\mathrm{i} \theta}+\hat{a}^{\dagger}(t) \mathrm{e}^{\mathrm{i} \theta}, \quad \hat{X}_{2}(t)=-\mathrm{i}\left[\hat{a}(t) \mathrm{e}^{-\mathrm{i} \theta}-\hat{a}^{\dagger}(t) \mathrm{e}^{\mathrm{i} \theta}\right]
$$

where $\hat{a}(t), \hat{a}^{\dagger}(t)$ are defined in a frame rotating at frequency Ω.

Parametric Amplifier

We now compute the squeezing spectrum from the output of a parametric amplifier.

Treating the pump field (of frequency $2 \omega_{0}$) classically, we can write

$$
\hat{H}_{\text {sys }}=\hbar \omega_{0} \hat{a}^{\dagger} \hat{a}+(\mathrm{i} \hbar / 2)\left[\epsilon \mathrm{e}^{-2 i \omega_{0} t}\left(\hat{a}^{\dagger}\right)^{2}-\epsilon^{*} \mathrm{e}^{2 \mathrm{i} \omega_{0} t} \hat{a}^{2}\right]
$$

where $\epsilon=|\epsilon| \boldsymbol{e}^{\mathrm{i} \theta}$.

Theoretical Methods in Quantum Optics 7:
 Interaction of Radiation with Atoms

Scott Parkins

Department of Physics, University of Auckland, New Zealand
29 September, 2008

Outline

The interaction between the quantised EM field and an atom represents one of the most fundamental problems in quantum optics. Real atoms have complicated energy level structures, but, in many instances, only two atomic energy levels play a significant role in the interaction with the EM field (due, e.g., to selection rules). So, it is common in theoretical treatments to represent the atom by a quantum system with only two energy eigenstates. Here we outline the derivation of such models and consider some elementary, but fundamentally interesting, properties and phenomena.

Topics

- Two-State Atoms
- Atom-Field Interaction
- Spontaneous Decay of a Two-Level Atom
- Resonance Fluorescence
- Cavity Quantum Electrodynamics

Two-State Atoms

We consider an atom with two states, $|1\rangle$ and $|2\rangle$, having energies E_{1} and E_{2} with $E_{1}<E_{2}$, between which radiative transitions are allowed. Adopting these energy eigenstates as a basis for our two-level atom, the unperturbed atomic Hamiltonian \hat{H}_{A} can be written in the form

$$
\begin{aligned}
\hat{H}_{\mathrm{A}} & =E_{1}|1\rangle\langle 1|+E_{2}|2\rangle\langle 2| \\
& =\frac{1}{2}\left(E_{1}+E_{2}\right) \hat{l}+\frac{1}{2}\left(E_{2}-E_{1}\right) \hat{\sigma}_{z}
\end{aligned}
$$

where $\hat{\sigma}_{z} \equiv|2\rangle\langle 2|-|1\rangle\langle 1|$, and $\hat{l} \equiv|1\rangle\langle 1|+|2\rangle\langle 2|$ is the identity. The first term in \hat{H}_{A} is a constant which may be eliminated by referring the atomic energies to the middle of the atomic transition. We then write

$$
\hat{H}_{\mathrm{A}}=\frac{1}{2} \hbar \omega_{\mathrm{A}} \hat{\sigma}_{Z}, \quad \omega_{\mathrm{A}} \equiv\left(E_{2}-E_{1}\right) / \hbar
$$

Consider now the dipole moment operator $e \hat{\mathbf{r}}$, where e is the electronic charge and $\hat{\mathbf{r}}$ is the coordinate operator for the bound electron

$$
\begin{aligned}
e \hat{\mathbf{r}} & =e \sum_{n, m=1}^{2}\langle n| \hat{\mathbf{r}}|m\rangle|n\rangle\langle m| \\
& =e(\langle 1| \hat{\mathbf{r}}|2\rangle|1\rangle\langle 2|+\langle 2| \hat{\mathbf{r}}|1\rangle|2\rangle\langle 1|)=\mathbf{d}_{12} \hat{\sigma}_{-}+\mathbf{d}_{21} \hat{\sigma}_{+}
\end{aligned}
$$

where we have set $\langle 1| \hat{\mathbf{r}}|1\rangle=\langle 2| \hat{\mathbf{r}}|2\rangle=0$ (assuming atomic states whose symmetry guarantees zero permanent dipole moment), and we have introduced the atomic dipole matrix elements

$$
\mathbf{d}_{12} \equiv e\langle 1| \hat{\mathbf{r}}|2\rangle=e \int \mathrm{~d}^{3} r \phi_{2}^{*}(\mathbf{r}) \mathbf{r} \phi_{1}(\mathbf{r}), \quad \mathbf{d}_{21}=\left(\mathbf{d}_{12}\right)^{*}
$$

with $\phi_{i}(\mathbf{r})$ the (unperturbed) electron wave functions. We have also introduced the atomic lowering and raising operators

$$
\hat{\sigma}_{-} \equiv|1\rangle\langle 2|, \quad \hat{\sigma}_{+} \equiv|2\rangle\langle 1|
$$

The matrix representations for the operators $\hat{\sigma}_{z}, \hat{\sigma}_{-}$and $\hat{\sigma}_{+}$are

$$
\hat{\sigma}_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \hat{\sigma}_{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad \hat{\sigma}_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

We may also identify $\hat{\sigma}_{ \pm}=\frac{1}{2}\left(\hat{\sigma}_{X} \pm \mathbf{i} \hat{\sigma}_{y}\right)$, where

$$
\hat{\sigma}_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \hat{\sigma}_{y}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right)
$$

The matrices $\hat{\sigma}_{x}, \hat{\sigma}_{y}$, and $\hat{\sigma}_{z}$ are the Pauli spin matrices introduced initially in the context of magnetic transitions in spin-1/2 systems.

Properties of the spin operators

It is straightforward to show that

$$
\left.\begin{array}{rl}
{\left[\hat{\sigma}_{+}, \hat{\sigma}_{-}\right]=} & \hat{\sigma}_{z},
\end{array} \quad\left[\hat{\sigma}_{ \pm}, \hat{\sigma}_{z}\right]=\mp 2 \hat{\sigma}_{ \pm}, \quad \hat{\sigma}_{+} \hat{\sigma}_{-}+\hat{\sigma}_{-} \hat{\sigma}_{+}=\hat{l}\right] \text { }
$$

For an atomic state specified by a density operator $\hat{\rho}$, expectation values of $\hat{\sigma}_{z}, \hat{\sigma}_{-}$and $\hat{\sigma}_{+}$are just matrix elements of the density operator, and give the population difference (or inversion)

$$
\left\langle\hat{\sigma}_{z}\right\rangle=\operatorname{Tr}\left(\hat{\rho} \hat{\sigma}_{z}\right)=\langle 2| \hat{\rho}|2\rangle-\langle 1| \hat{\rho}|1\rangle=\rho_{22}-\rho_{11},
$$

and the mean atomic polarisation

$$
\langle e \hat{\mathbf{r}}\rangle=\mathbf{d}_{12} \operatorname{Tr}\left(\hat{\rho} \hat{\sigma}_{-}\right)+\mathbf{d}_{21} \operatorname{Tr}\left(\hat{\rho} \hat{\sigma}_{+}\right)=\mathbf{d}_{12} \rho_{21}+\mathbf{d}_{21} \rho_{12}
$$

Atom-Field Interaction

Consider a two-level atom coupled to the EM field, represented as usual by a collection of quantised harmonic oscillators. Within the rotating-wave and dipole approximations, we write

$$
\hat{H}=\hat{H}_{\mathrm{A}}+\hat{H}_{\mathrm{F}}+\hat{H}_{\mathrm{AF}}
$$

where

$$
\begin{aligned}
\hat{H}_{\mathrm{A}} & =\frac{1}{2} \hbar \omega_{\mathrm{A}} \hat{\sigma}_{z}, \quad \hat{H}_{\mathrm{F}}=\sum_{\mathbf{k}, \lambda} \hbar \omega_{k} \hat{a}_{\mathbf{k} \lambda}^{\dagger} \hat{a}_{\mathbf{k} \lambda} \\
\hat{H}_{\mathrm{AF}} & =\sum_{\mathbf{k}, \lambda} \hbar\left(\kappa_{\mathbf{k} \lambda}^{*} \hat{a}_{\mathbf{k} \lambda}^{\dagger} \hat{\sigma}_{-}+\kappa_{\mathbf{k} \lambda} \hat{a}_{\mathbf{k} \lambda} \hat{\sigma}_{+}\right)
\end{aligned}
$$

with

$$
\kappa_{\mathbf{k} \lambda}=-\mathbf{i} \sqrt{\frac{\omega_{k}}{2 \hbar \epsilon_{0}}} \mathbf{u}_{\mathbf{k} \lambda}\left(\mathbf{r}_{\mathrm{A}}\right) \cdot \mathbf{d}_{21}
$$

Notes:

- In the dipole approximation the field is assumed to be uniform over the extent of the atom. In the optical regime this is valid because the wavelength of light $\sim 10^{2} \mathrm{~nm} \gg r_{\text {atom }} \sim 0.1 \mathrm{~nm}$.
- The summation extends over field modes with wavevectors \mathbf{k} and polarisation states λ (and corresponding frequencies ω_{k}).
- The atom is positioned at \mathbf{r}_{A}, and $\mathbf{u}_{\mathbf{k} \lambda}\left(\mathbf{r}_{\mathrm{A}}\right)$ is a field mode function at that point. In free space, for example,

$$
\mathbf{u}_{\mathbf{k} \lambda}\left(\mathbf{r}_{\mathrm{A}}\right)=\frac{1}{\sqrt{V}} \tilde{\mathbf{e}}_{\mathbf{k} \lambda} \mathrm{e}^{\mathrm{i} \cdot \mathbf{r} \cdot \mathbf{r}_{\mathrm{A}}}
$$

where $\tilde{\mathbf{e}}_{\mathbf{k} \lambda}$ is the unit polarisation vector and V the quantisation volume.

- The interaction Hamiltonian \hat{H}_{AF} follows from the familiar expression -êr $\cdot \hat{\mathbf{E}}\left(\mathbf{r}_{\mathrm{A}}\right)$ for the potential energy of a dipole in a field.

Spontaneous Decay of a Two-Level Atom

The master equation for the reduced density operator $\hat{\rho}$ of a radiatively damped two-level atom in free space is derived as

$$
\begin{gathered}
\dot{\hat{\rho}}=-\mathrm{i} \frac{1}{2} \omega_{\mathrm{A}}^{\prime}\left[\hat{\sigma}_{z}, \hat{\rho}\right]+\frac{1}{2} \gamma(\bar{n}+1)\left(2 \hat{\sigma}_{-} \hat{\rho} \hat{\sigma}_{+}-\hat{\sigma}_{+} \hat{\sigma}_{-} \hat{\rho}-\hat{\rho} \hat{\sigma}_{+} \hat{\sigma}_{-}\right) \\
+\frac{1}{2} \gamma \bar{n}\left(2 \hat{\sigma}_{+} \hat{\rho} \hat{\sigma}_{-}-\hat{\sigma}_{-} \hat{\sigma}_{+} \hat{\rho}-\hat{\rho} \hat{\sigma}_{-} \hat{\sigma}_{+}\right)
\end{gathered}
$$

where $\omega_{\mathrm{A}}^{\prime}=\omega_{\mathrm{A}}+2 \Delta^{\prime}+\Delta, \bar{n}=\bar{n}\left(\omega_{\mathrm{A}}, T\right)$, and, in integral form,

$$
\begin{aligned}
\gamma & =2 \pi \sum_{\lambda} \int \mathrm{d}^{3} k g(\mathbf{k})|\kappa(\mathbf{k}, \lambda)|^{2} \delta\left(k c-\omega_{\mathrm{A}}\right) \\
\Delta & =\sum_{\lambda} \mathrm{P} \int \mathrm{~d}^{3} k \frac{g(\mathbf{k})|\kappa(\mathbf{k}, \lambda)|^{2}}{\omega_{\mathrm{A}}-k c} \\
\Delta^{\prime} & =\sum_{\lambda} \mathrm{P} \int \mathrm{~d}^{3} k \frac{g(\mathbf{k})|\kappa(\mathbf{k}, \lambda)|^{2}}{\omega_{\mathrm{A}}-k c} \bar{n}(k c, T)
\end{aligned}
$$

Matrix element equations

From the master equation, we derive (using $\left\langle\dot{\hat{\sigma}}_{i}\right\rangle=\operatorname{Tr}\left(\hat{\sigma}_{i} \dot{\hat{\rho}}\right)$ and the properties of the spin operators)

$$
\begin{aligned}
\left\langle\dot{\hat{\sigma}}_{z}\right\rangle & =-\gamma\left[\left\langle\hat{\sigma}_{z}\right\rangle(2 \bar{n}+1)+1\right] \\
\left\langle\dot{\hat{\sigma}}_{-}\right\rangle & =-\left[\frac{1}{2} \gamma(2 \bar{n}+1)+\mathrm{i} \omega_{\mathrm{A}}\right]\left\langle\hat{\sigma}_{-}\right\rangle \\
\left\langle\dot{\hat{\sigma}}_{+}\right\rangle & =-\left[\frac{1}{2} \gamma(2 \bar{n}+1)-\mathrm{i} \omega_{\mathrm{A}}\right]\left\langle\hat{\sigma}_{+}\right\rangle
\end{aligned}
$$

Notes:

- We drop the distinction between ω_{A} and $\omega_{\mathrm{A}}^{\prime}$.
- At optical frequencies and normal laboratory temperatures \bar{n} is negligible, so for simplicity we set $\bar{n}=0$ from now on. adopted does not in fact give the correct nonrelativistic result for the Lamb shift. Actually, $\left(\omega_{\mathrm{A}}-k c\right)^{-1}$ should be replaced with $\left(\omega_{\mathrm{A}}-k c\right)^{-1}+\left(\omega_{\mathrm{A}}+k c\right)^{-1}$.

The Einstein A coefficient
By performing the integration over wavevectors and summing over the polarisations, one can show that

$$
\gamma=\frac{1}{4 \pi \epsilon_{0}} \frac{4 \omega_{A}^{3} d_{12}^{2}}{3 \hbar c^{3}}
$$

which is the Einstein A coefficient (as it must be). appear for the harmonic oscillator. Its appearance here is a consequence of the commutator $\left[\hat{\sigma}_{-}, \hat{\sigma}_{+}\right]=-\hat{\sigma}_{z}$, in place of the corresponding $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$.

- Note, however, that the rotating-wave approximation we have

Correlation functions

To compute correlation functions we use the quantum regression formula. Noting that $\hat{\sigma}_{+} \hat{\sigma}_{-}=(1 / 2)\left(1+\hat{\sigma}_{z}\right)$, we may write the mean-value equations in vector form:

$$
\langle\dot{\mathbf{s}}\rangle=\mathbf{M}\langle\mathbf{s}\rangle
$$

with

$$
\mathbf{s} \equiv\left(\begin{array}{c}
\hat{\sigma}_{-} \\
\hat{\sigma}_{+} \\
\hat{\sigma}_{+} \hat{\sigma}_{-}
\end{array}\right) \quad \mathbf{M} \equiv\left(\begin{array}{ccc}
-\frac{1}{2} \gamma+\mathrm{i} \omega_{\mathrm{A}} & 0 & 0 \\
0 & -\frac{1}{2} \gamma+\mathrm{i} \omega_{\mathrm{A}} & 0 \\
0 & 0 & -\gamma
\end{array}\right)
$$

From the quantum regression theorem it follows that, for example,

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left\langle\hat{\sigma}_{+}(t) \mathbf{s}(t+\tau)\right\rangle=\mathbf{M}\left\langle\hat{\sigma}_{+}(t) \mathbf{s}(t+\tau)\right\rangle
$$

Using this, we can derive

$$
G^{(1)}\left(\mathbf{r}, t_{1} ; \mathbf{r}, t_{2}\right)=I_{0}(\mathbf{r})\left\langle\hat{\sigma}_{+}\left(\tilde{t}_{1}\right) \hat{\sigma}_{-}\left(\tilde{t}_{2}\right)\right\rangle
$$

where $\tilde{t}=t-(r / c)$ and $I_{0}(\mathbf{r})$ is a geometrical factor given by

$$
I_{0}(\mathbf{r})=\left|\frac{\omega_{A}^{2}}{4 \pi \epsilon_{0} c^{2} r}\left(\mathbf{d}_{12} \times \frac{\mathbf{r}}{r}\right) \times \frac{\mathbf{r}}{r}\right|^{2}
$$

Neglecting r / c compared to t and T, and taking the limit $T \rightarrow \infty$ (i.e., counting time long compared to the spontaneous emission lifetime γ^{-1}), the spectrum follows as

$$
S(\omega, \mathbf{r}, \infty)=\frac{I_{0}(\mathbf{r})}{2 \pi} \frac{1}{\left(\omega-\omega_{\mathrm{A}}\right)^{2}+(\gamma / 2)^{2}}
$$

This is the familiar Lorentzian lineshape of the Wigner-Weisskopf theory, with halfwidth equal to $\gamma / 2$.

Resonance Fluorescence

We now consider a two-level atom irradiated by a strong monochromatic laser beam tuned to the atomic transition. Photons may be absorbed from this beam and emitted to the many modes of the vacuum electromagnetic field as fluorescent scattering.

As we will see, a two-level atom responds nonlinearly to increasing laser intensity. The fluorescence spectrum acquires an incoherent component having the natural linewidth γ. This incoherent spectrum splits into a three-peaked structure (the Mollow triplet) and eventually accounts for nearly all of the scattered intensity. The incoherent spectral component arises from quantum fluctuations around the nonequilibrium steady state established by the balance between excitation and emission processes.

This is the retarded field generated by a point dipole with the classical dipole moment replaced by the atomic lowering operator $\hat{\sigma}_{-}$.

Master equation for resonance fluorescence

The incident laser mode is in a highly excited state that is essentially unaffected by its interaction with the single atom, so we can treat this field as a classical driving force. The master equation is then

$$
\begin{gathered}
\dot{\hat{\rho}}=-\mathrm{i} \frac{1}{2} \omega_{\mathrm{A}}\left[\hat{\sigma}_{z}, \hat{\rho}\right]+\mathrm{i}(\Omega / 2)\left[\mathrm{e}^{-\mathrm{i} \omega_{\mathrm{A}} t} \hat{\sigma}_{+}+\mathrm{e}^{\mathrm{i} \omega_{A} t} \hat{\sigma}_{-}, \hat{\rho}\right] \\
+\frac{1}{2} \gamma\left(2 \hat{\sigma}_{-} \hat{\rho} \hat{\sigma}_{+}-\hat{\rho} \hat{\sigma}_{+} \hat{\sigma}_{-}-\hat{\sigma}_{+} \hat{\sigma}_{-} \hat{\rho}\right)
\end{gathered}
$$

where $\Omega \equiv 2\left(\frac{d E}{\hbar}\right)$ is the Rabi frequency.
Note:
The laser field at the site of the atom is $\mathbf{E}(t)=\tilde{\mathbf{e}} 2 E \cos \left(\omega_{\mathrm{A}} t+\phi\right)$, where $\tilde{\text { e }}$ is a unit polarisation vector, E is a real amplitude, and the phase ϕ is chosen so that $d \equiv \tilde{\mathbf{e}} \cdot \mathbf{d}_{12} \mathrm{e}^{\mathrm{i} \phi}$ is also real.

Optical Bloch equations

From the master equation we obtain the optical Bloch equations with radiative damping (so called for their relationship to the equations of a spin- $1 / 2$ particle in a magnetic field), which, in a frame rotating at frequency ω_{A}, take the form

$$
\begin{aligned}
& \left\langle\dot{\tilde{\sigma}}_{-}\right\rangle=-\mathrm{i}(\Omega / 2)\left\langle\tilde{\sigma}_{z}\right\rangle-\frac{1}{2} \gamma\left\langle\tilde{\sigma}_{-}\right\rangle \\
& \left\langle\dot{\tilde{\sigma}}_{+}\right\rangle=\mathrm{i}(\Omega / 2)\left\langle\tilde{\sigma}_{z}\right\rangle-\frac{1}{2} \gamma\left\langle\tilde{\sigma}_{+}\right\rangle \\
& \left\langle\dot{\tilde{\sigma}}_{z}\right\rangle=\mathrm{i} \Omega\left\langle\tilde{\sigma}_{+}\right\rangle-\mathrm{i} \Omega\left\langle\tilde{\sigma}_{-}\right\rangle-\gamma\left(\left\langle\tilde{\sigma}_{z}\right\rangle+1\right)
\end{aligned}
$$

- In the solutions to these equations one sees the dynamics separating into an initial transient regime followed by a saturation steady state.
- There is a threshold at $\Omega=\gamma / 4$ below which the solutions are monotonic functions of time and above which they exhibit oscillations.

Steady state properties

The steady state probability for the atom to be in the excited state $|2\rangle$ is

$$
P_{2}^{\text {ss }}=\frac{1}{2}\left(1+\left\langle\hat{\sigma}_{z}\right\rangle_{\text {ss }}\right)=\frac{1}{2} \frac{Y^{2}}{1+Y^{2}} \quad \text { where } \quad Y=\frac{\sqrt{2} \Omega}{\gamma}
$$

- For weak driving $(Y \ll 1)$ the atom settles close to its lower level, and we expect the behaviour of a classical electron oscillator.
- For very intense illumination the atom becomes saturated, with equal probability of being found in the upper and lower levels, i.e.

$$
\lim _{\gamma \rightarrow \infty} P_{2}^{s s}=\frac{1}{2}
$$

Thus the atom spends $1 / 2$ of its time in the upper state where spontaneous emission plays a significant role. Quantum fluctuations therefore become important with intense illumination.

Spectrum of fluorescent light

The fluorescence spectrum is defined by

$$
S(\omega)=\frac{I_{0}(\mathbf{r})}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \tau \mathrm{e}^{\mathrm{i} \omega \tau}\left\langle\hat{\sigma}_{+}(0) \hat{\sigma}_{-}(\tau)\right\rangle_{\mathrm{ss}}
$$

where $\left\langle\hat{\sigma}_{+}(0) \hat{\sigma}_{-}(\tau)\right\rangle_{\mathrm{ss}} \equiv \lim _{t \rightarrow \infty}\left\langle\hat{\sigma}_{+}(t) \hat{\sigma}_{-}(t+\tau)\right\rangle$.
The spectrum decomposes into a coherent component (arising from coherent scattering), and an incoherent component (arising from quantum fluctuations):

$$
S(\omega)=S_{\text {coh }}(\omega)+S_{\text {inc }}(\omega)
$$

The coherent component is

$$
\begin{aligned}
S_{\text {coh }}(\omega) & =\frac{I_{0}(\mathbf{r})}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \tau \mathrm{e}^{\mathrm{i}\left(\omega-\omega_{\mathrm{A}}\right) \tau}\left\langle\tilde{\sigma}_{+}\right\rangle_{\mathbf{s s}}\left\langle\tilde{\sigma}_{-}\right\rangle_{\mathbf{s s}} \\
& =\frac{1}{2} I_{0}(\mathbf{r}) \frac{Y^{2}}{\left(1+Y^{2}\right)^{2}} \delta\left(\omega-\omega_{\mathrm{A}}\right)
\end{aligned}
$$

The incoherent component is

$$
S_{\text {inc }}(\omega)=\frac{l_{0}(\mathbf{r})}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \tau \mathrm{e}^{\mathrm{i}\left(\omega-\omega_{\mathrm{A}}\right) \tau}\left\langle\Delta \tilde{\sigma}_{+}(0) \Delta \tilde{\sigma}_{-}(\tau)\right\rangle_{\text {ss }}
$$

where $\Delta \tilde{\sigma}_{ \pm}=\tilde{\sigma}_{ \pm}-\left\langle\tilde{\sigma}_{ \pm}\right\rangle_{\text {ss }}$.
To compute the incoherent spectrum we use the optical Bloch equations and the quantum regression formula.

Photon antibunching in resonance fluorescence: $g_{s s}^{(2)}(0)=0$

$g_{\mathrm{ss}}^{(2)}(\tau)$ is plotted for increasing Y (i)-(iii):

- The fluorescent light exhibits photon antibunching due to the quantum nature of the scattering. The detection of the first photon "prepares" the atom in its ground state. Any subsequent emission must begin with an excited atom, so there is a delay corresponding to the time taken for the atom to be re-excited.
- In the strong-field limit, $Y^{2} \gg 1$ (iv)-(vi), where incoherent scattering dominates, this gives the well-known Mollow, or Stark, triplet, with the peaks located at $\omega=\omega_{\mathrm{A}}$ and $\omega=\omega_{\mathrm{A}} \pm \Omega$.
- The peak at $\omega=\omega_{\mathrm{A}}$ has a halfwidth of $\gamma / 2$, while the peaks at $\omega=\omega_{\mathrm{A}} \pm \Omega$ have a halfwidth of $3 \gamma / 4$.

$$
G_{\mathrm{ss}}^{(2)}(\tau)=I_{0}(\mathbf{r})^{2}\left\langle\hat{\sigma}_{+}(0) \hat{\sigma}_{+}(\tau) \hat{\sigma}_{-}(\tau) \hat{\sigma}_{-}(0)\right\rangle_{\mathrm{ss}}
$$

Using the quantum regression formula, we find

$$
\begin{aligned}
g_{\mathrm{ss}}^{(2)}(\tau) & =\left[\lim _{\tau \rightarrow \infty} G_{\mathrm{ss}}^{(2)}(\tau)\right]^{-1} G_{\mathrm{ss}}^{(2)}(\tau) \\
& =1-\mathrm{e}^{-(3 \gamma / 4) \tau}\left[\cosh (\Lambda \tau)+\frac{3 \gamma / 4}{\Lambda} \sinh (\Lambda \tau)\right]
\end{aligned}
$$

where $\Lambda=\sqrt{(\gamma / 4)^{2}-\Omega^{2}}$.

The incoherent spectrum is a sum of three Lorentzian components.

Photon correlations
To examine photon correlations we need to evaluate the second-order correlation function $G_{\mathrm{ss}}^{(2)}(\tau)$, given in this particular case by

Cavity Quantum Electrodynamics

The interaction of a single two-level atom with a single mode of the electromagnetic field is the most fundamental of light-matter interactions.

In the case that the field mode is on resonance with the atomic transition we may write the Hamiltonian as $\hat{H}=\hat{H}_{0}+\hat{H}_{1}$, with

$$
\hat{H}_{0}=\hbar \omega \hat{a}^{\dagger} \hat{a}+\frac{1}{2} \hbar \omega \hat{\sigma}_{z}, \quad \hat{H}_{1}=\hbar g\left(\hat{\sigma}_{+} \hat{a}+\hat{a}^{\dagger} \hat{\sigma}_{-}\right)
$$

This form of the interaction is known as the Jaynes-Cummings model (JCM).

Dynamics: Atomic excited state probability

If the atom is initially in the excited state $|2\rangle$ and the field has exactly n photons, the probability for the atom to be in the excited state with n photons in the field at time t is

$$
\left.P_{2}(t)=\left|\langle n, 2| \mathrm{e}^{-\mathrm{i} \tilde{H}_{1} t / \hbar}\right| n, 2\right\rangle\left.\right|^{2}=\cos ^{2}(\Omega t)=\cos ^{2}(g \sqrt{n+1} t)
$$

This describes the Rabi nutation of the atom, with Ω the Rabi frequency.

Quantum collapses and revivals

Consider now the case in which the field mode is initially in a coherent state

$$
|\alpha\rangle=\mathrm{e}^{-|\alpha|^{2} / 2} \sum_{n} \frac{\alpha^{n}}{(n!)^{1 / 2}}|n\rangle
$$

If the atom is initially in the excited state $|2\rangle$, then the probability for the atom to be found in the excited state at time t is given by the Poissonian-weighted sum

$$
P_{2}(t)=\frac{1}{2}\left[1+\sum_{n} \frac{\mathrm{e}^{-|\alpha|^{2}}|\alpha|^{2 n}}{n!} \cos (2 g \sqrt{n+1} t)\right]
$$

Due to the Poisson distribution of the photon number, there is a spread in the Rabi frequencies $\left(\Delta n \sim\langle n\rangle^{1 / 2}=|\alpha|\right)$. Consequently, the Rabi nutation will collapse after a certain number of oscillations due to destructive interference between the various cosine functions.
where $\Omega=g \sqrt{n+1}$.
The eigenvalues of this system are simply $\pm \hbar \Omega$, with corresponding eigenstates

$$
|n, \pm\rangle=\frac{1}{\sqrt{2}}(|n, 2\rangle \pm|n+1,1\rangle)
$$

$$
\left.\begin{array}{l}
\text { cavity } \\
\text { photon } \\
\text { number }
\end{array},<0,1\right\rangle=\begin{aligned}
& \text { atomic state }
\end{aligned}
$$

An approximate result valid for times $t<|\alpha| / g$ is

$$
P_{2}(t) \simeq \frac{1}{2}\left\{1+\cos \left(2 g \sqrt{|\alpha|^{2}+1} t\right) \exp \left[-\frac{g^{2} t^{2}|\alpha|^{2}}{2\left(|\alpha|^{2}+1\right)}\right]\right\}
$$

which shows that the Rabi oscillations occur under a Gaussian envelope. The characteristic time for the oscillation collapse is (for $|\alpha|^{2} \gg 1$) $t_{\text {collapse }} \sim g^{-1}$, and the number of observed oscillations before the collapse is $\sim|\alpha|$.

Notes

- The existence of periodic revivals is due to the discreteness of the sum over number states. This discrete character ensures that after some finite time the oscillating terms almost come back in phase with each other and restore the coherent oscillations.
- The rephasing is not perfect as the frequencies are irrational and thus incommensurate.
- The revivals may be considered as a pure quantum effect resulting from the discreteness of the harmonic oscillator spectrum.

Quartum Rabi Osillation: A Direct Testof F Fied Quantization in a Carity

Dissipative cavity QED

To include cavity loss and atomic spontaneous emission we model the atom-cavity system with the master equation

$$
\begin{aligned}
& \dot{\hat{\rho}}=-\mathrm{i} \frac{1}{2} \omega_{\mathrm{A}}\left[\hat{\sigma}_{z}, \hat{\rho}\right]-\mathrm{i} \omega_{\mathrm{C}}\left[\hat{a}^{\dagger} \hat{\mathrm{a}}, \hat{\rho}\right]-\mathrm{i}\left[\left[\hat{\sigma}_{+} \hat{a}+\hat{a}^{\dagger} \hat{\sigma}_{-}, \hat{\rho}\right]\right. \\
& +\frac{1}{2} \gamma\left(2 \hat{\sigma}_{-} \hat{\rho} \hat{\sigma}_{+}-\hat{\rho} \hat{\sigma}_{+} \hat{\sigma}_{-}-\hat{\sigma}_{+} \hat{\sigma}_{-} \hat{\rho}\right) \\
& +\kappa\left(2 \hat{a} \hat{\rho} \hat{a}^{\dagger}-\hat{\rho} \hat{a}^{\dagger} \hat{a}-\hat{a}^{\dagger} \hat{a} \hat{\rho}\right)
\end{aligned}
$$

Assuming $\omega_{\mathrm{A}}=\omega_{\mathrm{C}}$, the equations of motion for the mean atomic polarisation and cavity mode amplitude are (in a frame rotating at frequency ω_{C})

$$
\begin{aligned}
\left\langle\dot{\tilde{\sigma}}_{-}\right\rangle & =-\gamma / 2\left\langle\tilde{\sigma}_{-}\right\rangle+\mathrm{i} g\left\langle\tilde{\sigma}_{-} \tilde{a}\right\rangle \\
\langle\tilde{\tilde{a}}\rangle & =-\kappa\langle\tilde{a}\rangle-\mathrm{i} g\left\langle\tilde{\sigma}_{-}\right\rangle
\end{aligned}
$$

- Under these conditions, the transmission spectrum of a weak probe laser through the cavity shows resonances of width $\kappa+\gamma / 2$ (FWHM) at the frequencies $\omega_{\mathrm{C}} \pm g$.
- This is known as the vacuum Rabi splitting.

If the system is only weakly excited (e.g., by a weak probe laser driving the cavity mode), then the atom remains close to the ground state and we may set $\left\langle\tilde{\sigma}_{z} \tilde{a}\right\rangle \simeq\left\langle\tilde{\sigma}_{z}\right\rangle\langle\tilde{a}\rangle \simeq-\langle\tilde{a}\rangle$. The equations of motion for $\left\langle\tilde{\sigma}_{-}\right\rangle$ and $\langle\tilde{a}\rangle$ then describe coupled oscillators.

Normal modes

If the atom-field coupling strength is much larger than the dissipative rates, i.e., $g \gg \kappa, \gamma$, then the normal modes of the coupled atomic and cavity oscillators have frequencies $\omega_{\mathrm{C}} \pm g$ (corresponding to the first two excited states of the JCM) and decay at a rate (1/2) $(\kappa+\gamma / 2)$.

"Bad cavity limit": cavity-enhanced spontaneous emission

The so-called "bad cavity limit" corresponds to the situation where $\kappa \gg g, \gamma$. In this case, the cavity amplitude evolves much more rapidly than the atomic polarisation, such that we may set $\langle\dot{\tilde{a}}\rangle \simeq 0$ and write

$$
\langle\tilde{a}\rangle \simeq-\mathrm{i} g\left\langle\tilde{\sigma}_{-}\right\rangle / \kappa
$$

Assuming weak excitation of the system and substituting this expression into the equation for $\left\langle\dot{\tilde{\sigma}}_{-}\right\rangle$gives

$$
\left\langle\dot{\tilde{\sigma}}_{-}\right\rangle \simeq-\left(\gamma / 2+\frac{g^{2}}{\kappa}\right)\left\langle\tilde{\sigma}_{-}\right\rangle \equiv-\frac{\gamma}{2}(1+2 C)\left\langle\tilde{\sigma}_{-}\right\rangle
$$

where $C=g^{2} / \kappa \gamma$ is the spontaneous emission enhancement factor.
Normal-Mode Spectroscopy of S Single-Bound-Atom-Cavity System

Interaction of Radiation with Atoms

Cavity QED: Quantum Control with Single Atoms

Scott Parkins

2 October 2008

Quantum node:
generation,
processing,
processing, \& storage
of quantum information (states)

Matter, e.g., atoms (quantum information stored in internal electronic states)

Quantum channel transfer \& distribution of quantum entanglement

Light, e.g., single photons (quantum information stored in photon number or polarisation states) plas
Require deterministic, reversible quantum state transfer between material system and light field
H.J. Kimble, "The quantum internet," Nature 453, 1023 (2008)

Cavity Quantum Electrodynamics (Cavity QED)

- |2>
$\sigma^{+} \xrightarrow{+}{ }^{-} \sigma^{-}$

$$
g \sim \mu_{01} E
$$

μ_{01} - atomic transition dipole moment
E - electric field per photon
$E=\sqrt{\hbar \omega_{\text {cav }} / 2 \varepsilon_{0} V_{\text {mode }}}$

Atom-cavity interaction Hamiltonian
$H=\omega_{\text {cav }} a^{+} a+\omega_{\text {atom }} \sigma^{+} \sigma^{-}$ $+g\left(a^{+} \sigma^{-}+\sigma^{+} a\right)$
cavity $\mid 0,1>$ \qquad photon number
 $\downarrow \sqrt{2} g$

Experimental Cavity QED With Cold Atoms

Cavity QED with cold neutral atoms (Fabry-Perot resonators) - H.J. Kimble (Caltech)

- G. Rempe (MPQ, Garching)
- M. Chapman (Georgia Tech)
- D. Stamper-Kurn (Berkeley)
- D. Meschede (Bonn)
- L. Orozco (Maryland)
- ...

Typically

$$
\left\{\begin{array}{l}
g / 2 \pi \sim \text { few } \times 10 \mathrm{MHz} \\
\kappa / 2 \pi \sim \text { few } \mathrm{MHz}\left(Q \sim 10^{5}\right)
\end{array}\right.
$$

Cavity QED with trapped ions

- R. Blatt (Innsbruck)
- W. Large (Sussex)
- C. Monroe (Maryland)
- M. Chapman (Georgia Tech)
- ...

Network Operations Enabled by Cavity QED
New Architectures: Optical Microcavities
(i) Quantum State Transfer: Atom \leftrightarrow Field

- T. Wilk et al., Science 317, 488 (2007) (expt)
A.D. Boozer et al.,

Phys. Rev. Lett. 98, 193601 (2007) (expt)
(ii) Quantum State Transfer: Node \leftrightarrow Node

- J.I. Cirac et al.,

Phys. Rev. Lett. 78, 3221 (1997) (theory)

$$
\left.\llbracket \underset{\Omega_{1}(t) \mid}{\dot{\oplus}}\right] \rightarrow \text { 全 } \rightarrow \underbrace{\stackrel{1}{i}}_{\Omega_{1}(t) \mid}]
$$

(iii) Conditional Quantum Dynamics - L.-M. Dian \& H.J. Kimble,

Phys. Rev. Lett. 92, 127902 (2004)
(theory)
K.J. Vahala, "Optical microcavities," Nature 424, 839 (2003)

- Lithographically fabricated
- Integrable with atom chips, scalable networks

Microtoroidal Resonators + Fiber Tapers
Microtoroidal Resonator - Critical Coupling
S.M. Spillane, T.J. Kippenberg, O.J. Painter, \& K.J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003)

- Coupling through evanescent fields
- 99.97%
fiber-taper to microtoroid coupling efficiency!
- Readily integrated into quantum networks
- Ultrahigh Q-factors and small mode volumes

$$
\begin{aligned}
& \text { Output fields } \\
& \begin{array}{c}
a_{\text {out }}=-a_{\text {in }}+\sqrt{2 \kappa_{\text {ex }}} a \\
b_{\text {out }}=-b_{\text {in }}+\sqrt{2 \kappa_{\mathrm{ex}}} b \\
T_{\mathrm{F}}=\frac{\left\langle a_{\mathrm{out}}^{+} a_{\mathrm{out}}\right\rangle}{\left\langle a_{\mathrm{in}}^{+} a_{\mathrm{in}}\right\rangle}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Critical coupling condition } \\
& \qquad \begin{array}{c}
\kappa_{\mathrm{ex}}=\kappa_{\mathrm{ex}}^{\mathrm{cr}}=\sqrt{\kappa_{\mathrm{i}}^{2}+h^{2}} \\
\quad \Rightarrow \quad T_{\mathrm{F}}\left(\Delta_{\mathrm{C}}=0\right)=0
\end{array}
\end{aligned}
$$

(destructive interference in forward direction)

Microtoroid Cavity QED - Basic Parameters
Microtoroid Cavity QED

$H=\Delta_{\mathrm{A}} \sigma^{+} \sigma^{-}+\Delta_{\mathrm{C}}\left(a^{+} a+b^{+} b\right)$
$+h\left(a^{+} b+b^{+} a\right)+\left(E_{\mathrm{p}}^{*} a+E_{\mathrm{p}} a^{+}\right)$
$+\left(g_{\mathrm{tw}}^{*} a^{+} \sigma^{-}+g_{\mathrm{tw}} \sigma^{+} a\right)+\left(g_{\mathrm{tw}} b^{+} \sigma^{-}+g_{\mathrm{tw}}^{*} \sigma^{+} b\right)$

- Mode-mode coupling h
- Atom-field coupling
$g_{\text {tw }}(r, x)=g_{0}^{\text {tw }}(r) \mathrm{e}^{\mathrm{i} k x}$
$g_{0}^{\text {tw }}(r) \sim \mathrm{e}^{-k r}$

Probe field driving, frequency ω_{p}

$$
\left(\Delta_{\mathrm{A}}=\omega_{\mathrm{A}}-\omega_{\mathrm{p}}, \quad \Delta_{\mathrm{C}}=\omega_{\mathrm{C}}-\omega_{\mathrm{p}}\right)
$$

Level structure (vacuum Rabi splitting)

Microtoroid Cavity QED

$$
g_{0}^{\max } \approx 2 \pi \cdot 50 \mathrm{MHz}>\left\{\begin{array}{l}
\kappa_{\text {tot }} \approx 2 \pi \cdot 18 \mathrm{MHz} \\
\gamma_{\perp}=2 \pi \cdot 2.6 \mathrm{MHz}
\end{array}\right.
$$

T. Aoki, B. Dayan, E. Wilcut, W.P. Bowen, SP, T.J. Kippenberg, K.J. Vahala \& H.J. Kimble, Nature 443, 671 (2006)
"Bad Cavity" Regime

$$
\kappa_{\text {tot }} \approx 2 \pi \cdot 165 \mathrm{MHz} \gg\left\{\begin{array}{l}
g_{0}^{\max } \approx 2 \pi \cdot 70 \mathrm{MHz} \\
\gamma_{\perp}=2 \pi \cdot 2.6 \mathrm{MHz}
\end{array} \quad\right. \text { (Caltech `O7) }
$$

- Theory: Adiabatic elimination of cavity modes
- Effective master equation for atomic density matrix:

$$
\begin{gathered}
\dot{\rho}_{\mathrm{A}}=-\mathrm{i}\left[H_{\mathrm{A}}, \rho_{\mathrm{A}}\right]+\frac{\Gamma}{2}\left(2 \sigma^{-} \rho_{\mathrm{A}} \sigma^{+}-\sigma^{+} \sigma^{-} \rho_{\mathrm{A}}-\rho_{\mathrm{A}} \sigma^{+} \sigma^{-}\right) \\
H_{\mathrm{A}}=\Delta_{\mathrm{A}}^{\prime} \sigma^{+} \sigma^{-}+\left(\Omega_{0} \sigma^{+}+\Omega_{0}^{*} \sigma^{-}\right)
\end{gathered}
$$

- Cavity-enhanced atomic spontaneous emission rate
 parameter

Effect of Increasing Cavity Loss
Output Fields: Bad Cavity Regime

$\kappa_{\text {tot }}<g_{0}$

Vacuum Rab splitting
$\kappa_{\mathrm{tot}} \approx g_{0}$

Cavity-enhanced
$\kappa_{\text {tot }} \gg g_{0}$

$$
\begin{array}{ll}
a_{\text {out }}=-a_{\text {in }}+\sqrt{2 \kappa_{\text {ex }}} a & \rightarrow \alpha_{0}+\alpha_{-} \sigma_{-} \\
b_{\text {out }}=-b_{\text {in }}+\sqrt{2 \kappa_{\mathrm{ox}}} b & \rightarrow \beta_{0}+\beta_{-} \sigma_{-}
\end{array}
$$

$\left\{\begin{array}{l}\alpha_{0} \\ \beta_{0}\end{array}\right\}=$ coherent amplitudes without atom

Forward Spectra

Note: Other photon turnstile devices

e.g.,

- J. Kim, O. Benson, H. Kan, \& Y. Yamamoto, "A single-photon turnstile device," Nature 397, 500 (1999) (semiconductor)
- K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, \& H.J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87 (2005)

Blockade a structural effect due to anharmonicity of energy spectrum for multiple excitations

Microtoroid-atom system: blockade regulated dynamically by conditional state of one atom
\rightarrow efficient mechanism, insensitive to many experimental imperfections

Microtoroid-atom system only transmits photons in the forward direction one-at-a-time

- '1st' photon transmitted into $a_{\text {out }}$ can only originate from atom
- Emission projects atom into ground state
- '2nd' photon cannot be transmitted until atomic state regresses to steady-state, time scale 1/I
\Rightarrow excess photons 'rerouted' to $b_{\text {out }}$
Signatures: Intensity Correlation Functions
$g_{\mathrm{F}}^{(2)}=\frac{\left\langle\left(a_{\text {out }}^{+}\right)^{2} a_{\text {out }}^{2}\right\rangle}{\left\langle a_{\text {out }}^{+} a_{\text {out }}\right\rangle^{2}}, g_{\mathrm{B}}^{(2)}=\frac{\left\langle\left(b_{\text {out }}^{+}\right)^{2} b_{\text {out }}^{2}\right\rangle}{\left\langle b_{\text {out }}^{+} b_{\text {out }}\right\rangle^{2}}$
(probabilities of "simultaneous" photon detections)

[^1]
bunching

at $\Delta \approx 0$

Experiment (Caltech `07)

- Cross correlation $\xi_{12}(\tau)$
- $\xi_{12}(\tau)>\xi_{12}(0)$ a prima facie observation of nonclassical light

- Minimise intrinsic losses $\kappa_{\mathrm{i}} \ll \kappa_{\text {ex }}$
- Large mode-mode coupling h
\Rightarrow Near-ideal input/output

Observation of Antibunching/Turnstile Effect

- Analysis of single and joint detections at $D_{1,2}$ conditioned on single atom transit

"Blockade" effect robust, e.g., requires only $\frac{2 g(\vec{r})^{2}}{\kappa_{\text {tot }} \gamma}>1$ Regulated by One Atom," Science 319, 1062 (2008)

In the Future ..

Microtoroid + Atom: Over-Coupled Regime
$\begin{array}{ll}\text { Bad cavity } & a_{\text {out }} \rightarrow \alpha_{0}+\alpha_{-} \sigma^{-} \\ \text {regime } & b_{\text {out }} \rightarrow \beta_{0}+\beta_{-} \sigma^{-}\end{array}$

- Strong over-coupling: $\kappa_{\mathrm{ex}} \gg h, \kappa_{\mathrm{i}} \quad\left(\kappa_{\mathrm{tot}} \approx \kappa_{\mathrm{ex}}\right)$
- No atom ($\alpha_{-}=\beta_{-}=0$): strong transmission, small reflection $\left(\beta_{0} \approx 0\right)$
- With atom: destructive interference between α_{0} and $\alpha_{-} \sigma^{-}$
\Rightarrow strong reflection, small transmission

.. and beyond

- Controlled interactions of single-photon pulses
- Trapping of atoms close to toroid
- Multiple toroid+atom systems
\rightarrow Spin networks
\rightarrow Scalable quantum information processing on atom chips

Single Photon "Transistor"
D.E.Chang, A.S. Sorensen, E.A. Demler, \& M.D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nature Physics 3, 807 (2007)

Microdisk-Quantum Dot Systems
K. Srinivasan \& O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system," Nature 450, 862 (2007)

[^0]: where $\omega_{\mathrm{c}}^{\prime}=\omega_{\mathrm{c}}+\Delta$.

[^1]: antibunching
 at $\Delta \approx 0$

