

www.kit.edu

An introduction to NMR Hyperpolarization

The struggle towards higher NMR sensitivity

Dr. Sören Lehmkuhl soeren.lehmkuhl@kit.edu

Dr. Mazin Jouda, Dr. Vlad Badilita, Dr. Sören Lehmkuhl, Prof. Jürgen Brandner

How to increase sensitivity?

Physics

Chemistry

Engineering

The NMR signal

NMR sensitivity

Most important: signal to noise ratio (SNR)

Other factors:

- high homogeneity (e.g. for spectral or spatial resolution) high gradient strenghts (e.g in MRI)
- Noise reduction: (e.g. Johnsson noise)
- sensitive coils (*B*₁ field)

$$SNR = \frac{S}{N} \sim \sqrt{t}$$

Is there another way to get more signal?

How to increase an NMR signal:

Concentration Abundance

Polarization

Gyromagnetic ratio Temperature Magnetic field Hyperpolarization

DNP SEOP PHIP

Zeemann splitting

Standard NMR

Zeeman splitting

at thermal equilibrium Boltzmann distribution

Energy difference between the two spin states: $1.6 \times 10^{-4} \text{ kJ mol}^{-1}$

 \rightarrow population difference of 1 : 31000 for 9.4 T at 300K

Hyperpolarization

NMR signal

• In the simple case of $I=\frac{1}{2}$ the resulting magnetization is

$$M = \frac{\hbar}{2} N \gamma P \qquad P = \frac{N_+ - N_-}{N_+ + N_-}$$

• Ratios between populations of successive magnetic energy levels

$$\frac{N_m}{N_{m+1}} = \exp\left(\frac{\gamma \hbar B_0}{kT}\right)$$

• At high temperatures (T > 1K) and average fields (1-10 Tesla):

$$M = \frac{N\gamma\hbar}{2} \left(\frac{1 + \frac{\gamma\hbar B_0}{2kT} - 1 + \frac{\gamma\hbar B_0}{2kT}}{1 + \frac{\gamma\hbar B_0}{2kT} + 1 - \frac{\gamma\hbar B_0}{2kT}} \right) = \frac{N}{4} \gamma^2 \hbar^2 \frac{B_0}{kT}$$

NMR signal

• In the simple case of $I=\frac{1}{2}$ the resulting magnetization is

$$M = \frac{\hbar}{2} N \gamma \mathbf{P} \qquad \mathbf{P} = \frac{\mathbf{N}_{+} - \mathbf{N}_{-}}{\mathbf{N}_{+} + \mathbf{N}_{-}}$$

• Ratios between populations of successive magnetic energy levels

$$\frac{N_m}{N_{m+1}} = \exp\left(\frac{\gamma \hbar B_0}{kT}\right)$$

• At high temperatures (T > 1K) and average fields (1-10 Tesla):

$$M = \frac{N\gamma\hbar}{2} \left(\frac{1 + \frac{\gamma\hbar B_0}{2kT} - 1 + \frac{\gamma\hbar B_0}{2kT}}{1 + \frac{\gamma\hbar B_0}{2kT} + 1 - \frac{\gamma\hbar B_0}{2kT}} \right) = \frac{N}{4} \gamma^2 \hbar^2 \frac{B_0}{kT}$$

NMR Hyperpolarization

- Brute Force NMR
 - Very low temperatures
 - Very high fields
- Dynamic nuclear polarisation (DNP)
- Spin-exchange optical pumping (SEOP)
- Parahydrogen induced polarisation (PHIP)

Nuclear Spin Polarization

Temperature and Field Dependence

Substance	boiling T	melting T	Latent heat	Price	
	(P=1 bar)	(P=1 bar)	kJ/liter	\$ / liter	
H ₂ O	373.15	273.15	2252		
Xe	165.1	161.3	303		
O ₂	90.2	54.4	245		
N ₂	77.4	63.3	160	0.3	
H ₂	20.3	14.0	31.8		\vdash
⁴ He	4.21		2.56	4	
³ He	3.19		0.48	5x104	

the cooling power diminishes rapidly with decreasing *T*

P , torr	10-4	10 ⁻³	10 ⁻²	10 ⁻¹	1	10	100
<i>T</i> (⁴He), K	0.56	0.66	0.79	0.98	1.27	1.74	2.64
<i>Т</i> (³ Не), К	0.23	0.28	0.36	0.47	0.66	1.03	1.79

Historical Development of Refrigeration

Nuclear Spin Polarization

Temperature and Field Dependence

Bruker Aeon 1 GHz magnet

Bruker Aeon 1 GHz magnet Installed at the University of Bayreuth B0 = 23.5 Tesla P/P0 = 2

	Series Connected Hybrid Magnet	45 Tesla Hybrid Magnet	900 MHz Ultra- Wide Bore NMR Magnet
Frequency	1.5 GHz	n/a	900 MHz
Field strength	36 tesla	45 tesla	21.1 tesla
Bore size	40 mm	32 mm	105 mm
Field Homogeneity	1 part per million	150 part per million	0.001 part per million
Year completed	2016	1999	2004
Cost	\$18.7 million	\$14.4 million	\$16 million

MagLab Magnets

	Series Connected Hybrid Magnet	45 Tesla Hybrid Magnet	900 MHz Ultra- Wide Bore NMR Magnet
Height	3.6 meters (11.8 feet)	6.7 meters (22 feet)	About 5 meters (16 feet)
Weight	30,000 kg (33 tons)	31,752 kg (35 tons)	13,600 kg (15 tons)
Type of magnet	Resistive- superconducting hybrid (coils connected in series)	Resistive- superconducting hybrid (coils connected in paraliei)	Superconducting
Cost to operate at full field	\$678 /hour	\$1,452 /hour	\$33 /hour
Power required to operate	14 Megawatts	30 Megawatts	0 Megawatts

Pulsed fields at HLD

Pulsed fields at HLD

Is Brute Force Convenient?

Average enhancements (ref: H = 11.7 Tesla, T = 300 K) :

High fields (100 T), room temp: $P/P_0 = 10$ Standard fields and low temp (10 mK): $P/P_0 = 10^4 - 10^5$ High fields, low temp: $P/P_0 = 10^5$

Pros:

High enhancements at extremely low temperatures In situ polarization, independent from sample preparation Sample is not contaminated by foreign agents

Cons:

Technically demanding Slow relaxation times at low temperatures / high fields Long measurement times Not necessarily safe for the sample

NMR Hyperpolarisation

- Brute Force NMR
 - Very low temperatures
 - Very high fields
- Dynamic nuclear polarisation (DNP)
- Spin-exchange optical pumping (SEOP)
- Parahydrogen induced polarisation (PHIP)

μімт

Electron and Nuclear Spin Polarization

Temperature and Field Dependence

Dipolar couplings

In liquids we don't see an effect on the spectrum due to tumbling motions BUT it affects relaxation

Proton

H ≥ 0

H > 0

2-spin system: magnetic energy levels

 W_0 and W_2 are allowed by the presence of e-H dipolar couplings but they don't show up in the NMR spectrum

Overhauser effect

Overhauser effect

⁷Li w/o DNP

⁷Li with DNP @ 84 MHz

¹H glycerol

Carver and Slichter, Phys. Rev. 92, 212-213 (1953) Phys. Rev. 102, 975-980 (1956) $\epsilon \sim 100$

DNP can be classified by the experimental arrangement that is used to carry out the experiment.

Overhauser DNP (O-DNP)

Room temperature

Driven by the Overhauser effect (OE), where the entire process is carried out in the liquid state. Solid-state DNP (SS-DNP)

Low temperatures (typically 90 K)

Dissolution DNP (D-DNP)

Low temperatures <1.5 K

Driven by the cross effect (CE), using high-power microwave sources in conjunction with MAS for solid-state NMR. Driven by thermal mixing (TM) or the solid effect (SE).

Microwave sources: Gyrotrons

A gyrotron, also known as cyclotron resonance maser, is a type of free electron maser. The device creates a strong beam of electrons with spiral trajectories moving in a strong magnetic field and passing through a resonant cavity. The bunching in this case occurs along the trajectory spiral. Gyrotron output power can reach many megawatts. The output frequency is easily tuned by changing the magnet field and the resonance frequency of the cavity.

263 GHz gyrotron in Bruker Billerica (MA) DNP Lab

Dissolution DNP

Dissolution DNP (also ex-situ DNP), pioneered by Ardenkjær-Larsen, yields by far the largest overall enhancements of all implementations of DNP.

$$\epsilon' = \epsilon \frac{B_{DNP}}{B_{NMR}} \cdot \frac{T_{NMR}}{T_{DNP}}$$
$$\sim 10^5$$

Applications of DNP

¹³C MRS of hyperpolarized pyruvate To observe tumor metabolites

Imaging of tumor ph in-vivo with hyperpolarized ¹³C bicarbonate

NMR Hyperpolarisation

- Brute Force NMR
 - Very low temperatures
 - Very high fields
- Dynamic nuclear polarisation (DNP)
- Spin-exchange optical pumping (SEOP)
- Parahydrogen induced polarisation (PHIP)

Why hyperpolarized ¹²⁹Xe?

- ¹²⁹Xe is an excellent probe for non-invasive NMR measurements on materials
 - Zero chemical reactivity
 - Favourable absorption properties
 - Relatively high isotopic abundance (~26%)
 - Spin ½
 - High electronic polarizability, which means high chemical shifts dependent on shape, size and nature of occupied cavities.
 - High enchanced polarization (~85-90%).
 - Lack of NMR backround

- a) CT and
- b) combined ¹H and hyperpolarized ¹²⁹Xe MRI in a stage IV COPD patient

NMR Hyperpolarisation

- Brute Force NMR
 - Very low temperatures
 - Very high fields
- Dynamic nuclear polarisation (DNP)
- Spin-exchange optical pumping (SEOP)
- Parahydrogen induced polarisation (PHIP)

What is parahydrogen?

Energy difference: 1.5 kJ/mol (175 K or $\sim 10^{12}$ Hz)

 $\Psi = \Psi_{elec} \ \Psi_{vib} \ \Psi_{rot} \ \Psi_{trans} \ \Psi_{nuclearspin}$

But: Symmetry has to be broken to yield NMR signals

Generating parahydrogen

Custom made generators to achieve over 95% parahydrogen

a) Hydrogenation with $p-H_2$

There are different mechanisms for PHIP

a) Hydrogenation with $p-H_2$

b) Pairwise replacement with p-H₂

[a] C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc. 1987, 109, 5541-5542.
[b] A. Harthun, R. Giernoth, C. J. Elsevier and J. Bargon, Chem. Commun. 1996, 2483.

a) Hydrogenation with $p-H_2$

b) Pairwise replacement with p-H₂

c) Single proton transfer

[a] C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc. 1987, 109, 5541-5542.
[b] A. Harthun, R. Giernoth, C. J. Elsevier and J. Bargon, Chem. Commun. 1996, 2483.
[c] A. B. Permin and R. Eisenberg, J. Am. Chem. Soc., 2002, 124, 12406-12407.

d) Single proton exchange

b) Pairwise replacement with $p-H_2$

c) Single proton transfer

[a] C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc. 1987, 109, 5541-5542. [b] A. Harthun, R. Giernoth, C. J. Elsevier and J. Bargon, Chem. Commun. 1996, 2483. [c] A. B. Permin and R. Eisenberg, J. Am. Chem. Soc., 2002, 124, 12406-12407. [d] S. Lehmkuhl, M. Emondts, L. Schubert, P. Spannring, J. Klankermayer, B. Blümich and P. P. M. Schleker, ChemPhysChem 2017, 18, 2426-2429.

a) Hydrogenation with $p-H_{2}$

b) Pairwise replacement with $p-H_2$

c) Single proton transfer

d) Single proton exchange

e) SABRE: J-coupling transfer

- [a] C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc. 1987, 109, 5541-5542.
- [b] A. Harthun, R. Giernoth, C. J. Elsevier and J. Bargon, Chem. Commun. 1996, 2483.
- [c] A. B. Permin and R. Eisenberg, J. Am. Chem. Soc., 2002, 124, 12406-12407.
- [d] S. Lehmkuhl, M. Emondts, L. Schubert, P. Spannring, J. Klankermayer, B. Blümich and P. P. M. Schleker, ChemPhysChem 2017, 18, 2426-2429.
- [e] R. Adams, J. Aguilar, K. Atkinson, M. Cowley, P. Elliott, S. Duckett, G. Green, I. Khazal, J. Lopez- Serrano and D. Williamson, Science 2009, 323, 1708. 49

SABRE Catalyst activation

Signal Amplification by Reversible Exchange

Level anti crossings (LACs) and SABRE

$$x = \frac{J}{\Delta \nu}$$

For pyridine SABRE:

~ 6 mT (60 G) for ¹H ~ 0.6 µT for ¹⁵N

Level anti crossings (LACs) and SABRE

$$B_{\text{evo}} = \frac{\pm (J_{\text{AA}} - J_{\text{MM}})}{\gamma_{\text{A}}(1 - \delta_{\text{A}}) - \gamma_{\text{M}}(1 - \delta_{\text{M}})}$$

$$B_{\rm evo} = \frac{\pm (J_{\rm AA} + J_{\rm MM}) \mp \frac{1}{2} (J_{\rm AM} + J'_{\rm AM})}{\gamma_{\rm A} (1 - \delta_{\rm A}) - \gamma_{\rm M} (1 - \delta_{\rm M})}$$

SABRE-SHEATH

(SHield Enables Alignment Transfer to Heteronuclei)

H₃C

OH

pyruvate

10% polarization on pyruvate

P. TomHon*, M. Abdulmojeed, I. Adelabu, S. Nantogma, M. S. Hafez Kabir, S. Lehmkuhl, E. Y. Chekmenev, and T. Theis, Temperature Cycling Enables Efficient 13C SABRESHEATH Hyperpolarization and Imaging of [1-13C]Pyruvate, *accepted JACS* 2021.

RASER threshold

Need enough Polarization to surpass the RASER threshold

Population inversion by hyperpolarization:

$$P_{threshold} = \frac{-4}{\mu_0 \eta \hbar \gamma^2 T_2^* Q n_s}$$

 γ : gyromagnatic ratio of the spin species T_2 : effective transverse relaxation time Q: Quality factor of the resonant circuit n_s Spin number density

Laser vs Raser

- Pumping with light or electrons with Γ
- Atoms or molecules as LASER medium

- Pumping with para-H $_2$ (spin zero) with Γ_m
- Nuclear spins as RASER medium

Laser vs Raser

- Pumping with light or electrons with Γ
- Atoms or molecules as LASER medium
- Optical resonator with damping rate κ
- LASER emission starts at threshold d_0 Frequency: ~10¹⁴ Hz, $\Delta v_1 / v_1 \sim 10^{-14}$

- Pumping with para-H₂ (spin zero) with Γ_m
- Nuclear spins as RASER medium
- LC-resonator with damping rate κ_m
- **RASER emission starts at threshold** $d_{0,m}$ Frequency: ~10⁵ Hz, $\Delta \nu / \nu < 10^{-10}$

Multimode RASER delivers unprecedented precision

M. Süfke, S. Lehmkuhl, A. Liebisch, B. Blümich & S Appelt: Nature Physics **13**, 568–572 (2017)

Multimode RASER delivers unprecedented precision

The NMR signal

μімт

How to increase an NMR signal:

Temperature (K)