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@ Tests of the foundations of quantum physics

e Schrédinger cats, Bell’'s inequalities, EPR paradox, decoherence,
quantum measurement, quantum jumps (single atom/ion
experiments)

@ Precision measurements
e Enhanced interferometry with nonclassical light
@ Quantum information
e Quantum computing, quantum communication, quantum networks
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Brief Overview of Quantum Optics

Quantum Optics is an exciting and dynamic field of research that
encompasses a large number of topics including:

@ Laser theory and optical coherence
@ Atomic coherence
e Superradiance, superfluorescence
@ Resonance fluorescence: atoms driven by laser light
@ Generation and study of nonclassical states of light
e Sub-Poissonian light, antibunching, squeezing
@ Cavity quantum electrodynamics
o Optical bistability, single atoms and single photons

@ Laser cooling and trapping of atoms
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Outline of Lectures

Quantisation of the electromagnetic (EM) field
o Number states, coherent states, squeezed states
Quantum correlations and photon statistics
e Field correlation functions, optical coherence, photon correlation
measurements, homodyne measurements
Representations of the EM field
o Number state-, P-, Q- and Wigner representations, optical
homodyne tomography
Quantum phenomena in simple nonlinear optical systems
e Degenerate and nondegenerate parametric amplification,
squeezing, nonclassical correlations, EPR paradox, teleportation
Master equation methods

o Derivation of the master equation, computation of expectation
values and correlation functions, equivalent c-number equations,
stochastic differential equations, quantum trajectories
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@ Inputs and outputs in quantum optical systems
o Cavity modes, correlation functions, spectrum of squeezing
@ Interaction of radiation with atoms
o Two-state atoms, spontaneous emission, resonance fluorescence,
antibunching
@ Cavity quantum electrodynamics (cavity QED)
e Jaynes-Cummings model, quantum collapses and revivals,
cavity-enhanced spontaneous emission, transmission spectra
@ Quantum network operations in cavity QED

o Quantum state transfer, conditional quantum dynamics, microtoroid
cavity QED
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Quantum & Atom Optics at Auckland

Theory

@ Howard Carmichael, Matthew Collett, SP
Experiment (cold atoms)

@ Maarten Hoogerland, Rainer Leonhardt

Scott Parkins (University of Auckland) Introduction 29 September, 2008

Suggested Reading

@ D.F. Walls and G.J. Milburn, Quantum Optics (1994)

@ H.J. Carmichael, Statistical Methods in Quantum Optics 1: Master
Equations and Fokker-Planck Equations (1999)

@ H.J. Carmichael, Statistical Methods in Quantum Optics 2:
Non-Classical Fields (2007)

@ C.W. Gardiner and P. Zoller, Quantum Noise, 2nd Ed. (1999)

@ L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(1995)

Scott Parkins (University of Auckland) Introduction 29 September, 2008 6/7




Theoretical Methods in Quantum Optics 1:

Quantisation of the Electromagnetic Field

Scott Parkins

Department of Physics, University of Auckland, New Zealand

29 September, 2008

Scott Parkins (University of Auckland) Quantisation of the EM Field 29 September, 2008 1/35

Classical Fields

Maxwell’s equations: no sources
9]

V x E(r,t) = —EB(r, t) V-E(rt)=0
10
V xB(r,t) = ?&E(r, t) V- -B(r,t)=0

Coulomb gauge: B(r, t) and E(r, t) determined from vector potential
A(r, t), with V - A(r, t) = O:

B(r,t) = V xA(r,1)

E(r,t) = —%A(n )
Wave equation:
1 92
2 —_———_—
VeA(r, t) = 2 8t2A(r’ )
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Classical electromagnetic theory is very successful in accounting for a
wide variety of optical phenomena. However, there are phenomena,
typically involving small photon numbers, for which the field needs to
be treated quantum mechanically. In the following sections, we take up
the problem of quantising the free electromagnetic field and investigate
some of its properties.

Topics

Classical Fields: Maxwell’s Equations

Field Quantisation

Spectrum of the Energy and Number States

Coherent States

Quadrature Phase Operators and Phase-Space Diagrams
Squeezed States

Variance in the Electric Field
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Can write
A(r,t) = AD(r 1) + AC)(r, 1), AC) = (A

Expand in discrete set of orthogonal mode functions:

A(r 1) =" ceuk(r)e !
k

where the Fourier coefficients ¢, are constant for a free field.

Mode functions u(r)

<V2 + u;—g) uk(r)=0 V- uk(r)=0

Complete orthonormal set:

/Vu;‘;(r) U (r)dr = dppe
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Define

Cx = f 1/23
k= 2wieg K

so that the amplitude ay is dimensionless. Then,
. hwk 12 —iwgt * gk iwyct
E(r,t) = |; (260) [akuk(r)e — aui(re }
The Hamiltonian for the EM field is

1 1
H = —/[ Er,t2+—Br,t2]dr
5/, eoE(r, 1) o (r,t)

)
= 3 > hwk (akax + axay)
K

@ Hamiltonian for an assembly of independent harmonic oscillators
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Spectrum of the Energy and Number States

Determine from eigenvalues ny and eigenstates |nk) of operator fix = éf(ék:
| Ni) = Nic| i)
Consider the state af|nx). Using [&], ] = —2] gives
PralIni) = &L(A + 1)Ink) = (n + 1)8I k)
So, &} |nk) is also an eigenstate of i, with eigenvalue (n + 1), i.e.,
& |ne) = gilnk + 1)

Taking norms and using [ax, é,T(] =1 gives |gk| = vk + 1.
Hence, up to an arbitrary phase factor

&fnk) = vk + 1 |m + 1) |

Repeat argument = eigenvalues ng, nx + 1, n + 2, ... (unbounded).
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Field Quantisation

ax — ax and a; — é,T( (mutually adjoint operators).

Commutation relations

[, ] = [a),8L] =0, [, &l = e

Hamiltonian

|

A= hwy (éf(ék + E)
k

@ Dynamics of field amplitudes described by ensemble of
independent quantised harmonic oscillators.

@ State vector |V), for each oscillator mode .

@ State of entire field defined in tensor product space of Hilbert
spaces for all modes.

@ Zero-point energy hwy /2 (uncertainty principle).

Scott Parkins (University of Auckland) Quantisation of the EM Field 29 September, 2008 6/35

Consider the state ax|nk). Using [ak, Nk] = ax gives
Pai|ni) = ak (P — 1)|nk) = (N — 1) &k|nk)
So, ax|nk) is also an eigenstate of A, with eigenvalue (n, — 1), i.e.,
ak|nk) = dk|nk — 1)

Taking norms and using [&, a}] = 1 gives |dk| = /7.
Hence, up to an arbitrary phase factor

ax|nk) = v/nic|nk — 1) )

Repeat argument = eigenvalues n,, ny — 1, nx — 2, .. ..
But, sequence cannot become negative: (nk|éf(ék|nk> =n, > 0.
Lowest eigenvalue is 0 and

ax|0k) =0 J
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Hence, spectrum of number operator 7 is the set of non-negative
integers 0,1,2,.. ..

Energy eigenvalues for mode k
Enk:(nk+1/2)hwk (nk:O,1,2,...)

Eigenstates: Number or Fock states
(@)™
|nK) = ()72 0) (k =0,1,2,...)

@ The Fock states are orthogonal, (ng|my) = dmn, and complete,

oo
> ) (k| =1
nk=0
@ Form a complete set of basis vectors for a Hilbert space.
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@ Difficult to generate pure photon number states with more than a
few photons.

@ Most optical fields are either a superposition or mixture of number
states.

@ For the description of such states, alternative and more
appropriate representations have been developed,
e.g., the coherent states.
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Basis vectors for entire field: tensor product over all modes

1T )
k

Photons

Discrete excitations or quanta of the EM field, corresponding to the
occupation numbers {nx}, e.g., state |...0,0,14,0,0,...) described as
a state with one photon in mode k.

Annihilation and creation operators

| \

Operators &, and é,T( lower and raise the photon occupation number of
a state by unity. Known as photon annihilation operator, and photon
creation operator, respectively.
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Coherent States

@ Of particular importance in practical applications of the quantum
theory of light.

@ Closest quantum-mechanical approach to a classical
electromagnetic field of definite complex amplitude.

@ Enable a close correspondence to be made between quantum
and classical correlation functions.

@ Particularly appropriate for the description of fields generated by
coherent sources, such as lasers and parametric oscillators.

@ First discovered in connection with the quantum harmonic
oscillator by Schrédinger (1926), who referred to them as states of
minimum uncertainty product.

@ Relevance to quantum treatment of optical coherence and
adoption in quantum optics due largely to Glauber (1963), who
coined the name ‘coherent state’.
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Fock representation of the coherent state

The coherent states are defined as eigenstates of the annihilation Notes:
operator: @ Possible to absorb photons from a field in a coherent state
repeatedly, without changing the state = connection between the
ala) = ala) ( Note: <a|gﬂ = a*(a| ) coherent state of the quantum field and a classical field
@ In practice, most measurements of the (optical) field are based on
with o a complex number. the process of photoelectric detection, using, e.g., photomultipliers
or photoconductors.
The Fock states form a complete set, so we can write @ These devices function by the absorption of photons; hence, the
o absorption operator a is the operator most closely associated with
loy =) caln) measurement of the field.
n=0 @ Because the coherent states are eigenstates of the absorption

operator, these states are particularly convenient for the
description of properties of the field encountered in photoelectric
measurements.

Substituting this form in aja) = a|«) gives

> cavnin—1)=a> ciln)
n=1 n=0
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Equating coefficients of corresponding Fock states gives recursion relation Photon number distribution

@ a? a” The probability P(n) that n photons will ‘
Cn [ —— Cn_1 e — Cn—2 = ... = CO . . 0.10 Coherent state
vn n(n—1) vl be found in the state |«a) is o
S ( | ‘2)| |2n ?_f,; \’:ir(n); ;ﬂg
0 s exp(—|off)|a :
P(n) = |(nl)? = RS2
2ol : (I 5
=G —=|Nn . . P . TR o
o) = 6o ; vn! I i.e., @ Poisson distribution in n, with ¥ it
mean |af2.
Value of |¢y| determined from normalisation of the state |a):
_ 25 Note:
|co| = exp(—|a|*/2) Since the number n corresponds to the eigenvalue of the number

operator h, we have

(A) = (alfla) =7 nP(n)=|af?

Hence, up to an arbitrary phase factor, the coherent state is given by

— _lal? o o
|@) = exp(—| \/Z)EJMW

(PP = (a)a'ad'ale) = (a|a'a’aa + 3[a, 21)3]0) = |a|* + |al?
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Coherent state as a displaced vacuum state

One can show that
|a) = exp(a@' — a*8)|0) = D(«)[0)
where D(«) is the displacement operator.

This involves the use of the Baker-Hausdorff operator identity:
exp(/z\ + B) = exp()\) exp(B) exp(—[ﬁ\, 9]/2)
provided that [A, [A, B]] = 0 = [B, [A, B]]. So,
D(e)0) = exp(—|a?/2) exp(ad') exp(—a*2)|0)

= exp(—|al?/2) exp(ad')|0) (since 2/0) = 0)
0 a"(ghn

- exp(—|a|2/2)2%|0>
n=0 ’

= exp(—|af®/2) Z
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Scalar product

The scalar product of two coherent states is

(alB) = exp(a*8 —|al?/2 — |8%/2), |{alB)I? = exp(—|a — BI%)

Notice that no two coherent states are actually orthogonal to each
other, but if « and g are very different from each other, the two states
are almost orthogonal.
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e Di(a) =D '(a) = D(—a)
e Di(a)aD(a) = a+a, Di(a)alD(a)=2al+ao*
o Di(a)f(3,a")D(a) = f(a+ a,al + a*)
for any funct|on f(a,a') having a power series expansion

N

o D(a)D(p) = expl(ap” — a*B)/2]D(a + )

Scott Parkins (University of Auckland) Quantisation of the EM Field 29 September, 2008

Completeness formula

The coherent states satisfy the completeness relation
1 2 2
— [le}aldPa =1 (d?a=d(Rea)d(Ima))
Y

so they form a basis for the representation of other states, i.e., if [¢) is
an arbitrary state, then

— 2 [1alals)e?

= T ) (¢ «
Note:

The set of coherent states is usually said to be over-complete, in the
sense that the states form a basis and yet are expressible in terms of
each other (due to their non-orthogonality).
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Time evolution

In the Schrédinger picture any state evolves in time according to
[4(8)) = exp(~iFit/h)[4(0))
Consider [1(0)) = |«). Taking H = hw(h + 1/2), we have
(1) = exp(—iwt/2) exp(—iwth)|a)
n

, 203 &
exp(—iwt/2) exp(—|al /2)% i

© (ae—iwt)n

_ —iw —|af?
= exp(—iwt/2) exp(—]| |/2)n§0 T

exp(—iwth)|n)

)

exp(—iwt/2)|ce™ 1)

Apart from a phase factor, this is just another coherent state of
amplitude ae™!. Thus the coherent state evolves into other coherent
states continuously and periodically.
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Canonical uncertainty product

The variance of g for a coherent state is

{(AG(D)7) = WOI(AGY[ (1) = (L(1)@Pw () — (w(DIgle(1)? = %

and that of pis (AP(1)?) = 5

The product of the uncertainties is then

(Ag(1)2) 2 (ap(t)?) /2 = %h

which is the minimum allowed by quantum mechanics.

Hence, the coherent state is a minimum uncertainty state, behaving as
nearly like a classical field as is possible.
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The time dependence of the expectation values of the annihilation and
creation operators is given by

W(0)]aly(t)) = ae™™  ((1)|&T(1) = a*e™!

For the canonically conjugate operators g and p, defined by

h [ hw
A At A B N

(W(D)lgle(t)) = 2h/wla|cos(wt —0)
WOIPl(L) = —v2hw|alsin(wt —6)

we find

where we write o = |a|e'.

This behaviour is reminiscent of a classical harmonic oscillator of
frequency w, with a well-defined complex amplitude a.
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Notes:
@ The uncertainties in the canonical variables are independent of
the eigenvalue a.
@ Whether ((A§(t))?) is appreciable or not compared with (g(t))?
depends on the magnitude |«
@ The departure from classical behaviour is unimportant when
|| > 1, but is significant when |a| < 1.

12
o

12
o
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Quadrature Phase Operators & Phase-Space
Diagrams

Quadrature phase operators

The (Hermitian) quadrature phase operators, X;, X, are defined by

~ 1. o ¢
a= (X +iXe)
i.e., as the real and imaginary parts of the complex amplitude.

They obey the commutation relation [X;, X] = 2i, with the
corresponding uncertainty relation

(AX)2)12((AX)2)1 /2 > 1

This relation with the equals sign defines a family of minimum
uncertainty states. The coherent states are a particular example with

(8%)%) = (A%)?) =1
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Squeezed States

@ States with less uncertainty in one observable than for the vacuum
state.

@ Distribution of canonical variables over the phase space is
distorted or “squeezed”.

@ Variance in one variable is reduced at the expense of an increase
in the variance in the conjugate variable.

X,
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Phase-space diagrams

@ A coherent state may be represented by an ‘error circle’ in a
complex amplitude plane whose axes are Xj and Xs.
@ The centre of the error circle lies at (1/2)(X; +iXz) = a.

@ The radius ((AX;)?2)1/2 = ((AX,)2)!/2 = 1 accounts for the
uncertainties in Xj and Xo.
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Squeeze operator

The squeezed states may be generated from the vacuum by the
operation of the unitary squeeze operator

S(e) = exp [—e*a2 —e(ah)? } with e = re??

Properties of the squeeze operator:

0 5(=8")=8-

o Sf(e )aS( ) = &acosh(r) — &a'e?? sinh(r)

o Si(e)(V1 +i¥2)8(e) = Vie™" +iVze” where
Yi+iVs = (X1 + |X2)e 4 is a rotated complex amplitude.

@ The squeeze operator attenuates one component of the (rotated)
complex amplitude and amplifies the other component. Degree of
attenuation/amplification determined by r = |¢| = squeeze factor.
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The squeezed state |« €) is obtained by first squeezing the vacuum

and then displacing it: .
|, €) = D() S(€)|0)

@ Expectation values and variances:
(X +iXo) = (Y1 +iYz)e"¥ = 2a
(AY1)?) =e %, ((AYz)?) =e*
(A) = |a]? + sinh?(r)

@ The squeezed state has unequal

uncertainties for Y; and Ya, producing
an ‘error ellipse’ in phase space.

@ The principal axes of the ellipse lie
along the Y; and Y, axes, and the
principal radii are AY; and AYa.
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A squeezed vacuum (« = 0) contains only even numbers of photons,
since Hy(0) = 0 for n odd.

X,

03F Squeezed vacuum state

n== 3.0
Var(n)= 16.4

pin)

0.0
0 2 4 a 8§ 10 12 14

Photon number n

Expt: Breitenbach, Schiller, Mlynek, Nature 387, 471 (1997)
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Photon number distribution for the squeezed state |«, €)

n

P(n) = ()" |5

H (2
" V2uv
where Hj(x) are Hermite polynomials and

w = cosh(r),

v = e??sinh(r),

8 = pa +va*.

2 *
gy L Vg
exp (~198 + o+ -5

This distribution may be broader or narrower
than a Poissonian distribution, depending on
whether the reduced fluctuations occur in the
phase (X5) or amplitude (X;) quadrature of
the field.

Expt: Breitenbach, Schiller, Mlynek, Nature 387,
471 (1997)
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Amplitude-squeezed
state

Coherent state

=84
Varm = 86
[

Phase-squeezed state

<= 84
Var(n) =246

i}

P

R

hoton number o
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Enhanced measurement sensitivity with squeezed states

(An experimentalist’s view)
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Precision Measurement beyond the Shot-Noise Limit

Min Xiao, Ling-An Wu, and H. J. Kimble
Department of Physics, University of Texas at Austin, Austin, Texas 78712
(Received 28 May 1987)

An improvement in precision beyond the limit set by the vacuum-state or zero-point fluctuations of the
electromagnetic field is reported for the of phase ion in an optical interferometer.
The experiment makes use of squeezed light to reduce the level of fluctuations below the shot-noise limit.
An increase in the signal-to-noise ratio of 3.0 dB relative to the shot-noise limit is demonstrated, with the
improvement currently limited by losses in propagation and detection and not by the degree of available
squeezing.
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@ The variance of the electric
field for a coherent state
[V(X1) = V(Xz) =1]isa
constant with time.

@ While the coherent state
error circle rotates about
the origin at frequency w, it
has a constant projection
on the axis defining the
electric field.

@ fFor a squeezed state, the
rotation of the error ellipse
leads to a variance that
oscillates with frequency
2w.

Scott Parkins (University of Auckland)

E(1)

Xz

Xz

X
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Variance in the Electric Field

The electric field for a single mode of the EM field may be written (for a
quantisation volume V) as

. 12 .
E(rt)= <2ZUV) [X1 sin(wt —k-r) — X; cos(wt — k- r)] ’

The variance V(E) = ((AE)?) is
2hw

V(E)y = (60V> { V(X;)sin(wt — k- 1)+ V(Xo) cos?(wt — Kk - 1)
— V(Xi, Xo) sin[2(wt — k- 1)] }

where V(Xi,X) = 3(X X + XXi1) — (X1)(Xo).
For a minimum uncertainty state V(Xi, X2) = 0, and hence

V(E) = (2hw/eoV)[ V(X7) sin?(wt — k- 1) + V(Xo) cos®(wt — k - 1) ] ]

Quantisation of the EM Field
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Field-Correlation Functions

Experiments which detect photons ordinarily do so by absorbing them
] ] ] in one way or another = the field we measure is that associated with
Theoretical Methods in Quantum Optics 2: photon annihilation, i.e., E(r, 1),

Quantum Correlations and Photon Statistics

We take the probability for the detector to absorb a photon at position r
and time t to be proportional to

Scott Parkins Tyt = |(FIED(r, £)]i) 2 J

Department of Physics, University of Auckland, New Zealand where |i) and |f) are the initial and final states of the field.

29 September, 2008 We consider a single vector component of the field,
EC)r t) = &5 E(rt),  EO(r,t) =&y EC)(r, 1)

with @4 a unit vector defining the particular polarisation to which the
detector is sensitive.
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Outline The total count rate, or average field intensity, is obtained by summing
over a complete set of final states:

() =% Te = Y (IECr I (HED(r,1)li)
f

f

We now consider correlation functions of the electromagnetic field and _ GIECr HES(, 1))

how they may be used in a general definition of optical coherence.

where we have used the completeness relation > |f)(f| = 1.

Topics
@ Field-Correlation Functions This result assumes a pure initial state |/). For an initial mixed state
@ Correlation Functions and Optical Coherence described by the density operator 5 = >, Pi|i)(il,
@ Photon Correlation Measurements . . . N N
@ Phase-Dependent Correlation Functions I(r,t) = > P GIES @ EDr, t)]iy = T{pEC) (r, HhEM(r, 1)}
I

@ If the field is initially in the vacuum state, p = |0)(0|, then
I(r,t) = (O|EC)(r, ) EM(r, 1)]0) = 0

The normal ordering of the operators (i.e., all &'s to the right of all
a’s) yields zero intensity for the vacuum.
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@ Hence, the intensity appears in terms of a field-correlation
function.

@ More generally, the correlation between the field at the space-time
points x = (r, t) and x’ = (¥, t') may be written as the correlation
function

GO (x,x") = Tr{pEC) () EFD) (x')} |
@ This first-order correlation function of the field is sufficient to

account for classical interference experiments.

@ For experiments involving, e.g., intensity correlations, it is
necessary to define higher-order correlation functions.

@ The nth-order correlation function of the field is defined by

G (X1 ... Xp, Xps1 - - - Xon)
=T{pE(x1) ... EO) (X)) EF) (X111) . .. EF) (x20)}
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@ For the case of two beams (1 and 2), an interesting inequality
arises from the choice

A= MEC )ED (x) + 20EL (0 ESD (x)
which gives
[(EPED B D ()|
< ([EFVEM 00R) (B ()ES 0P

This proves useful in contrasting classical and quantum
predictions for certain optical systems (see later).
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Properties of the correlation functions

For any linear operator A, we must have Tr{pATA} > 0.
@ Choosing A = E(+)(x) gives G(")(x, x) > 0
@ Choosing A = E(4)(x,)... E()(x) gives
G(xq1 ... Xn, Xn...X1) >0

@ Choosing A = "7 \;E(H)(x;), where {)\;} is an arbitrary set of

complex numbers, gives
> AAGD(xi, %) > 0
7

i.e., the set of correlation functions G(')(x;, x;) forms a matrix of
coefficients for a positive definite quadratic form. Such a matrix
has a positive determinant, det[G(")(x;, x;)] > 0.
For n = 2 this gives

G (xq, )G (xz, X2) > ‘G(”(Xuxz)

’ 2
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Correlation Functions and Optical Coherence

Young’s interference experiment

Classical optical interference screen
experiments correspond to a
measurement of the
first-order correlation
function.

The field incident on the screen at position r and time tis a
superposition of the fields emanating from the two pin holes:

EDN(r, 1) = uy I::1(+)(x1) + U2E2(+)(X2)

where x; = (r;, t — s;j/c), and the coefficients uy », inversely proportional
to s o, respectively, depend on the geometry of the experiment.
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The intensity at the screen is proportional to
I = T{pEC)(r,hEM(r, 1)}
i [2GD (x1, %) + |2PGD (x2, X2) + 2Re{uf 1, G (x4, X2) }

@ First two terms = intensities from each pinhole separately.
@ Third term= interference term.

o G"(xy, x2) in general takes on complex values. Assuming tp ~ uy
and absorbing these factors into the normalisation, then writing

GO (x1, %) = |GM(x1, xp) €™ 1¥1%2)
gives
=G (x1,x) + G (xz, x2) + 2|G") (x4, x2)| cOS {W(x1, x2) } \

@ Interference fringes arise from the oscillations of the cosine term.
The envelope of the fringes is described by the correlation
function G (xy, x2).
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First-order optical coherence

It is common to use the normalised correlation function

GO (x4, xp)
[GO(x1, x1) G (32, x2)] 2

gV (x4, xe) =

in terms of which the condition for full first-order coherence becomes

194, %) =1 or  gM(x,xp) = Vi)
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First-order optical coherence

@ The idea of coherence in optics was first associated with the
possibility of producing interference fringes when two fields are
superposed.

@ The highest degree of optical coherence was associated with a
field which exhibits fringes with maximum visibility, i.e., the larger
G") (x4, x2) the more coherent the field.

@ The magnitude of |G()(xy, x2)| is limited by the relation

1/2
GO0, x2)| < [GD 00,500, x2)]

@ The best possible fringe contrast occurs with the equality sign, so
the necessary condition for full coherence is

1/2

G0, xe)| = |GV, x) GV, xe)|
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Visibility
The visibility of the fringes is given by

2(hb)'/?
I+ bk

Inax — Ini
vV — max min = |g(1)(X1,X2)|

- Imax + Imin
with /,' = G(U(X,‘7 X,').
@ If the fields incident on the pinholes have equal intensities, the
fringe visibility is simply equal to |g(")|.

@ Hence, the condition for first-order optical coherence |g(")| = 1
corresponds to the condition of maximum fringe visibility.
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General definition of first-order coherence

A more general definition of first-order coherence of the field is that the
first-order correlation function factorises:

G (x1, x0) = e (x1)e P (x2)

For a field in an eigenstate of the operator £(*) this factorisation holds;
coherent states are an example of such a field.

General definition of nth-order coherence

Similarly, the condition for nth-order optical coherence is that the
nth-order correlation function factorises:

GO (xq ... Xn, Xpi1 - Xen) = e (xq) ... eV (xn)e™ (X)) (x2n)

Again, the coherent states possess nth-order optical coherence.
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Experimental setup of Hanbury-Brown and Twiss

LQUID  INTERFERENCE HALF-SILVERED
FILTER FILTER MIRROR
/ PHOTOMULTIPLIER TUBE

\
RECTANGULAR

MERCURY  LENS
ARC APERTURE

INTEGRATING MOTOR
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Photon Correlation Measurements

1956 NATURE

@ The first experiment performed
outside the domain of one
photon optics was the infensity
correlation experiment of
Hanbury-Brown and Twiss
(1956).

@ Although the original
experiment involved the
analogue correlation of
photocurrents, later versions
used photon counters and
digital correlations and were
truly photon correlation
measurements.

CORRELATION BETWEEN PHOTONS IN TWO COHERENT
BEAMS OF LIGHT™
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@ In essence, these experiments measure the joint probability of
detecting a photon at time t and another at time t + 7.

@ This may be written as an intensity or photon-number correlation
function, i.e., the measured quantity is the normally-ordered
correlation function

GO(r) = (ECNDEC(t+1)EDN(t + 7)EX)(1))
= ( 7(t) (t+7):) oc (APt +T):)

Note that we assume a stationary field, i.e., G®(t,7) = G®) (7).

Normalised second-order correlation function

G@)(r)

g(2)(7') = —|G(1)(0)|2

@ For a field that possesses second-order coherence
GO (1) = et + 1)t + 7)) (t) = [GD(0))?
and g®(r) = 1.
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Classical fields

For a fluctuating classical (single mode) field we may introduce a
probability distribution P(<) describing the probability of the field
E()(e, t) having the amplitude ¢, where

o \1/2
(+) — —iwt
E(e, t) =i <2€0V> ce

For zero time delay, = = 0, we may write for this single-mode field
4+ L PEX (I = (leP))? d?
({lel?))?

An important point to note is that for classical fields the probability
distribution P(<) is positive, and hence one must have g(®)(0) > 1.

g®(0) =
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Hence, for a field with a Lorentzian spectrum
gd(r)=1+e"

and for a field with a Gaussian spectrum
gd(r)=1+e 7"

where ~ is the spectral linewidth.

@ For 7> 7. = v~ ! (the correlation time of the light), the correlation
function factorises and g®(r) — 1.

@ The increased value of g (7) for r < 7 for chaotic light over
coherent light [g® (0)chaotic = 29 (0)conerent] is due to the
increased intensity fluctuations in the chaotic light field.

@ There is a high probability that the photon that triggers the counter
arrives during a high intensity fluctuation, hence there is a high
probability that a second photon will be detected arbitrarily soon.
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Field with Gaussian statistics

For a stationary field obeying Gaussian statistics, with zero mean
amplitude, (EC)(e, 1)) = 0 (i.e., a chaotic field),

(EC) (e, t)EC (e, t+7) e, t + 1)EF)(e, 1))
= (E) (e, N E) (e, t + 7)) (EH)(e, t+ 7)EW (e, 1))
+ (E) (e, N ED) (e, 1)) (EC)(e, t+ 7)ED) (e, t + 7))
+ (E)N (e, NED) (e, t + 7)) (EC)(e, t+ 7)EW) (e, 1))

For fields with no phase-dependent fluctuations the first term is zero.
Then,

GO(r) = G (0)? + ’G(‘ ‘ or gdr) =1+ ’g(n(T)’z

Now, G(')(7) is the Fourier transform of the spectrum of the field:

= / dre 47 G)(r)
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Photon bunching

@ This effect is called photon bunching and was first detected by
Hanbury-Brown and Twiss.

@ Later experiments showed excellent agreement with the
theoretical predictions.

(a@nO)/7 .
3
b
o
/
oo
ok

L
g
FiG. 6.3. Measumd correlations between pairs of photon counts as functions of their time

separation < for laser light (fled circles) and chaotic light of Gaussian frequency distribution (all
other poi 1) The theoreticl curvesare he same a Fig. 3.12, (After F. T. Arccchi et al, ref. 9).

@ Note, however, that the above analysis does not rely on any
quantisation of the field, but may be deduced from a purely
classical analysis with a fluctuating field amplitude.
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Quantum mechanical fields

We now consider some single-mode quantum-mechanical fields, for

which
V(n)—n
@) = =LY _ ALV
g’ (0) EEE 1+ =

with V(n) = ((&'3)?) — (&73)2.
@ Coherent state: For a coherent state |«), V(n) = nand
g®(0) =1

@ Number state: For a number state |n), V(n) = 0 and

1
g®(0)=1-

rt n>1
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Comparison of photon counting sequences

I
LI oo

(b)

LTI T o<

T 2=

Scott Parkins (University of Auckland) Quantum Correlations and Photon Statistics 29 September, 2008 23/29

Photon antibunching

e If g@ (1) < g®(0), there is a tendency for photons to arrive in
pairs. This situation is referred to as photon bunching.

@ The converse situation, g®®)(7) > g(®(0), is called photon
antibunching.

@ Noting that g(® () — 1 for sufficiently large 7, a field with
9®(0) < 1 will always exhibit antibunching on some time scale.

@ A value of g(®(0) less than unity could not have been predicted by
a classical analysis, i.e., photon antibunching is a feature peculiar
to the quantum mechanical nature of the EM field.
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Phase-Dependent Correlation Functions

@ The “even-ordered” correlation functions, such as the
second-order correlation function G, contain no phase
information and are a measure of the fluctuations in the photon
number.

@ The “odd-ordered” correlation functions
GU™)(Xq ... Xp, Xp41 - - - Xnem) With 0 # m contain information
about the phase fluctuations of the field. For example, the
variances in the quadrature phases, V(Xj), V(X2), depend on
these functions.
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Homodyne measurements

@ The usual scheme for making quadrature phase measurements
involves mixing (or homodyning) the signal field (E;) with a
reference signal (Ez), known as the local oscillator, before

photodetection.
D

photodetector

E,

@ Homodyning with a reference signal of fixed phase gives the
phase sensitivity necessary to yield the quadrature variances.
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The photodetector responds to the moments of &7¢, so the mean
photocurrent in the detector is proportional to

(88) = n(ala) + (1 — m)(b'b) —iv/n(T 1) ((&)B) — (a")(B))

We take the field Eg to be the local oscillator and assume it to be in a
coherent state of large amplitude (3 (so we may neglect the term
n(&ata)). Then

(€7e) = (1 =B + 181V n(1 = 1) (Xoi2)

where X, = 27 + &fe, and ¢ is the phase of 3.

@ When the contribution from the reflected local oscillator intensity is
subtracted, the mean photocurrent is proportional to the mean
quadrature phase amplitude of the signal field defined with
respect to the local oscillator phase.
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Consider two single-mode fields of the same frequency w:

1/2 _ _
Ei(r,t) = i<2h\7€o) [ée'(k'f*wf)_é’refl(k-r—wt)]
2 o

combined on a beamsplitter with transmittivity 7.

The total field incident on the photodetector after combination is

hw i i i
_ A qilkr—wt) _ At q—i(kr—owt)
Er(r,t) =i (zveo) [ce c'e

where & = \/ga+iyT—nb.

Note: We have included a 7/2 phase shift between the reflected and
transmitted beams at the beamsplitter.
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@ Fluctuations in the photocurrent will be determined by the
variance of 7, = ¢fé.
@ For an intense local oscillator in a coherent state, this is

V(ne) = (1 =022 + BPn(1 = n)V(Xy4r/2) |

@ So, the signal-field quadrature variances, which depend on
“odd-order” correlation functions, can also be determined from the
photocurrent.
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Balanced homodyne detection

@ In balanced homodyne detection,
the outputs of a 50:50
beamsplitter are directed to
photodetectors and the difference
between the measured
photocurrents is taken.

@ The difference current is a / ¢
proportional to

(€7¢ - a'd) = |B(Xy /o) b

and the variance

V(&'e - d'd) = |BPV(Xyin/2)
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Number State Representation

The number states form a complete set and hence we can write

p=33 canlm)(ml J

n=0 m=0

@ The expansion coefficients ¢,y are complex and there are an
infinite number of them.

@ Hence, the general expansion is often not very useful, particularly
for problems where the phase-dependent properties of the EM
field are important (and hence the full expansion is necessary).
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For a full quantum statistical treatment of the electromagnetic field, the
description of the system is best carried out in terms of the density
operator p. We now consider a number of possible representations for
the density operator.

Topics

Number State Representation
Glauber-Sudarshan P-Representation
Q Representation

Wigner Representation

Optical Homodyne Tomography
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@ However, in certain cases where only the photon number
distribution is of interest the reduced expansion

may be used. This is not a general representation for all fields, but
may prove useful for certain fields; for example, a chaotic field,
which has no phase information, and for which

where 7 is the mean number of photons.
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Glauber-Sudarshan P Representation

The Glauber-Sudarshan P representation relies on the fact that the
coherent states are not orthogonal, forming an overcomplete basis.

As a consequence, it is often possible to expand p as a diagonal sum
over coherent states:

p= [ dala)(alP(a)

where d?a = d(Re{a})d(Im{a}).

This representation for p is appealing because the function P(«) plays
a role which is rather analogous to a classical probability distribution.
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The 2nd-order correlation function may be expressed as

g@(0) = 1 + L P [laf (o]

[J ®a P(a) of??

which looks functionally identical to the expression for classical fields.
Similarly, for the quadrature variances we find

(6% = 1+/dzaP(a)[(aJra*)—(<a>+<a*>)]2

@) = 1+ [dap (252 - (5]

The condition for antibunching, 9®(0) < 1, and the condition for
squeezing, ((AXx)?) < 1, evidently require that P(«) takes on negative
values in some regions of the complex plane.
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Expectation values of operators written in normal order are given by

(atPad) = Tr [ﬁéwéﬂ Tr { / d?a o) (| P(r) &P a?

/dza P(a) a*Paf

Normally-ordered averages are therefore calculated in the same way
that averages are calculated in classical statistics, with P(«) playing
the role of the probability distribution.

Setting p = g = 0 gives
/dza P(a) =1

so P(«) is also normalised like a classical probability distribution.
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Notes:
@ The nonorthogonality of the coherent states gives

(alplo) = / e p(s)

where we have used |(a|3)|? = exp(—|8 — a?).

@ Hence, (a|p|a) # P(«); only when P((3) is sufficiently broad
compared to the Gaussian ‘filter’ does it approximate a probability.

@ Also, although the probability {(«|p|a) must be positive, P(«) is not
required to be so. Thus, unlike a classical probability, P(«) can
take negative values over a limited range.

@ Hence, P(«) is often referred to as a quasidistribution function.
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Can we find a P representation for any density operator?

Consider

Tr (ﬁ eiz* af eizé)

Tr{ [ / Rala)(al P(a)] eiZ*éTeizé}

/dZOé P(a)eiz*a* eizoz

This is just a 2-D Fourier transform. The inverse transform gives
_ 1 2 ~niz*al Liza —iz*a* o—izo
P(a)_ﬁ/dzTr(pe e )e e
If the Fourier transform of the function defined by the trace exists for a

given density operator p, we have our P distribution representing that
density operator.
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Number state 5 = |/) (/]

] / _1)k|z|2k /! —iz*a* o—iza
P(a) = ?/dzz [Z( )k!|Z| k!(/_k)!] ° °

k=0

Noting that 1 L
5(2)(a) =— /dZZeflz a* g—iza
us

and using the ordinary rules of differentiation inside the integral, we

may write
Lo 1 g2

Pla)=) ki(I — k)! k! dakdark

6@ ()

This (generalised) function is much more singular than any classical
probability distribution <= the number state |/) is a quantum state of
the field having no classical counterpart.
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Coherent state p = |ag) (|
lz/dzze—iz*(a*—ag)e—iz(a—ao)

T

= 6®@(a—ag) = 3(x — X0) 3(y — yo)

where a = x + iy and ag = Xxg + iyg-

P(e)

where n is the mean photon number.
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Quantum characteristic functions

The normally ordered quantum characteristic function is defined by
w(z,z*) =Tr (ﬁ eiz*éfeiﬁ)

Analogous to a classical characteristic function, one may write for the
normally-ordered moments:

p+q
(alPas) = Tr (palead) = 50

otz otz M2

Z=2"=(0)
@ We have

1 1 7% * H
P(a,a*) _ ﬁ/dszN(za z*)e—lz ar g-iza
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We may also define the antinormally ordered characteristic function
xa(z,z*) =Tr (ﬁ eiZéeiz*éT)
and the symmetrically ordered characteristic function

xs(z,z*) =Tr (ﬁ e‘z*émza)
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The Q representation has a simple relationship to the coherent states:
1 oA Pk Y 1 7% * H
Q(a,a*) = = /dQZTr {ﬁe'za (1/d2>\|/\><)\|> el? a’r] g iz a" g—iza
s v
- / d2X (AlpI) [lz / dzzeiz*@*—a*)eiz@—a)]
s s

_ %/d% AR 6@ (A — a)

1
— 5 >
~ {alpla) 20

Thus, 7Q(«a, o) is strictly a probability — the probability for observing
the coherent state |).
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Q Representation

The distribution Q(«, o*) is defined as the Fourier transform of the
antinormally ordered characteristic function xa(z, z*):

Q(a,a*) = wfz/dszA(z, Z¥)e 1z g iz \

In contrast to the P distribution, which gives the normally ordered
moments, the Q distribution gives the antinormally ordered moments:

(&%31P) = /dza Q(a, a*) a*Pal \
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Relationship between Q(«a, a*) and P(a, a*)

1

Qleat) = (alfle) = [ POPEE) (el
_ 1 [ e *) a—la—02
_ w/d BP(3,5")e

So, the Q function is a Gaussian convolution of the P function, which
accounts for its more well-behaved properties.
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Examples:

Coherent state |3)
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Relationship between W(«, o*) and P(«, o)

Noting that ys(z, z*) = xn(2, 2*) exp(—|z|?/2) (Baker-Hausdorff
theorem), we can write

W(a, %) = %/dZZXN(Z,Z*)e_lz‘z/ze_iZ*a*e—iZa
= lz/dzz /dZﬁ P(ﬁ, ﬂ*)eiz*/@*eizﬁ e_|z|2/26—i2*a*e—i2a
s
- lz/dzﬁ P(B,5%) /dzze*|z|2/2+i2*(6*7a*)+iz(57a)
™

_ 2 [ vy g-2l—al?
— 2 [@srs.)e

So, the Wigner function is also a Gaussian convolution of the P
function, although the Gaussian is narrower than for the Q function.
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Wigner Representation

The Wigner distribution W(«, o*) is the Fourier transform of the
symmetrically ordered characteristic function xs(z, z*):

W(OZ,OZ*) — W_z/dZZXS(Z, Z*) e—iz*a*e—iza ’

The moments of W(«, o*) are equal to the averages of symmetrically
ordered products of creation and annihilation operators:

((aPa%)g) = /dza W(a,a*)a*Pal ’

where (&!P%)g denotes the average of (p + q)!/(p'q!) possible
orderings of p creation operators and g annihilation operators.
For example,

~

ata R A 1 oo atast  aa
(8'8)s = -(a'a+ 43", (aPa)s = g(af2a+ a'aal + aa™),
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or, in terms of quadrature variables,
2 1 0 1 0
Wix,xe) = = exp |~ 500 = x) = 50 - ")
The contour of the Wigner function can be defined by
(1 = X0 + (e — V)2 =1

which we identify with the error area introduced earlier in the context of
quadrature phase diagrams, i.e., the error area for the coherent state

|ag) is a circle with radius one centred on the point (x1(°), xéo)).
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Squeezed state |y, r)

1
W(x,x) = = exp [_§(X1 — x{Oy2e=2r _ S0 - xéo))zezr}

N
—_

The contour of the Wigner function is

(x4 — X1(0))2 N (X — X2(0))2

le 972r = 1

i.e., an ellipse with the lengths of the major and minor axes given by e’
and e~', respectively.
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Wigner functions

(a) Coherent state |a = 2), (b) squeezed state |« = 2,r = 0.6),
(c) number state |n = 1), and (d) the number state |n = 2).
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Number state |n)

W(a,a*) = 2 (1) exp(~2Jaf) Ln(4]al?)

where Lx(x) is the Laguerre polynomial. This Wigner function clearly
has negative parts.
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Writing & = (X; +iX2)/2 and « = (x +iy)/2, one can show that the
Wigner function can be rewritten in terms of the matrix elements of 5 in
the Xj representation as

2 0
Wixy) == [ dei (x= 1+ xp) o
Hence one can show that

3 [ Woey)=xiplg and g [ax Wixy) = tioly)

i.e., the probability densities in x and y respectively are obtained by
integrating out the other variable, as for a classical joint probability
density.
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Optical Homodyne Tomography

[§ NICATIONS

PHYSICAL REVIEW A VOLUME 40, NUMBER 5 SEPTEMBER 1, 1989

D ination of quasiprobability distril in terms of probability
dlstnbntlons for the rotated quadrature phase

K. Vogel and H. Risken
Abteilung fiir Theoretische Physik, Universitat Ulm, D-7900 Ulm, Federal Republic of Germany
(Received 5 June 1989)

It is shown that the probability distribution for the rotated quadramre phase [a*exp(i0)
+aexp(—i0)]/2 can be expressed in terms of quasiprobability distributions such as P, @, and
Wigner functions and that also the reverse is true, i.c., if the probability distribution for the rotat-
ed quadrature phase is known for every 6 in the interval 0= 6 <, then the quasiprobability dis-
tributions can be obtained.

generaIAised quad[ature operators 5(9 = )A(1 cosf + )A(g sin g,
Py = —Xqsinf + X, cosf

Py(xp) = % /dpg W (xp cos 6 — py sin 6, xy sin 6 + py cos 0)

Given distributions Py(xp) for a finite set of 6 € [0, ), can use inverse

Radon transform to determine W(x, y).
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Measurement of the Wigner Dlstnbutmn and the Density Matrix of a Light Mode Using VOLUME 87, NUMBER 5 PHYSICAL REVIEW LETTERS 30 JuLy 2001
Optical H dyne Tomography: App to S d States and the Vacuum
D. T. Smithey, M. Beck, and M. G. Raymer Quantum State Reconstruction of the Single-Photon Fock State
Department of Physics and Chemical Physics Institute, University of Oregon, Eugene, Oregon 97403
Faridani A.L Lvovsky,* H. Hansen, T. Aichele, O. Benson, J. Mlynek," and S. Schiller*
A. Faridani Fachbereich Physik, Universitit Konstanz, D-78457 Konstanz, Germany
Department of Mathematics, Oregon State University, Corvallis, Oregon 97331 (Received 14 March 2001; published 11 July 2001)
(Received 16 November 1992)
' : - o S . ‘We have reconstructed the quantum state of optical pulses u)nl.immg single photons using the method
v‘/’cv have measured | of e amplitude for both vacuum and of phas pulsed optical The single-photon Fock state |1) was pre-
quadrature-squeczed states of a mode of the electromagnetic field. From these measurements we pared using conditional measurements on photon pairs born in the process of parametic down-conversion.
demonstrate the technique of optical homodyne tomography to determine the Wigner distribution and
e donsity matein of th " _ n ribt A of the ph: d electric field with a strongly non-Gaussian
the density matrix of the mode. This provides a complete quantum mechanical characterization of the shape is obtained with the total detection efficiency of (55 * 1)%. The angle-averaged Wigner function
measured mode. § sted fi is distribution shows a s i reaching classically impossi ive va
reconstructed from this distribution shows a strong dip reaching classically impossible negative values
around the origin of the phase space.
pulsed laser . (a) raw data samples (10°) (b) _ P
trigger beam 0 5 100 5 10 08
\/ doubler .
down spatial+spectral
filter
converter
20 trigger
i detector
10|
local oscillator
2.00| -
/"\
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| \
FIG. 1. Measured Wigner distributions for (a),(b) a detector
squeezed state and (c),(d) a vacuum state, viewed in 3D and as
contour plots, with equal numbers of constant-height contours.
Squeezing of the noise distribution is clearly seen in (b).
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Degenerate Parametric Amplification

@ One of the simplest interactions in nonlinear optics is where a
photon of frequency 2w is converted into two photons each with
frequency w.

2w w
N

w

@ This process, known as parametric down conversion, may occur in
a medium with a second-order nonlinear susceptibility x(2) and
describes the operation of a parametric amplifier.

@ In a degenerate parametric amplifier a signal at frequency w is
amplified by pumping a x(®) medium (with a laser) at the
frequency 2w.
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We now consider some simple models of nonlinear optical systems
that produce manifestly nonclassical states of light and are classic
examples in quantum optics.
Topics

@ Degenerate Parametric Amplification

@ Non-Degenerate Parametric Amplification

Scott Parkins (University of Auckland) Simple Nonlinear Optical Systems 29 September, 2008 2/24

@ Consider a simple model where the pump mode at frequency 2w
is treated classically (i.e., the pump field is assumed to be in a
large-amplitude coherent state).

@ The signal mode at frequency w is described by the annihilation
operator a.

@ The Hamiltonian for the system is then taken to be
A = hwata - %ihx (ézezi“ - éTze‘zi”f>

where x is a constant proportional to the second-order nonlinear
susceptibility and to the amplitude of the pump field.
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In the interaction picture the Hamiltonian becomes
~ 1
_ L 22 ATZ
Ay Silx (32 23 )

Note: Moving to the interaction picture can be viewed as transforming
to a frame rotating at frequency w.

@ Thus, the deamplified quadrature has less quantum noise than the
vacuum level.

@ The amount of squeezing or noise reduction is proportional to the
strength of the nonlinearity, the amplitude of the pump field, and
the interaction time.

The Heisenberg equations of motion are X,
da 1 ~ dat 1 A
_ = 3 = AT —_— = — AT = 5
dt ix [a7 HI] xa', dt i [a aHI] xa
which have the solution
a(t) = a(0) cosh(xt) + &' (0) sinh(xt) | "

which takes the form of the generator of the squeezing transformation.
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Introducing the quadrature phase operators, X; = 4+ &' and Non-Degenerate Parametric Amplification
Xo = —i(a— a') one finds

Xi(t) = eX'X(0),  Xa(t) = e™X'X3(0) ) @ In the nondegenerate parametric amplifier a pump mode at
frequency 2w interacts in a nonlinear optical medium with two
modes at frequencies w1 and wo, such that 2w = wq + wo.

@ It is conventional to designate one mode as the signal and the

i.e., the parametric amplifier is a phase-sensitive amplifier that
amplifies one quadrature and attenuates the other.

The parametric amplifier also reduces (increases) the noise in the X other as the idler.
(X1) quadrature. The variances V(X;, t) satisfy @ Note that in some cases the signal and idler modes may differ in
V(X;, 1) = o2t V(X;,0), V(Xp, t) = o-2xt V(Xp,0) | polarisation rather than in frequency.

For initial vacuum or coherent states V(X;,0) = 1, and hence
VX t)=e®X, V(Xp, t) =e 2!

with the product of the variances satisfying the minimum uncertainty
relation, V(X1)V(Xz) = 1.
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@ Consider again a simple model where the pump mode at
frequency 2w is treated classically.

@ The Hamiltonian for this system can be written as
Fl = hun 8 & + p8l + i (] ale™2" — &4 2,6%")

where &, (&) is the annihilation operator for the signal (idler)
mode.

@ The coupling constant x is proportional to the second-order
susceptibility of the medium and to the (coherent) amplitude of the
pump.
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Intensity correlations
@ The intensity correlation functions of this system exhibit interesting
quantum features.
@ In particular, with a two-mode system we may consider cross

correlations between the two modes and show that correlations
exist that violate classical inequalities.

Consider the moment (&! 4,4} 4,). We may express this moment in
terms of the (two-mode) Glauber-Sudarshan P function as

(8l a8} ap) = /d2a1 /d2a2|041|2\042|2P(0¢1,042)
If a positive P(«y, ap) exists the right-hand-side of this equation is the

classical intensity correlation function for two fields with the fluctuating
complex amplitudes «y and ao.

Scott Parkins (University of Auckland) Simple Nonlinear Optical Systems 29 September, 2008 11/24

The Heisenberg equations of motion in the interaction picture are

with solutions

Note:

These take the form of the generator of the two-mode squeezing
transformation A

— the two-mode squeeze operator is S = exp[xt(al &), — &)].
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The following (Schwarz) inequality then holds:
/dzm /d2a2|041|2|042\2p(04170¢2)
1/2
< [/ d2a1 /d2a2 |y |4P(a1,a2)}

1/2
X [/ d?a /d2a2 |a2|4P(a1,a2)}

or, expressed in terms of operators:
1/2
ata ata AT222\ /21222
(8 anaae) < [ (&°8) (&P 8)|

This is known as the Cauchy-Schwarz inequality. If the two modes are
symmetric, then this reduces to

v

At A N T2 A
(alaabay) < (alP2?) |
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A stronger inequality may bg qerived for quantum fields; in particular, A clear experimental demonstration of this violation has been
from the general result Tr(pAfA) > 0 for a linear operator A (see performed, e.g., by Zou et al. [Opt. Commun. 84, 351 (1991)]. ‘
earlier), we have

(4l araa0)? < ((&lar)?) (8bap)?)

or, for a symmetrical system, Violation of classical probability in parametric down-conversion

X.Y. Zou, L.J. Wang and L. Mande|

<é: é‘] A;éz) S < éIZ é12> —+ <éx é1> ‘ Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
Received 23 April 1991
So, a violation of the Cauchy-Schwarz inequality is clearly possible in a

quan tum Syste m A classical inequality relating to photoelectric coincidence counting with two light beams is derived. I s then demonstrated in
- a coincidence counting experiment with the signal and idler photons produced in the process of parametric down-conversion, that
the classical inequality is violated by about 600 standard deviations.
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Consider the nondegenerate parametric amplifier. Because signal and Einstein-Podolsky-Rosen (EPR) paradox

idler photons are always created together, the following conservation @ The nondegenerate parametric amplifier can also be used to

law holds: R . ~ R prepare states of the sort discussed in the EPR paradox.
n1(t) o n2(t) = n1 (0) o n2(0) MAY 15 1935 PHYSICAL REVIEW VOLUME 47

Using thlS relation the intensity Correlation fU nCtion may be Written Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EnstEIN, B. PopoLSKY AND N. RoSEN, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

<h1 (t) h2(t)> = <f71 (t)2> - <f71 (t) [h'l (O) - ﬁz(o)]> In a complete theory there is an element di quantum hanics is not complete or (2) these two

to each element of reality. A sufficient condition for the quantities c: t have reality. C

reality of a physical quantity is the possibility of predicting  of the problem of making predictions concerning a system
o e . it with certainty, without disturbing the system. In on the basis of measurements made on another system that
For an initial vacuum state the last term is zero, and so quantum mechanies in the case of two physical quantitics had previously ith it leads to the resalt that i

described by perators, the k dge of (1) is false then (2) is also false. One is thus led to conclude

Y R AT A, ENE A 1A e Bt of veaty given by the wave function In it not ompiett 1o B by ave function

(M (0)n2(1)) = (a3(t)ay (t)ar(t)as (1)) + (a;(t)ar (1)) |

@ In the original treatment two systems are prepared in a correlated
state.

@ One of two canonically conjugate variables is measured on one
system and the correlation is such that the value for a physical
variable in the second system may be inferred with certainty.

which corresponds to the maximum violation of the Cauchy-Schwarz
inequality allowed by quantum mechanics. Thus, the nondegenerate
parametric amplifier exhibits quantum mechanical correlations that
violate certain classical inequalities.
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meieter ine (geneElver) guee Eie Ve es @ So, as time proceeds a measurement of )A(f yields an increasingly

U S . - o
X0 = 36" + a,Te 0 (i=1,2) certain value for X3
@ However, one could equally well have measured X!~ ™/ which

These obey the commutation relation . . ; . bt
v would yield an increasingly certain value for Xg’+ 2,

(X0, XPT7/%) = _2i @ Thus, certain values for two noncommuting observables, XJ and
X{*™/2, may be obtained without in any way disturbing system 2.

and are thus directly analogous to the position and momentum i .
@ This outcome constitutes the centre of the EPR argument.

operators discussed in the original EPR paper.
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As a measure of the degree of correlation between the two modes, we @ In reality no measurement enables a perfect inference to be made.
consider the quantity @ To quantify the extent of the apparent paradox, we can define the
1, co oo variances \/inf(Xg’) and Vinf(Xg’”/z) which determine the error in
V(8.0) = 5 (X - 57 e aaivivh aiatviba
2 inferring X5 and X, from measurements on X{ and X; .

. “ . $ $ /2
If V(6,¢) = 0 then X{ is perfectly correlated with X which means that @ In the case of direct measurements made on (X, X5 7/2),
a measurement of X? can be used to infer a value of X with certainty. quantum mechanics would suggest
+7/2
Using the solutions for the mode operators one finds V(X$)V(Xg ™) > 1 |

V(0,¢) = cosh(2xt) — sinh(2xt) cos(f + ¢) @ However, the variances in the inferred values are not constrained.
e X for +¢=0 Thus, whenever

/ D\ \/ o+m/2
So, when 6 + ¢ = 0, for long times V/(0, ¢) becomes increasingly small, Vint(X5') Vint(X; ) <1 |

reflecting the build up of correlation between the signal and idler fields.

L one can claim an EPR correlation paradoxically less than
[The initial value V(8, ¢) = 1 corresponds to uncorrelated systems.] P y

expected by direct measurement on the same state.
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Ou et al. performed an experimental test of this for a nondegenerate The Wigner function is then

parametric amplifier, obtaining a lowest value of 1
+7/2 _ 2 2 —izfai—iz —izy a3 —iz,
Vinf(X;)Vinf(Xg) ™/ )=0.74+0.01. W(aq,ao,t) = F/d Z4 /d Zpe H O T gTIR TR0z o (7, 25 1)
.......... 4 .
_ ; 2
(@ Signal = ﬁ eXp |:_2|Oé1 COSh(Xt) — Qo S|nh(Xt)|
° * i 2
VOLUME 68, NUMBER 25 PHYSICAL REVIEW LETTERS 22 JUNE 1992 e _2|a2 COSh(Xt) - a1 Slnh(Xt)| ]
Realization of the Einstein-Podolsky-Rosen Paradox for Continuous Variables
’ 'zv Y. Ou‘, S.F. mera,yHJ. Kimble, and K. C. Peng"" ® 4 1 |Ol1 + O[;|2 |O[1 — O[Z|2
Norman Bridge Laboratory of Physics If;(,:,; s:g/zp;n;: Jx;:;u:;gé)rnhmlw Pasadena, California 91125 — —_ exp -
e i i — 72 2 e2xt e—2xt

a continuous spectrum. As opposed to previous work with discrete spin or polarization variables, the
continuous optical amplitudes of a signal beam are inferred in turn from those of a spatially separated
but strongly correlated idler beam generated by nondegenerate parametric amplification. The uncertain-
ty product for the variances of these inferences is observed to be 0.70 2 0,01, which is below the limit of

i o G s e psten ar which shows that squeezing occurs in a linear combination of the two
modes. Note also the following limit, with a; = X; + iy,

W(xq,y1, X2, ¥2) = Co(x1 — x2) (Y1 +y2) as xt— oo |

which corresponds precisely to the state originally envisioned by EPR.

¥(@,6,) (9. 6,)
(02,6,,6,)
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RESEARCH ARTICLES

W|g ner fU nCt|On Unconditional Quantum

@ The full guantum correlations present in the parametric amplifier
may be represented using a quasiprobability distribution.

@ If both modes of the amplifier are initially in the vacuum state no
Glauber-Sudarshan P function for the total system exists at any
time.

@ However, a Wigner function does exist.

The appropriate two-mode characteristic function is given by

xs(z1,22,1) = (0, o\eizféi(f)ﬂa é1(t)eizz*é;(t)+i22é2(t)|0’ 0)
_ e daP-Hlz0)?

where .
zi(t) = Zicosh(xt)+ zzsinh(xt)

Zo(t) = Zz5cosh(xt)+ z1 sinh(xt)

706 23 OCTOBER 1998 VOL 282 SCIENCE wanwscencemagorg
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The Master Equation

We begin with a Hamiltonian of the general form

/:IZFIS—F/:/R—FF/SR J

o Hs, Hg are Hamiltonians for the system and reservoir.
@ Hgg describes the interaction between them.

Reservoir

Hg
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In all physical processes there is an associated loss mechanism. In
the context of quantum optics, specific sources of loss include, e.g.,
imperfect mirrors and atomic spontaneous emission. We now consider
one particular way of including losses in the quantum mechanical
equations of motion — the master equation approach. In this approach,
the system of interest is coupled to a heat bath or reservoir, which
describes the environment into which the system loses energy.

Topics
@ The Master Equation

@ System Operator Expectation Values
@ Correlation Functions: Quantum Regression Formula
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Let w(t) be the density operator for the total system S ¢ R.

We define the reduced density operator p(t) = Trr[W(t)], where the
trace is only taken over the reservoir states. J

If Ois an operator in S we can calculate its average in the Schrddinger
picture if we have knowledge of 5(f) alone, i.e.,

(O) = TrserlOW(1)] = Trs { OTra[W(1)]} = Trs[OA(1)]

Our objective is to obtain an equation for p(t) with the properties of the
reservoir R entering only as parameters. J
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@ The Schrédinger equation for w(t) is

1

o (A (D)

W(t) =
@ Transform into the interaction picture,
W(t) = ei(FlerFIR)t/hW(t)efi(f-lerFIR)t/h
to give
i(t) = - [Asa(t). #(0)]
where now Hgg(t) is explicitly ime-dependent:

Asr(t) = ei(I:IS+FIR)t/h[:[SRe*i(FIS+FIR)1/h
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We assume that the interaction is turned on at t = 0 and that no
correlations exist between S and R at this initial time. Then

W(0) = W(0) = 7(0) Ao
where Ry is an initial reservoir density operator.

@ Then, noting that

TTR[W(I')] — ei/:/Sf/hTrR[eiHRt/hW(t)e*iHRt/h]e*i":/St/h

el:‘:/sf/ﬁp/\(t) efif:lst/rl — ﬁ(t)
tracing over the reservoir gives

O /Otdt’ Tra { [Fi(t). [Fisn(t). #(1)]| } |
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@ Now integrate formally to give
1t ~
W(t) = w(0) + / d [HSR(t’),v”v(t')]
in Jo
@ Substitute this expression for w(t) into original equation:

(0 = 1 Flen(0, 0] - 1 [0t [Fenlt). [Fen()it)]]

@ This equation is exact, and in this form we can identify reasonable
approximations to make.
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For simplicity, we have eliminated the term (1/ih)Tra{[Hsr(t), W(0)]}
with the assumption that

Tra[Hsr(t)Ro] = 0

This is guaranteed if the reservoir operators coupling to S have zero
mean in the state Ay — this can always be arranged by simply including
Trr(HsrRo) in the system Hamiltonian Hs.
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@ While we have assumed that w factorises at t = 0, at later times
correlations between S and R may arise due to their coupling
through Hsg.

@ However, we also assume that this coupling is very yveak, and at
all times w(t) should only show deviations of order Hgg from an
uncorrelated state.

@ Furthermore, R is a large system whose state should be virtually
unaffected by its coupling to S. We therefore write

w(t) = p(t)Ro + O(Hspr)

Scott Parkins (University of Auckland) Master Equation Methods | 29 September, 2008 9/832

Markovian behaviour seems reasonable on physical grounds.

@ Potentially, S can depend on its past history because its earlier
states become imprinted as changes in the reservoir state
(through Hgg) and are then reflected back on the future evolution
of S as it interacts with the changed reservoir.

@ If, however, the reservoir is a large system maintained in thermal
equilibrium, we do not expect it to preserve the minor changes
brought about by its interaction with S for very long; not for long
enough to significantly affect the future evolution of S.

@ ltis a question of reservoir correlation time versus the time scale
for significant change in S.
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Born approximation

Neglecting terms higher than second order in Hgg, we write

(t) = —% /Otdt’ TrR{ {I:ISR(t), {HSR(t/)vﬁ(t/)ﬁOH }

-

This is still a complicated equation. In particular, it is not Markovian
since the future evolution of 5(t) depends on its past history through
the integration over j(t') (the future behaviour of a Markovian system
depends only on its present state).

Markov approximation

We replace p(t') by 5(t) to obtain a master equation in the
Born-Markov approximation:

t
i =3z [ ¢t Ta { (Fea(t). Fen(®). /(DA }
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Let us consider a more specific model:

Hsr=h)_8f; or  Hsp(t)=hd_ (D)

i i R
where {5;} are operators in the Hilbert space of S and {I';} are
operators in the Hilbert space of R. In the Born approximation

i = -3 /0 “ar T { [80F0. [5()F0). 5(0)Ro]] )
i

t
= =X [ o (B8 - 3OFOO] FOF D
i

t
*Z/O dt’ [A(t)5;(t)38i(t) — 8(DA)E(E)] (F(E)Ti(D)r
ij

whgrAeAwe haveAuAsAed the cyqlig property of the trace, i.e.,
Tr(ABC) = Tr(CAB) = Tr(BCA).
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The properties of the reservoir enter through the correlation functions
FiOF ()R =t [RFOT)] . T =trm [RoF(OT(1)]

@ We can justify the replacement of 5(t') by j(t) if these correlation
functions decay very rapidly on the time scale on which 5(t)
varies; e.g., if

(TR~ 8(t - )

@ So, the Markov approximation relies on the existence of two
widely separated time scales: a slow time scale for the dynamics
of the system S, and a fast time scale characterising the decay of
reservoir correlation functions.
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Hamiltonians:

Hs = hw.ata
Ao = Sl
i

Fon = Yon(wjarf +xalhy) = n (&t + a'f)
J

@ The system S is a harmonic oscillator with frequency w¢ and
annihilation operator a.

@ The reservoir is a collection of harmonic oscillators with
frequencies w; and annihilation operators 7;. These reservoir
oscillators couple to the cavity mode oscillator with coupling
constants x;.

@ The interaction is modelled in the rotating-wave approximation.

This amounts to neglecting terms of the form af or &/fT, which are
energy non-conserving.
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Master equation for a cavity mode driven by thermal light

@ Consider a ring cavity with the reservoir comprised of
travelling-wave modes that satisfy periodic boundary conditions at
z=-l'/2andz=1L'/2.

@ The (single) cavity mode, system S, couples to the reservoir
through a partially transmitting mirror at z = 0.

B /)
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The reservoir is taken to be in thermal equilibrium at temperature T, so

By = He hejtl i/ ks T (1 _ e—ﬁwj/kBT)
j

where kg is Boltzmann’s constant.

The interaction Hamiltonian corresponds to

- Q>

1

W

Sp =
j
and in the interaction picture

atats —iw.ats aA ~ At
S1(t) _ elwca atae iwcal at — 3e Iwct’ 2(t) — a’[elwct

F1(t) =F1(t) Zw* Wit Ta(t) =T(t) =D kihe !
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The master equation in the Born approximation is then

) = —/Otdt’ {[éép”(t’) — ap(t')a] e et ([ET (1) ()R + h.c.
+[afa (') — af p(t')al] e« (n)F(t'))r + h.c.

+ [aalA(t )—a*”(t’ )8 e~ F ()R + hec.

+ [aTap(t) — ap(t')al] eI (F(OF ()R + h.c.}

where the reservoir correlation functions are explicitly:

(O (YR = FOF()r=0
FOFENR = D InlPe DAy, T)
j

(AT 2 4—iwj(t—t') 17
FOF YR = Y InPe ™D [A(w;, T) +1]
)
ith 7 T T B 37 e fwi/keT 1
wit n(wj’ ) B rR( Or/' rj) = 1 — e~ hwj/ksT = ehwj/keT _ A
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Markov approximation

@ To estimate the reservoir correlation time, take x(w) ~ constant
and consider the frequency dependence of n(w, T).

@ Because of the factor e*we™ multiplying the reservoir correlation
functions in 5(t), it is really only the w ~ w; part of the frequency
range that is important.

@ Can therefore estimate the reservoir correlation time by extending
the frequency integrals to —oo [with n(w, T) — A(|w|, T)].

@ One then has a Fourier transform and the correlation time is given
by the inverse width h/kgT of the function n(|w|, T).

@ At room temperature this gives a number of the order of
0.25 x 10~ "3sec < time scale for significant changes in j
(a typical decay time for an optical cavity mode ~ 10~8sec).
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Integral representation

Introduce a density of states g(w), such that g(w)dw = number of
oscillators with frequencies in the interval (w,w + dw). For the 1-d
reservoir field we are considering,

9(w) = L'/(2mc)

Defining 7 = t — t/, we can then write the reservoir correlation
functions in integral form as

(FIOF(E—r)r = /0 " 4 7 g(w) () BA(w, T)
FOF(E-)m = /0 " dw e g(w) r(w) P [A(w, T) +1]
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So, we can replace j(t — 7) by 4(t) in the integrals. Then
f=a (éﬁaf _ éTé,a) +8 (éﬁéﬂ taltpa—atas - 5&&*) fhe.

where j = j(t), with

t [e'e) .
a = / dr / dw e @) () |k (w) 2
0 0

t 0
_ T ) —i(w—we)T aealls 2 w,
ﬂ—/od/ode 9(w)|5(w) 2A(w, T)

@ Now, t is a time typical of the time scale for changes in g, while the
7 integration is dominated by much shorter times characterising
the decay of reservoir correlations.
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@ So, we can extend the 7 integration to infinity and use

P

We — W

t .
im0 / dr e @)™ — n§(w — we) 41
0

where P indicates the Cauchy principal value. This gives

a = ng(we)lk(we)l® +iA
B = 7g(we)lr(we)?Alwe) + 1A
with
@ Define
k= mg(we)lk(we)l?, A= A(we, T) J
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System Operator Expectation Values

@ Equations of motion for the expectation values of system
operators may be derived directly from the master equation.

@ For example, the evolution of the mean amplitude of the cavity
mode, (), is given by

(@ = Tr(ap)
= —iw,Tr(2a'ap — apa‘a) + x(n + 1) Tr(282pa" — 2a'ap — apa’a)
+ knTr(234' pa — 224 p — apaa’)
= —iw,Tr[(38" — &a'2)ap]) + k(A + 1) Tr[(a'a — 2a")ap]
+ kN Tr{a(2a" — a'a)p]
= —(r+iwvg)(@)

Hence, the mean amplitude decays at a rate «.
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We finally obtain our master equation:
i o= —in[ata g+ (2@;3&* ~atap - ﬁéﬁa)
+2nn (&pal + &' pa - &4y - jadl)
Transform back to the Schrédinger picture using

—il:lst/hﬁ eiHSt/h

PO
*ﬁ[H37p]+e

Master equation for a cavity mode driven by thermal light

p=—iwatan + m(h+1)(2éﬁé*—é*éﬁ paf)

+ kA (Zafpa aafp— paaf)

where w; = we + A.
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@ The mean number of quanta, (f) = (a'a), obeys the equation

(n) = —2xk((P) — )
with solution
(A(t)) = (P(0))e 2" + A(1 — e~21)

Thermal fluctuations are “fed” into the cavity from the reservoir;
the mean energy does not decay to zero but to the mean energy
for a harmonic oscillator with frequency w in thermal equilibrium
at temperature T.
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Correlation Functions: Quantum Regression Formula

Remaining with the example of a single (cavity) field mode, correlation
functions of particular interest are

GO(t,t+7)

(@(a(t+))
GO(t,t+7) ‘

XX

o (&N(t)al(t+7)at + 7)a(t))

@ The first-order correlation function is required for calculating the
spectrum of the field.

@ The second-order correlation function gives information about the
photon statistics (e.g., describes photon bunching or
antibunching).

@ Note that while we would normally associate a single mode with a
single frequency, here we are considering a mode defined in a
lossy optical cavity, which therefore has a finite linewidth.
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Quantum regression formula

In the Born-Markov approximation, one can derive the following formal
expressions for the two-time correlation functions (7 > 0):

(O1(1)0a(t+ 7)) =Trs { a(0)e" [3(1)01(0)] }

(On(t+7)0a(1)) = Trs { O1(0)e*" [3(1)02(0)] }

(O1(1)Oa(t +7)0s(1)) = Trs { Oa(0)6%™ [B3(0)2(1)01(0)] }
Note:

The 1st and 2nd equations are just special cases of the 3rd formula,
with either Oy or O3 set equal to the unit operator.
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Note:
The master equation for the reduced density operator 5 can be written
formally as

p=Lp
with formal solution j(t) = e~!5(0).

Here L is a generalised Liouvillian, or “superoperator”; £ operates on
operators rather than on states.

For the damped harmonic oscillator, the action of £ on an arbitrary
operator O is defined by
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Quantum regression formula for a complete set of operators

A more convenient form of the quantum regression theorem exists
which directly relates the equations of motion for two-time correlation
functions to the equations of motion for one-time averages of system
operators.

We assume that there exists a complete set of system operators /2\,“
uw=1,2,...,inthe sense that we can write

<’2\u> = TrS(’z\u/é) = Z M#,\<2\>\>
>\ ~

where the M,,, are constants. Thus, the expectation values (A,) obey
a coupled set of linear equations with the evolution matrix M defined by
the elements M,,,. In vector notation,

(A) = M(A)
where A is the column vector of operators {A,}.
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Using the formal expression of the quantum regression formula,

d

S OOA(+7)

Trs { A,(0) (£e“715(1)01(0)]) }
= > MuTrs {A(0) (7 [5(1)01(0)]) |
A

> M (01 (ANt + 7))
A

or C}‘IJ'—T<<§1(1‘)A(t+T)> = M(O;(DA(t + 7)) ‘

where @1 can be any system operator, not necessarily one of the /2\”.
Hence, for each operator O, the set of correlation functions

{(O (t)Z\M(t + 7))}, with 7 > 0, satisfies the same equations (as
functions of 7) as do the averages (A, (t + 7)).
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Correlation functions for the damped harmonic oscillator
For the mean oscillator amplitude we have

(@) = —(iwo + K)(2)
Then, with A; = &and O; = &, we may write

d%(é*(t)é(t +7)) = —(iwo + K)(&H (DAt + 7))

and thus

@fmat+7) = (a&i(t)at)) e lwotnr
0))e ™" + n(1 — e—2m)} o—(iwo+r)T

Il
—
—~
/\>

Scott Parkins (University of Auckland) Master Equation Methods | 29 September, 2008

Similarly, one can show (7 > 0)

and
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In the long-time (stationary) limit

(@ (DAt + 7))ss = im (& (1)&(t + 7)) = Ae~wotm)

lim
t—oo

The Fourier transform of this correlation function gives the spectrum of
the light at the cavity output, which is simply a Lorentzian with
full-width at half-maximum 2x.

Similarly, in the stationary limit
(a'(0)af(r)a()a(0)) = t&r&(é*(t)é*(t%—f)é(t%— T)a(t))
= P(1+e72)

This expression describes the photon bunching associated with
thermal light; at zero delay (= = 0) the correlation function has twice
the value it has for long delays (x7 > 1).
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Equivalent c-Number Equations

Glauber-Sudarshan representation

An operator master equation may be transformed to a c-number
equation using the Glauber-Sudarshan representation for j.

Consider again the damped harmonic oscillator:
b= —iwold'a, )+ k (22@@* —atap— ,aéfa)
+2nii (&pal + alpa - &lap - padl)
We substitute the diagonal representation for p,

5= / o [a)(a] P(a)
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Using the quasiprobability representations for the density operator
introduced earlier, the operator master equation can often be
converted into a c-number Fokker-Planck equation, for which
stationary and time-dependent solutions may sometimes be found.

Topics
@ Equivalent c-Number Equations
@ Stochastic Differential Equations
@ Limitations
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The action of the operators & and &' on |a)(«| (from both the right and
left) is replaced by multiplication by the complex variables o and o*,
and by the action of partial derivatives with respect to these variables.

This is achieved using 3|«) = ala), and the results

Tyl = o= (elFer 0)(0]e %) = (' ~ o) Ja)io
Dol = s (e e ]0)(0je”"?) = Ja) (ol (3~ a)
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da)(ald’ = ala)(ala® = |aff|a) (|
At a ~ 0
afala)ial = &ajo)(al =a (55 +a’) la)l
Oa
ATA * N * 6
la)(el@’a = |a){ala*a=«a +a | ) e
oa*
an 0 A 0
la)(a]2af = <8a* + a) la)(a]at = (% + o<> o|a)(a|
N 0 . 0 0
ala)(ald = (% + a*) |a) ()@= <% + a*> <8a* + a) |a) (e
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A sufficient condition for this equation to be satisfied is that the P
distribution obeys the equation of motion

oP 30 o) < + 2
e = (ff—i—lwo)%a‘*‘(“—'wo)%a + 260 aaaa*} P

This is the Fokker-Planck equation for the damped harmonic oscillator
in the P representation.
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Using these results, one finds

0
/ Pala) ol P(0, )
(e . 9 .. . 0 _ 02
_/d aP(a,t) [—(Fc—i—lwo)aa—a (k —iwo)ax Do +2xn Sado |a) (]

The partial derivatives that act on |a)(«| can be transferred to the
distribution P(«, t) by integrating by parts.

Assuming that P(«, t) vanishes sufficiently rapidly at infinity, we can
drop the boundary terms to obtain

/d2a|a>(a|%P(a, f)
2

[ i) 2 i) Lo
_/d ala){a| [(/{Jrlwo)a—aoﬂr(ﬁ Iwo)aa*a +2nnaaaa* P(a, t)
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Note:

When taking derivatives with respect to complex variables, it is
convenient to read the complex variable and its conjugate as two
independent variables. This is allowed because

0 (DN (2 0 iy (22 g
2" “\oar®) “2\ox "oy =s\ox*"ayY) ~
A similar approach is possible when integrating by parts. Explicitly, for

given functions f(a) and g(«) (whose product vanishes at infinity), one
can show that

[Fatt@)jloe) = - [ Fagla);-fa)

/dza f(oz)ai*g(oz) = —/dzag(a)ai* f(a)
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Properties of Fokker-Planck equations

A general Fokker-Planck Equation (FPE) in n variables may be written
in the form

&P“ Zax, 2Z;axaxD’f(x A0

i=1

@ The first derivative term determines the mean or deterministic
motion and is called the drift term; A = (A;) is the drift vector.

@ The second derivative term, provided its coefficient is positive

definite, will cause a broadening or diffusion of P(x, t) and is
called the diffusion term; D = (Dj) is the diffusion matrix.

Note: For a positive definite matrix M, the quadratic form z" Mz is
positive for all nontrivial z.
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Solutions of the FPE

In general, finding solutions for P(«, t) analytically is impossible, but in
certain situations steady state or even time-dependent solutions can
be found.

Example: Ornstein-Uhlenbeck process
In the case where the drift term is linear in the variable x and the
diffusion coefficient is a constant, i.e.,

Z Aim—(XiP)+ 5 Z D, 2P
! 2 = ”ax,ax
a solution to the FPE may be found. in particular, for initial condition
P(x,0) = 5("(x — x°) the solution is

P ) = g e & { >l (Dl = el - x,°e’“ff1}

—-2D

with O’,’j(t) A +A

{1 —expl(Ai+ A)] }
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The different role of the two terms may be seen in the equations of
motion for (xx) and (xxXx;):

%(XH = (Ak) ;jt (Xkx1) = (Xk A1) + (XAk) + %(Dkl + D)

We see that A, determines the motion of the mean amplitude whereas
Dy enters into the equation for the correlations.

Thus, from the FPE for the damped harmonic oscillator we have

%(a);: = —(k +iwg){a)p, :l‘ (o a)p = —2r(a*a)p + 2kN

which are equivalent to the equations of motion for (&) and (')
derived directly from the master equation.

Note that we define (a)p = [ d?a aP(a,t).
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For a cavity mode coupled to a thermal reservoir and initially in a
coherent state, i.e., P(a,0) = 6 (a — ag), the solution is

‘O{ _ aoef(n+iw0)t|2

1
P(a,t) = AT — o2 exp {— A(1 — e-2n1) }

The coherent amplitude decays away and fluctuations from the
reservoir cause its P function to assume a Gaussian form
characteristic of thermal noise.
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@ From the above solution we may construct solutions for all initial
conditions which have a non-singular P representation.

@ ltis not, however, possible to construct the solution for the
oscillator initially in, e.g., a squeezed state, since no non-singular
P function exists for such states.

@ Alternative methods of converting the operator master equation to
a c-number equation exist, based on the Q and Wigner functions,
which can be used, e.g., for initial squeezed states.
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A FPE of the form

P(xt Za Ai(x, t) + Z ,,xt) P(x, 1)

may be written in a completely equivalent form as the (Langevin)
equation

% — A, 1) + B(x, E(1)
where the matrix B(Xx, t) is defined by
B(x, )B(x,t)" = D(x, 1)

and E(t) are fluctuating forces with zero mean, i.e., (E;(f)) = 0, and
é-correlated in time, i.e., (E;(t)E;(t")) = 9;0(t — t').
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Stochastic Differential Equations

@ The FPE provides a dynamical description in terms of an evolving
probability distribution which determines the average quantities
that would be measured over an ensemble of experiments.

@ An alternative approach to calculating these averages is to find a
set of equations whose solutions generate trajectories in phase
space, representative of a single experiment.

@ Such trajectories must possess an irregular component modelling
processes that are not observed in microscopic detail, but which
manifest themselves macroscopically as sources of noise and
fluctuations.

@ These stochastic trajectories can be generated mathematically by
stochastic differential equations — equations of motion that contain
fluctuating source terms whose properties are defined
probabilistically.
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Example:
Consider the damped harmonic oscillator, coupled to a thermal
reservoir. The FPE is

2
W:K(aw 0 o pon O )p

ot Oa oo o dada*

This describes an Ornstein-Uhlenbeck process (linear drift, constant
diffusion). The diffusion matrix is

_(0 1
D2/<;n<1 0>

which may be factored as D = BB', where

a-ia( L })
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Hence, the equivalent stochastic differential equations are

S(a)=( 2 () evm( ) (o)

where n¢(t) and n»(t) are independent stochastic “forces” which satisfy
(ni(t)n;(t")) = 656(t — t'). These equations may be rewritten as

?10; = —ka + V2knn(t), ddozt = —kra* + V2knn*(1)
where 7(t) = 271/2[ny(t) + in1(t)] is a complex stochastic force term

= inq (t
satisfying (n(t)) = 0 and (n(t)n*(t')) = o(t — t').
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Note:
For systems where a P representation exists the following results for
normally-ordered time correlation functions may be proved:

GM(t,7) (&'t + 7)a(t)) = (a*(t + 7)a(t))
GA(t,r) = (@'(Dal(t+r)a(t+r)at) = (ot +7)Pla(t)?)

In these cases the measured correlation functions correspond to the
same correlation function for the variables in the P representation. For
non-normally-ordered correlation functions the result is not as simple.
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The formal solution for a(f) is
t
o(t) = a(0)e " + V2kh / dsn(s)e " (1=9)
0

from which it follows that

(a(1)) = (a(0))e™"
(a*(t)a(t)) = (a*(0)a(0))e~2 + A(1 — e~2)
{a(t)a(t)) = (" (H)a™(t)) = O

One can also show that
(a*()a(t + 7))ss = NE™"T

where 7 > 0 and ‘ss’ denotes the steady state.
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@ The approaches outlined above (using P, Q, and Wigner
representations) can provide a nice visualisation of quantum
fluctuations in certain cases, but in general they are limited.

@ In particular, the distributions may not satisfy a Fokker-Planck
equation, or may require system-size expansions (i.e., small noise
limits) in order to do so.

@ This precludes them from being applied to systems, such as those
encountered in cavity QED, where quantum fluctuations are large.

@ Alternative approaches, i.e., generalised P representations,

_ o [q2at 22 o 5 with (al) % o
_/d /d ol | Cael) with (al)” 7

extend the phase space to accommodate large quantum noise,
but can suffer from non-physical behaviour.
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Quantum Trajectories

@ This approach is not founded upon a particular representation of
the density operator.

@ It sets up a quantum stochastic process that is fully equivalent to
the master equation (plus the regression formula for correlation
functions).

@ It provides visualisable realisations (i.e., “trajectories”) of quantum
fluctuations.

@ It has a natural connection with (and formulation in terms of)
photoelectron counting measurements.
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Attempts to model quantum fluctuations using classical stochastic
processes generally fail or encounter problems when these fluctuations
are large. We now briefly outline an alternative approach, quantum
trajectories (or quantum Monte Carlo wave function simulations),
which provides a quantum stochastic process that is fully equivalent to
the master equation and thereby enables the modelling and study of
quantum optical systems exhibiting large quantum fluctuations.
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We aim to simulate a system described by the master equation
A TSR .
p=—IHs, Pl + Lp

with

where C is the system operator that appears in the coupling of the
system to the reservoir (for example, 3).

We assume that at time ¢ the system is in the state |¢(t)). The
evolution to the state at time t + §t occurs in two steps.

Scott Parkins (University of Auckland) Master Equation Methods I 29 September, 2008 4/8




@ Firstly, assuming small §t, |1 (t + &t)) is calculated according to

[t + o) = (1 - '”,;“”) 9(0)

with the non-Hermitian effective Hamiltonian
P = Fls — 3inC1&
Because Hgg is non-Hermitian, [¢1(t + 6t)) is not normalised, i.e.,
(P1(t+ o)y (t+ 0t))y =1 — of
with
81 = 3t L (w(0)] Bl — Flyli(1)) = 5t (1) &1 (1)) < 1

for small dt.
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Averaging over the two possible outcomes for the density operator
gives

[t +30) Wt +00)] o Clut)) (w(B)IC!
V1=6f V1 -6f \Jof/ot \/of/ot

= p(t) ~ 3t [, A()] + o L(a(D)

pt+0t) = (1-26f)

and taking the limit 6t — 0 we find

dp P4

— = ——[Hs, p o
ai = plHs: Al +Lp
which is just the master equation.

In the case where the initial state is not a pure state, one has first to
decompose it as a statistical mixture of pure states,

2(0) = > pilxi){xil, and then randomly choose the initial wave function
among the {|x;)} according to the probability distribution {p;}.
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@ Secondly, we test for the occurrence of a quantum jump
(corresponding, e.g., to a photon emission/detection event).

To decide whether such a jump occurs we choose a random
number, €, from a uniform distribution on the interval [0,1].

o If 6f < ¢ we deem no jump to occur and renormalise the state at
time t + dt:

it +ot) = F e

o If 6f > ¢, we deem a jump to occur and set

Clo)  _ Ep)
w(n|C1Clu() — Var/ot |

_ [t + o) ‘

[ (t+ dt)) =
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Damped cavity mode in initial Fock state |n = 9)

For a damped cavity mode we have
Fs=rnwa'a and C=+v2rk2

Given an initial state 5(0) = |9)(9|, the mean photon number in the
mode is given by (dashed line)

(A(t)) = &~2:4(A(0)) = 9e 2"

Mean Photon Number

Time
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Cavity Modes

We consider a single optical cavity mode coupled to an external,
one-dimensional (multimode) field. The total Hamiltonian is

’:I = ’:Isys + ’:Ires + ’:Iint

where Flsys is the free Hamiltonian for the intracavity field mode, Fres is
the free Hamiltonian for the external (or reservoir) field modes, and

Fhot = if [ Z dw () [21(w) - bl(w)3] }

with & and b(w) annihilation operators for the intracavity and external
field, respectively, satisfying commutation relations

[@&"=1, [bw) b()]=dw—u)

and x(w) a coupling constant.
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The master equation provides a means of computing the photon
statistics inside an optical cavity, but it is the field external to the cavity
that is ultimately measured. By treating the dynamics of the external
field explicitly (rather than eliminating it in the role of a passive heat
bath), one can derive relationships between the input, output, and
intracavity fields.

Topics

@ Cavity Modes
Linear Systems
Two-Time Correlation Functions
Spectrum of Squeezing
Parametric Amplifier
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Note:

The actual physical frequency limits in the integral are (0, o).
However, for high frequencies we may shift the integration to a
frequency Q characteristic of the system (e.g., the cavity resonance
frequency), and the integration limits become (—Q, c0). As Q is large,
extending the lower limit to —oco is a good approximation.
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The Heisenberg equation of motion for b(w) is
lA)(w) = —iwb(w) + K(w)a ‘

A formal solution may be written in terms of initial (fy) or final (t;)
conditions (i.e., input or output):
. ~ t H AWN
bw,t) = e WI0p(w )+ k(w) [ dtf e “EDar), th<t

L)

. R t . 1\ A
e"‘*’(t_“)b(w, t1) _ n(w)/ dat’ e—lw(t—t )a(t/) , <t
t
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We now assume that x(w) is independent of frequency over a band of
frequencies about the cavity mode frequency, i.e., we set

k(w)? = k/m
Then, using [°°_dwe w(=) = 275(t — t'), we can derive
&(t) = —(i/ (A1), Fisys] — va(1) + V26 &in(t)

where we define the input field operator

an(t) = \;217/ dw e w0 b(w, )

which satisfies [&n(t), & (t)] = o(t — t').

This is a quantum Langevin equation for the damped amplitude &(t) in
which the (quantum) noise term appears explicitly as the input field.
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We can substitute one of these solutions for b(w, t) into the equation of
motion for the system operator 3, i.e.,

at) = —ih[é(t),lflsys]— /oo dw k(w)b(w, )
= —1a(0), el - / do r{w)e Db, )

/ du.)li dtl —iw(t—t") 2 (tl)
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We can also substitute for B(w, t) in terms of the output field (time ),
which leads to

a(t) = —(i/n)[a(t), Heys] + ra(t) — V25 Zou(t)

with the output field operator defined by

out(t) = \15 / dw e W=t p(w, t)
™ J—00

which satisfies [Gou(t), &), ()] = d(t — t).
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Define the Fourier transform

Input-output relation 1 00 _ .
- - ———— at) = [ doet0aw) and aw)=| 2
A relation between the external fields and the intracavity field may be Vor oo al(w)

obtained by equating the two expressions for a(t), which gives
where af(w) is the Fourier transform of &f(t).

aout(t) + ain(t) = v2r a(t
sl sl walt) In the Fourier-transformed space, the equations of motion become
This is a boundary condition relating each of the far-field amplitudes . R A

outside the cavity to the internal cavity field. [A+ (iw — ) | &(w) = —V2k8in(w)

where | is the identity matrix. Using the input-output relation to

Note: . . .
It is important to note that “interference” terms like, e.g., (a(t)ain(t)) eliminate the internal mode, we obtain
and (af(t)ai(t')), may contribute to observed output field moments. ~ . . 1.
&' (han(t)) y P Aout(w) = — [A + (iw + ) I [A + (iw — &) 17" & (w) J
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Linear Systems

The only source of loss in the cavity is through the mirror which

For many systems of interest, the Heisenberg equations may be linear: couples the input and output fields.
9 a(t) = A&(1) — kA1) + V25 An(t) a_
dt | a -«—
>
where T a.
out
R at R an(t
aw=| 5] w0=|0] : o 0
n Hsys = h{doéTé SO A = < v . )

K+ i(w — wp) i ()

and  Agut(w) = K — i(w — wp)

Hence, there is a frequency dependent phase shift between the output
and input.
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Two-Time Correlation Functions

If we integrate b(w, t) over frequency we obtain

. . 1 > -
an(t) = V280~ 7= [ du bl
Let &(t) be any system operator. Then
[&(t), V2K an(t)] = x[&(t), &(1)]

since [&(t), b(w, t)] = 0. Now, since &(t) can only be a function of
an(t') for earlier times ' < t (due to causality), and the input field
operators must commute at different times, we have

[&(t), V2K an(t)] =0, t >t
Similarly,

[6(t), V2r Zou(t)] =0, t <t
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@ For coherent or vacuum inputs to the cavity, it is now possible to
express correlation functions of the output field entirely in terms of
those of the internal mode.

@ In particular, for inputs of this sort, moments of the form
(8,12 (1), (A(D)an(t"), (@(t)an(t)), and (&L(1)a!(t")
factorise, and, defining (u, v) = (uv) — (u){v), we find

(& (1), Bou(t)) = 2k(&1 (1), &(t'))
and

(Gout(t), &out(t')) = 2r(&(max[t, 1), &(min(t, )
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Using this result and the input-output relation, we then have
[6(1), V2k &in(t)] = 26 [&(1), a(t)], t <t
or, in general,
[&(1), V2r &n(1)] = 2x6(t — t)[E(t), &()]
where 6(t) is the step function:

1 t>0
ot)y=< 1/2 t=0
0 t<O0
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Spectrum of Squeezing

The output field from a cavity is a continuum of frequencies. One
defines the intensity spectrum of this field as the Fourier transform of
the phase-independent correlation function <égut(t), Aout(t))-

Similarly, the squeezing spectrum can be defined as the Fourier
transform of an appropriate phase-dependent correlation function, and
it gives the squeezing in the frequency components of an appropriate
quadrature phase operator.

We define the output field quadrature phase operators as

X = (e + aly(1)e? )
)A(zout(t) — i éout(t)e—i(e—ﬂt)_é:r)m(t)ei(e—ﬂt)

where Q is the reference frequency (typically the cavity frequency) and
6 the reference phase.
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The squeezing spectrum is defined as the FourierAtransfo[m of the
normally-ordered two-time correlation function (: X°U(t), X°U(0) :),

SR = [t (K. 50 et
_ 2n/dtT(: (1), X(0) :) et
where 7 denotes time ordering and we have used the input-output

relations to express the output correlation function in terms of the
intracavity quadrature phase operators,

Xi(t) = a(te ? + af (1)e",  Xo(t) = —i[a(t)e " — af(t)e]

where &(t), &f(t) are defined in a frame rotating at frequency Q.
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The Heisenberg equations of motion for a are linear, and, in a frame
rotating at frequency wq, the matrix A is given by

A_| ® €
B

The Fourier components of the output field are found to be

1

Four(w) = (k —iw)?

e { (4 ) dnfo) + 2endl -} |
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Parametric Amplifier

We now compute the squeezing spectrum from the output of a
parametric amplifier.

vacuum

input a
pump
< ai—————*--————e——
squeezed
output a,

nonlinear crystal

Treating the pump field (of frequency 2wy) classically, we can write
Hsys hwoaTa + (Ih/2) [ee 2|wot(a’r) E*eZiwotéz J

where ¢ = |e|e”.
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Defining the quadrature operators in this case by

Bout(t) = (1/2)e®/2[XOU(¢) +iXSU(1)], the solution for Zout(w) can be
used directly to give the squeezing spectra (remember that w = 0
corresponds to the cavity resonance):

4k|e|
out _ . ut 0 —
S (w) = 1"’-8? (w)'_1+(n—|e|)2—|—w2
4k|e|
out _ . ut 4 _
S (w) = "’-Sg (w):=1 (H+|€|)2+w2

@ So, squeezing [S?U(w) < 1] occurs in the X, quadrature.

@ Perfect squeezing, S3"!(w) — 0, occurs at w = 0 in the limit
le| — k.
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Two-State Atoms

We consider an atom with two states, |1) and |2), having energies E;
and E> with £y < E,, between which radiative transitions are allowed.
Adopting these energy eigenstates as a basis for our two-level atom,
the unperturbed atomic Hamiltonian Fp can be written in the form

~

Ha = E[1)(1]+ E2[2)(2]
1 S
= 3B+ E)l+ (B~ Ey)oz

where 6, = [2)(2[ — [1)(1], and T=1)(1| +|2)(2] is the identity. The

first term in Ha is a constant which may be eliminated by referring the

atomic energies to the middle of the atomic transition. We then write
~ 1

HAIEMA6Z, uJAE(Ez—E1)/h
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The interaction between the quantised EM field and an atom
represents one of the most fundamental problems in quantum optics.
Real atoms have complicated energy level structures, but, in many
instances, only two atomic energy levels play a significant role in the
interaction with the EM field (due, e.g., to selection rules). So, it is
common in theoretical treatments to represent the atom by a quantum
system with only two energy eigenstates. Here we outline the
derivation of such models and consider some elementary, but
fundamentally interesting, properties and phenomena.

Topics

Two-State Atoms

Atom-Field Interaction

Spontaneous Decay of a Two-Level Atom

Resonance Fluorescence
Cavity Quantum Electrodynamics
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Consider now the dipole moment operator ef, where e is the electronic
charge and t is the coordinate operator for the bound electron:

2
e = e > (nffm)|n)m]
1

n,m=

= e((1[F12) [1)(2] + (2[f[1) [2)(1]) = d126 +d215+

where we have set (1]f|1) = (2|f|2) = 0 (assuming atomic states
whose symmetry guarantees zero permanent dipole moment), and we
have introduced the atomic dipole matrix elements

dio = e(1[f[2) = e/d3r¢;(r)r¢1(r), doy = (d1p)*

with ¢;(r) the (unperturbed) electron wave functions. We have also
introduced the atomic lowering and raising operators
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The matrix representations for the operators 6., 6_ and 5. are
. (1 0 ~. (00 ~ (0 1
2=\ o -1 )0 ““=(10) 2“7 \oo

We may also identify 6+ = (6x £ iy), where

(30 ()

The matrices 6x, 6y, and 5, are the Pauli spin matrices introduced
initially in the context of magnetic transitions in spin-1/2 systems.
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Atom-Field Interaction

Consider a two-level atom coupled to the EM field, represented as
usual by a collection of quantised harmonic oscillators. Within the
rotating-wave and dipole approximations, we write

FI:I:/A—FI:/F—FHAF

where
. 1. - At a
Han = EMAUZ’ HF:Zhwka;r()\akA
K\
I:IAF = Z h (H;)\é;r()\&_ T Iﬂo\ék)ﬁ+)
K.\
with
. Wk
= —i,/——uk(ra) -d
Kk 1/2h60 kx(ra) - d2y
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Properties of the spin operators

It is straightforward to show that

[64,6_] =62, [64,62] = F261, 646_+6-64=1
621y = —[1), 622)=2)
6-[1) =0, 6-12) = [1)
o1y = 12), 6+12)=0

For an atomic state specified by a density operator p, expectation
values of 6., 6_ and & are just matrix elements of the density
operator, and give the population difference (or inversion)

(62) = Tr(p62) = (21p2) — (11p[1) = paz — p11,

and the mean atomic polarisation

(ef) = dy2Tr(p6_) +doyTr(p5 1) = dy2p21 + do1p12
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Notes:

@ In the dipole approximation the field is assumed to be uniform over
the extent of the atom. In the optical regime this is valid because
the wavelength of light ~ 10nm >> raem ~ 0.1 nm.

@ The summation extends over field modes with wavevectors k and
polarisation states A (and corresponding frequencies wy).

@ The atom is positioned at ra, and uk,(ra) is a field mode function
at that point. In free space, for example,

1 .
Uiy (ra) = v ek

where &y, is the unit polarisation vector and V the quantisation
volume.

@ The interaction Hamiltonian FIAF follows from the familiar
expression —ef - E(rp) for the potential energy of a dipole in a field.
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Spontaneous Decay of a Two-Level Atom

The master equation for the reduced density operator p of a radiatively
damped two-level atom in free space is derived as

A N T o nn A A A A A
p o= —igwalbz, )l + 57(N+1)(26-p64 —646-p—p645-)
LN A A A A A
+57M(261p6- —6-64p— p5-6+)

where wj = wp +2A" + A, n = n(wa, T), and, in integral form,

v = 2772 / Bk g(K)|(k, \) Ro(ke — wa)
- gk ls(k, )P
A = ZP/d3 on— ko

A = ZP/d3 |"k2)|2 A(ke, T)

wA—
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The Einstein A coefficient

By performing the integration over wavevectors and summing over the
polarisations, one can show that

1 4u)Ad122

 4mey 3hcd

which is the Einstein A coefficient (as it must be).
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Notes:

@ The factor (v/2)(n + 1) contains a rate for spontaneous
transitions, independent of n, and a rate for stimulated transitions
induced by thermal photons, proportional to n.

@ The factor (v/2)n gives a rate for absorptive transitions which take
thermal photons from the equilibrium EM field.

@ The quantity wy —wa = 2A’ + A describes the Lamb shift,
including a temperature-dependent contribution 2A’ that does not
appear for the harmonic oscillator. Its appearance here is a
consequence of the commutator [6_, 5] = —&, in place of the
corresponding [&, &' = 1.

@ Note, however, that the rotating-wave approximation we have
adopted does not in fact give the correct nonrelativistic result for
the Lamb shift. Actually, (wa — k¢)~" should be replaced with
(wa —ke) ™" + (wa + ko)
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Matrix element equations

From the master equation, we derive (using (4,) = Tr(6;5) and the
properties of the spin operators)

(62) = —v[(62)(2R+1) +1]
(6_) = —[%7(2?7+1)+iwA] (6_)

) = - g+ -in] (6

Notes:
@ We drop the distinction between wa and wj.

@ At optical frequencies and normal laboratory temperatures nis
negligible, so for simplicity we set n = 0 from now on.
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Correlation functions

To compute correlation functions we use the quantum regression
formula. Noting that 6.6 = (1/2)(1 + 6,), we may write the
mean-value equations in vector form:

(s) = M(s)
with
6 — 3y +iwa 0 0
s = b4 M= 0 — 3y +iwa O
6.6_ 0 0 —y

From the quantum regression theorem it follows that, for example,

Sostem) = Mip(0s(t+7)
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Using this, we can derive
GO(r ;1) = lo(r) (64 (F)5 (%))

where f =t — (r/c) and Iy(r) is a geometrical factor given by

2
lo(r) =

2
w r r
b (d X —) X —
4megC2r 1277 r

Neglecting r/c compared to t and T, and taking the limit T — oo
(i.e., counting time long compared to the spontaneous emission
lifetime 4~ ), the spectrum follows as

_Io(r) 1
S(w,r,00) = 027r (w—wa)?+ (7/2)?

This is the familiar Lorentzian lineshape of the Wigner-Weisskopf
theory, with halfwidth equal to /2.
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Spontaneous emission spectrum for an initially excited atom

The spectrum is defined in terms of the probability for photodetection
by a monochromatic detector a distance r from the source during an
interval T. For an optical frequency field and an ideal detector, the
spectrum is given by

T+r/c T+r/c .
S@Jjjzli/ dh/ dty 6=0GO(r, 1, 1)
2m r/c r/c

where  GU(r, ty;r, ) = (EL)(r, 1) - ECD(r, 1))

out out
with
wh
4menC2r

ECDr, 1) =ED(r, 1)

out

[@mx;)xH6;U—U@

This is the retarded field generated by a point dipole with the classical
dipole moment replaced by the atomic lowering operator 6_.
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Resonance Fluorescence

We now consider a two-level atom irradiated by a strong
monochromatic laser beam tuned to the atomic transition. Photons
may be absorbed from this beam and emitted to the many modes of
the vacuum electromagnetic field as fluorescent scattering.

As we will see, a two-level atom responds nonlinearly to increasing
laser intensity. The fluorescence spectrum acquires an incoherent
component having the natural linewidth ~. This incoherent spectrum
splits into a three-peaked structure (the Mollow triplet) and eventually
accounts for nearly all of the scattered intensity. The incoherent
spectral component arises from quantum fluctuations around the
nonequilibrium steady state established by the balance between
excitation and emission processes.
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Master equation for resonance fluorescence

The incident laser mode is in a highly excited state that is essentially
unaffected by its interaction with the single atom, so we can treat this
field as a classical driving force. The master equation is then

A

B . . .
po= —iswaldz, pl+i(Q/2)[e” N6, + "o, ]

1 A an A A A oA A
+57(26-p0+ — 546 = 646-p)

where Q = 2 (%) is the Rabi frequency.

Note:

The laser field at the site of the atom is E(t) = € 2E cos(wat + ¢),
where € is a unit polarisation vector, E is a real amplitude, and the
phase ¢ is chosen so that d = & - d1,e'? is also real.
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Steady state properties

The steady state probability for the atom to be in the excited state |2) is

1 . 1 y2 V2Q
PSS = 5(1 —+ <UZ>SS) = §‘|_|_7Y2 where Y = T
@ For weak driving (Y <« 1) the atom settles close to its lower level,
and we expect the behaviour of a classical electron oscillator.

@ For very intense illumination the atom becomes saturated, with
equal probability of being found in the upper and lower levels, i.e.,
1

lim P5° =~

YI—>oo 2
Thus the atom spends 1/2 of its time in the upper state where
spontaneous emission plays a significant role. Quantum
fluctuations therefore become important with intense illumination.
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Optical Bloch equations

From the master equation we obtain the optical Bloch equations with
radiative damping (so called for their relationship to the equations of a
spin-1/2 particle in a magnetic field), which, in a frame rotating at
frequency wa, take the form

1

6 = ~iQ/2)(62) - 32(6-)
62) = (9/2)(62) ~ 5254)
(32) = 19(5.) ~1245) ~1((52) +1)

@ In the solutions to these equations one sees the dynamics
separating into an initial transient regime followed by a saturation
steady state.

@ There is a threshold at Q = /4 below which the solutions are
monotonic functions of time and above which they exhibit
oscillations.
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Spectrum of fluorescent light

The fluorescence spectrum is defined by

Io(r) [ co .
S(w) = %/ dr €“7(6.(0)6_(7))ss
T —00

where (61(0)5_(7))ss = liM_00 (61 ()5 (t + 7)).
The spectrum decomposes into a coherent component (arising from
coherent scattering), and an incoherent component (arising from
quantum fluctuations):

S(w) = Scon(w) + Sinc(w)

The coherent component is

lo(r) [ i
Seon(w) = B [™ drelemnr ()05

1 Y?2

EIO(r)m §(w — wa)
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The incoherent component is
Snol) = B [ drel=enr (85 )25 (r)ss
™ —00
where AGL =64+ — (5':|:>ss.

To compute the incoherent spectrum we use the optical Bloch
equations and the quantum regression formula.
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Photon correlations

To examine photon correlations we need to evaluate the second-order
correlation function Ggg)(r), given in this particular case by

GE(r) = h(rP(6:(0)5.(7)5-(r)5_(0))ss
Using the quantum regression formula, we find
—1
d(r) = [im @] @)
3v/4

= 1—e /4 {cosh(Ar) + = sinh(Ar)

A
where A = /(v/4)? — Q2.
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The incoherent spectrum is a sum of three Lorentzian components.

@ In the strong-field limit, Y2 > 1 (iv)-(vi), where incoherent
scattering dominates, this gives the well-known Mollow, or Stark,
triplet, with the peaks located at w = wa and w = wp £ Q.

@ The peak at w = wa has a halfwidth of v/2, while the peaks at
w = wp £ Q have a halfwidth of 3v/4.
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Photon antibunching in resonance fluorescence: é?(O) =0

g (r) is plotted for increasing Y (i)-(iii):

20

(i)

@) /\
() 10 V V’\
(i)
0}
[ - ! i

0.0 4.0 8.0
yT

@ The fluorescent light exhibits photon antibunching due to the
quantum nature of the scattering. The detection of the first photon
“prepares” the atom in its ground state. Any subsequent emission
must begin with an excited atom, so there is a delay
corresponding to the time taken for the atom to be re-excited.
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Cavity Quantum Electrodynamics

The interaction of a single two-level atom with a single mode of the
electromagnetic field is the most fundamental of light-matter
interactions.

In the case that the field mode is on resonance vyith thAe atomic
transition we may write the Hamiltonian as H = Hy + H,, with

R 1 R o
Fo = hwa'a + Eﬁw&z, H = hg (6+a+ aT&_)

This form of the interaction is known as the Jaynes-Cummings model
(JCM).
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Dynamics: Atomic excited state probability

If the atom is initially in the excited state |2) and the field has exactly n
photons, the probability for the atom to be in the excited state with n
photons in the field at time ¢ is

Py(t) = |(n, 2]e /%0, 2)12 = cos?(Qt) = cos?(gv/n + 1 t)

This describes the Rabi nutation of the atom, with Q the Rabi
frequency.
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Energy level structure

Since [Fo, ] = 0, the eigenstates of A can be written as linear
combinations of the degenerate eigenstates of Hy, |n,2) and [n+ 1, 1),
where |n) are number states of the field mode. In a frame rotating at
frequency w, the Schrédinger equation is

At )= (a o) (e )

where Q = gvn+1.

112>~
The eigenvalues of this system are 21> TN 2
simply £/, with corresponding
eigenstates N =\

1
|n7:t>:_(|n72>:|:|n+171>) cavity |0,1:
2 photon

\
atomic state
number
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Quantum collapses and revivals

Consider now the case in which the field mode is initially in a coherent
state n
—glaf2NyT @
o) = e7t23 e I

If the atom is initially in the excited state |2), then the probability for the
atom to be found in the excited state at time t is given by the
Poissonian-weighted sum

1 e—|oz\2 al2n
Po(t) = 5 1+ > + cos (Zg\/n-|-1 t)
n

Due to the Poisson distribution of the photon number, there is a spread
in the Rabi frequencies (An ~ (n)'/?2 = |a|). Consequently, the Rabi
nutation will collapse after a certain number of oscillations due to
destructive interference between the various cosine functions.
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An approximate result valid for times t < |a|/g is

Pa(t) ~ % {1 +cos <29\/mt) P [_%} }

which shows that the Rabi oscillations occur under a Gaussian
envelope. The characteristic time for the oscillation collapse is (for
|2 >> 1) teoliapse ~ 97", and the number of observed oscillations
before the collapse is ~ |a].
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@ The existence of periodic revivals is due to the discreteness of the
sum over number states. This discrete character ensures that
after some finite time the oscillating terms almost come back in
phase with each other and restore the coherent oscillations.

@ The rephasing is not perfect as the frequencies are irrational and
thus incommensurate.

@ The revivals may be considered as a pure quantum effect resulting
from the discreteness of the harmonic oscillator spectrum.
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A more accurate evaluation of the expression reveals a partial revival
of the initial oscillations after a time

27

trevival ~ E |a|

Thus a quasi-periodic burst of Rabi oscillations occurs after
approximately |a|? Rabi periods.

1
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Quantum Rabi Oscillation: A Direct Test of Field Quantization in a Cavity
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Dissipative cavity QED

To include cavity loss and atomic spontaneous emission we model the
atom-cavity system with the master equation

A

1 a A . At A A . A ~ At A A
p o= —igwaldzp] —iwcla'a, p] —igloa+ &5, 7]

1 A nn an A A A A
+57(20-p64 — p646- — 616-P)

tk (23;3@* _pata— éTéﬁ)

Assuming wa = wg, the equations of motion for the mean atomic
polarisation and cavity mode amplitude are (in a frame rotating at
frequency w¢)

(5.) = —1/2(6-)+ig(#:
& = —x@-ig-)
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Normal-Mode Spectroscopy of a Single-Bound-Atom-Cavity System
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If the system is only weakly excited (e.g., by a weak probe laser driving
the cavity mode), then the atom remains close to the ground state and
we may set (5,3) ~ (5,)(8) ~ —(a). The equations of motion for (5_)
and (&) then describe coupled oscillators.

Normal modes

If the atom-field coupling strength is much larger than the dissipative
rates, i.e., g > &, ~, then the normal modes of the coupled atomic and
cavity oscillators have frequencies w¢ + g (corresponding to the first
two excited states of the JCM) and decay at a rate (1/2)(x + v/2).

@ Under these conditions, the transmission spectrum of a weak
probe laser through the cavity shows resonances of width « + /2
(FWHM) at the frequencies w¢ + g.

@ This is known as the vacuum Rabi splitting.
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“Bad cavity limit”: cavity-enhanced spontaneous emission

The so-called “bad cavity limit” corresponds to the situation where

k> g,7. In this case, the cavity amplitude evolves much more rapidly
than the atomic polarisation, such that we may set (2) ~ 0 and write

(8) ~ —ig(6-)/x

Assuming weak excitation of the system and substituting this
expression into the equation for (5_) gives

where C = g?/x~ is the spontaneous emission enhancement factor.

_ 2
62) = - (w2+ L)) =-J0+20)6-)

Scott Parkins (University of Auckland) Interaction of Radiation with Atoms

29 September, 2008
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Cavity QED: Quantum Control with Single Atoms
and Single Photons

Scott Parkins
2 October 2008
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Outline

Quantum networks

Cavity QED

- Strong coupling cavity QED

- Network operations enabled by cavity QED

Microtoroidal resonators and cold atoms
- Cavity QED with microtoroids

- Observation of strong coupling

- The “bad cavity” regime

- A photon turnstile dynamically requlated * 1T T }[
by one atom N T g@ﬂ&ﬂﬁh—q

< i

- Future possibilities %lﬁ

R |

Quantum Networks

Quantum node:
generation, - Quantum channel:
processing, & storage transfer &
of quantum » - I distribution of

Y

information (states) quantum
entanglement

Matter, e.g., atoms (quantum
information stored in internal,
electronic states)

Light, e.g., single photons
(quantum information stored

Matter-light in photon number or
polarisation states)

interface

Require deterministic, reversible quantum state transfer between
material system and light field

H.J. Kimble, “The quantum internet,” Nature 453, 1023 (2008)
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Cavity Quantum Electrodynamics (Cavity QED)

K Atom-cavity  m_ o ata+wm. oo
VAV interaction cav atom
Hamiltonian + g(a+()'_ + 0+a)
2> :
ot o 2-level atom [1,2> _/_
u 1> 21> TN W
g ~UuykE 02> ____—
Uy, - atomic transition dipole |1 1> v
moment
E - electric field per photon
cavity [0,1>
E = hwcav/z‘go‘/mode phofon /

N ‘
atomic state
number ‘
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Strong Coupling Cavity QED

Strong dipole transition in optical

K cavity of small mode volume, high finesse
g >> K,y
Coherent dynamics dominant
y - atomic spontaneous over dissipative processes
emission rate
k- cavity field decay @
rate

® Nonlinear optics with single photons
e Strong single-atom effects

on cavity response
e Controllable manipulation of

quantum states

N

Network Operations Enabled by Cavity QED

(i) Quantum State Transfer: Atom <> Field
o T. Wilk et al., Science 317, 488 (2007) (expt)
e A.D. Boozer et al.,

Phys. Rev. Lett. 98, 193601 (2007) (expt)

(ii) Quantum State Transfer: Node <> Node P
e J.I. Cirac et al., ot/

N0+
Phys. Rev. Lett. 78, 3221 (1997) (theory) l’:’
Q1)
(iii) Conditional Quantum Dynamics 1“ . )
e L.-M. Duan & H.J. Kimble, qf\ ‘lf—\ 1
Phys. Rev. Lett. 92, 127902 (2004) ( A TR k

(theory) i )/;\ N 3

N

Experimental Cavity QED With Cold Atoms

Cavity QED with cold neutral atoms (Fabry-Perot resonators)
e H.J. Kimble (Caltech)

® G. Rempe (MPQ, Garching)

® M. Chapman (Georgia Tech)

e D. Stamper-Kurn (Berkeley) Detector
® D. Meschede (Bonn)
e L. Orozco (Maryland)

Cavity Mirror Hor

Optical Lattice

Tvpicall g/2m ~ few x10 MHz
P kj2m ~ few MHZ (Q~10°)

uuhmel;aBeam
Cavity QED with trapped ions

e R. Blatt (Innsbruck)

® W. Lange (Sussex)

® C. Monroe (Maryland)

® M. Chapman (Georgia Tech)

Y 4

New Architectures: Optical Microcavities

K.J. Vahala, “Optical microcavities,” Nature 424, 839 (2003)

Pump wave Fibre-taper A
\ Pump wave .

waveguide

whispering
gallery orbit

Emission wave

T

silica
microsphere

e Lithographically fabricated
e Integrable with atom chips,
scalable networks

Defect region
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Microtoroidal Resonators + Fiber Tapers

S.M. Spillane, T.J. Kippenberg, 0.J. Painter, & K.J. Vahala, “Ideality in a
fiber-taper-coupled microresonator system for application to cavity quantum
electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003)

Silica toroid

® Coupling through evanescent
fields

® 99.97%
fiber-taper to microtoroid
coupling efficiency!

Optical wave

® Readily integrated into
quantum networks

Silicon post

—— |42.5um

Fibre-taper
waveguide

® Ultrahigh Q-factors and
small mode volumes

y

N

Projected Cavity QED Parameters

S.M. Spillane, T.J. Kippenberg, K.J. Vahala, W. Goh, E. Wilcut, & H.J. Kimble,
“Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,”
Phys. Rev. A 71, 013817 (2005)

Microtoroid of major diameter 10-20 microns:
near surface
g/2m ~few x100MHz <~ o4 ot
K,/2m <1MHz (Q~10%°)

Q

Microtoroidal Resonator - Critical Coupling

Output fields

aoul = _ain + V2Kex a

bout = _bin + 2Kex b

"
)
out “out
Dout 7;: =TT\
<ainain>
Critical coupling condition . s
cr 2 2 L ;-ar"
K, =K, =K +h a il
—-0) = J
= T;J(AC = 0) =0 \‘\ o .rj
L
(destructive interference in Yo/
forward direction) S i 2
i)~ vl [MHz]

-

Q

g,

2
o

Microtoroidal Resonators + Cold Atoms

oR;
O,
r0m

Quantum Optics

~10" atoms

® Atoms couple to evanescent field of whispering gallery modes,
“disrupt” critical coupling condition




Microtoroid Cavity QED - Basic Parameters

input/output
a coupling .
it X i,
—(} < - ® Mode-mode
coupling &
h | b ut
n |' mtrinsic N "
(@  lossrae Y ® Atom-field
\ i 1 "
\_J coupling
tw ikx
g‘w(r,x) =8 (r)e
X -
atom g(‘)w(r) o G

H=A, 00"+ Ac(a*a + b*b)
+ + * e . odl
+ h(a b+b a)+ (Epa+ Ea ) Probe field driving,
frequency o,

+ (gl*wa*a’ + glwcr*a) + (glwb*cr’ + gfwa*b)

(AA=a)A—wp, Ac=wc—wp) ‘

N

Normal Mode Picture

1 1
Define normal mode operators: A=—(a+b), B=—(a-b
P Fz( ) FZ( )

H=A,0'0" +(Aq.+h)A*A+(Ac.-h)B*B
1 & + +
+E[EP(A+ B)+E, (A" +B")|
+ 8, (A*a‘ + a"A) - igB(B*a’ - a"B)
84 =8 Cos(kx) 8= ﬁgéw 85 =8 sin(kx)

Normal modes <> standing waves around circumference of toroid

4

Microtoroid Cavity QED

R |

Level structure (vacuum Rabi splitting) Earvrard (a30,)
T, =12/
e transmission | " (a;a,)

\/ NV

Im{3. } [MHz]

25 50 75

0 as0 00 s o s w0 w0 u /',J: ,:/3——'— —
Atom-cavity detuning A, st \/ /. N\ / \/
o 3 0 2 ) 25 50 75
/ A
B £ e Probe field detuning
no atom (Axc=0)
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Microtoroid Cavity QED

"
(@30
T=4
(aha)
- - [e] 0.2
-3 w
i
0.1
Ty
0.4
0

150

200 N
200 150 100 50 0 5 100 150 200

Atom-cavity detuning A,

- Empty cavity resonance

Can use dependence of
T on A, to determine g,

Dressed state #2 (Atom-assaciated)
Dressed state #3 (Uneouplad' optical mode)
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Observation of Strong Coupling

(o]
onvReO®d

15 20 25 30 35
t [ms]

G=

FW signal

(C=6)

Ko =2m-18 MHz
y, =2m-2.6 MHz

& =2m-50 MHz > {

T. Aoki, B. Dayan, E. Wilcut, W.P. Bowen, SP, T.J. Kippenberg, K.J.
Vahala & H.J. Kimble, Nature 443, 671 (2006)

Effect of Increasing Cavity Loss

cr 2 2
Ko =K+ Ko =K, + whci +h ‘

Vacuum Rabi
splitting

o J
-300 -200 -100 0 100 200 300

ok H : L J
—300 200 -100 0 100 200 300

Cavity-enhanced
<. _a> atomic
-. .2 spontaneous

- - ) emission

-300 -200 -100 0 100 200 300

4

“Bad Cavity” Regime

K = 27165 MHz >>

(Caltech ‘07)

g0 =2m-70 MHz
y, =2m-2.6 MHz

® Theory: Adiabatic elimination of cavity modes
e Effective master equation for atomic density matrix:

. d ro, . . .
Pa =_1|:HA’pA:|+E(20 PO —0 O Py —PyO 0 )

H,=A,0'0" + (Qoo+ + Q;‘,G')

® Cavity-enhanced atomic spontaneous emission rate

2 0
I“~y+K;g0=y(1+2C), C=Kg° o single-atom
ot ot/ “cooperativity”

parameter I

R |

Output Fields: Bad Cavity Regime

Ay =—0;, ++2K, a — 0, +a0.
bom = _bln + VZKex b — ﬁo + ﬁ—a—

o
{/3’0} = coherent amplitudes without atom
0




Forward
. Zj Different
02 ‘ azimuthal

S0 w0 w0 e pOSH’iOnS X

Spectra

g\ [2r = 50 MHz
(k1Ko ) /27w = (75,90) MHz
h/2m = 50 MHz

Central atomic resonance,
width = T

A Photon "

Turnstile”

Bad cavity  Gouw 0+ GO
reglme boul g ﬁ() + /3707

® Critical coupling: ay(A-=0) =0,

® “Ist’ photon transmitted into a,,

Bo(Be =~ 0) %0

can only originate from atom

e Emission projects atom into ground state

¢ “2nd’ photon cannot be transmitted until atomic

state regresses to steady-state, time scale 1/T’ .«mc‘ U/)\ ’

= excess photons ‘rerouted’ to

b

out

Microtoroid-atom system only transmits photons in the
forward direction one-at-a-time

Note: Other photon turnstile devices

e.g.

e J. Kim, O. Benson, H. Kan, & Y. Yamamoto, “A single-photon turnstile
device,” Nature 397, 500 (1999) (semiconductor)

e K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, & H.J. Kimble,
“Photon blockade in an optical cavity with one trapped atom,”
Nature 436, 87 (2005)

Blockade a structural effect due to anharmonicity of energy
spectrum for multiple excitations

Microtoroid-atom system: blockade regulated dynamically by
conditional state of one atom
— efficient mechanism, insensitive o many experimental imperfections
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Signatures: Intensity Correlation Functions
+\2 2 +\2
w \@)a) . {ba)B)|  (probabilities of “simultaneous”
S <a§maou.>z B <b§u.bm>z photon detections)
3
2.5 25
2 2
3 3
S 1.5, S 15
1 1
0.5 05
—800 —160 0 100 200 -200 -100 0 100 200
A [MHz] A [MHz]
antibunching bunching
at A =0 at A =0

() )=o) =0 y




Experiment (Caltech '07)

20 E) £

25
t [ms]

® Cross correlation &,(7) T
e £,(0>&,(0) a prima facie e
observation of nonclassical =

Observation of Antibunching/Turnstile Effect

® Analysis of single and joint detections at D,, conditioned on
single atom transit

gif)(r) ~ (1 _e’r’/z)z, /T =28ns (C ~ 5)‘

15

“Blockade” effect
robust, e.g., requires
only )

24(F)

—>1
KIOI)/

-60 -40 -20 o 20 40 60
t[ns]

Dayan, Parkins, Aoki, Kimble, Ostby & Vahala, “A Photon Turnstile Dynamically
Regulated by One Atom,” Science 319, 1062 (2008) l

In the Future ...

® Minimise intrinsic losses [I

K, << K, T 0 I /
| /2
® Large mode-mode coupling % A //

0
-400 -200 0 200 400

! Cc ’\7/ \\
/ I\
. ‘ \

T4)

=> Near-ideal input/output

=
=, 05
-
|
Atom 0 1
-400 -200 0 200 400
3
D |
g 2 ‘
. |
= B s ol |

0 v
-400 =200 0 200 400

A [MHz] ‘
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Microtoroid + Atom: Over-Coupled Regime

Bad cavity Ay >0y + 0O

regime by, —> By +B.0
® Strong over-coupling: k,,>>h, K, (K =K,,)
® No atom (o= f3.=0): strong transmission, small reflection (3,= 0)
® With atom: destructive interference between oand a_ o~

= strong reflection, small transmission

@® atom l




A

Spectra and Correlations: Over-Coupled Regime

Transmission

Reflection

08 08 / tot
_oe 06 { /
= &=
04 04 1
—400 -200 o 200 400 -400 -200 L] 200 400 gz
C~-20>>1
2, Kl()l‘y
15 Single atom
A cooperativity
0s 1
0.8
400 200 o 200 400 400 200 00 400
A= 0 A =0 0

antibunching in reflected field

y

Single Photon “Transistor”

D.E.Chang, A.S. Sorensen, E.A. Demler, & M.D. Lukin, “A single-photon transistor

using nanoscale surface plasmons,” Nature Physics 3, 807 (2007)

— )

‘Surface-plasmon-fmitter coupling

0

—0)

A

Transmited

_ )

=

Reflcted

18)

Transmitted

N

... and beyond

® Controlled interactions of single-photon pulses
e Trapping of atoms close to toroid
® Multiple toroid+atom systems

— Spin networks

— Scalable quantum information processing on atom chips

Microdisk-Quantum Dot Systems

K. Srinivasan & O. Painter, “Linear and nonlinear optical spectroscopy of a
strongly coupled microdisk-quantum dot system,” Nature 450, 862 (2007)
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