

At the intersection of microengineering and magnetic resonance: challenges and opportunities

Dr. Vlad Badilita: vlad.badilita@kit.edu

Dr. Mazin Jouda, Dr. Neil MacKinnon, Dr. Sören Lehmkuhl, Prof. Jürgen Brandner

INSTITUTE OF MICROSTRUCTURE TECHNOLOGY

Why µ-MR?

Small amounts of sample – typically < 1 µl</p>

- isotopically labelled biological molecules
- synthesis of advanced materials
- pharmaceutics: combinatorial analysis of large numbers of compounds
- high-throughput screening of various samples

Small samples – (even) less signal

3

Small detectors – how to make them?

MEMS techniques:

- photolithography
- metal/dielectric deposition
- wet/dry etching
- electroplating
- Printed Circuit Boards (PCB)
- hybrid techniques:
 - MEMS + wirebonding

Reading list – microcoils by wirebonding

K. Kratt et al., *J. Micromech. Microeng.* **20** (2010) 015021 (11pp)

K. Kratt et al., Sensors and Actuators A **156** (2009) 328–333

How much signal / how much noise? - SNR

(Mandatory) reference:

6

D.I. Hoult and R.I. Richards, The Signal-to-Noise Ratio of the NMR Experiment, J. Magnetic Resonance, 24, 71-85 (1976)

Why are microcoils good?

on axis sensitivity in the center of an ideal single-layer solenoid:

= # of windings

n

- d_{coil} = coil diameter
 - = coil height

• when $h/d_{coil} = const. \rightarrow$ sensitivity increases for smaller diameters

Noise

7

- at the microscale, the detector becomes the main source of noise in the system!
- (Mandatory) reference:
 - T.L. Peck, R.L. Magin, and P.C. Lauterbur, Design and Analysis of Microcoils for NMR Microscopy, J. Magnetic Resonance, Series B 108, 114-124 (1995)

Four micro-detectors today

wirebonded solenoidal microcoil

- imaging and spectroscopy
- on-chip MACS micro-resonator
 - for magic angle coil spinning applications
- planar array of micro-coils
 - for planar samples
- Helmholtz coil micro-detector
 - for lab-on-a-chip applications

Four micro-detectors today

wirebonded solenoidal microcoil imaging and spectroscopy

- on-chip MACS micro-resonator
 - for magic angle coil spinning applications
- planar array of micro-coils
 - for planar samples
- Helmholtz coil micro-detector
 - for lab-on-a-chip applications

Experimental – MRI @ 9.4 T

- 9.4T MRI scanner 1H Larmor frequency = 400 MHz
- **a** coil connected with PCB tuning and matching circuit @ 400 MHz / 50 Ω
- signal transmitted via wires tethered at the terminals of the circuit

Imaging of algal cells

Heidelberg Physics Graduate Days – Microengineering and Magnetic Resonance

Reading list – MRI with wirebonded microcoils

- V. Badilita et al., *Lab on a Chip* **10** (2010) 1387–1390
- M. Mohmmadzadeh et al., *J. Magnetic Resonance* **208** (2011) 20–26

Four micro-detectors today

wirebonded solenoidal microcoil

- imaging and spectroscopy
- on-chip MACS micro-resonator
 - for magic angle coil spinning applications
- planar array of micro-coils
 - for planar samples
- Helmholtz coil micro-detector
 - for lab-on-a-chip applications

14

Why inductive coupling for NMR?

Low-cost microfabricated micro-detectors

- Sample volume: 150 nl
- Coil outer diameter: 500 µm
- Coil inner diameter: 400 µm
- Coil length: 1000 μm
- Chip dimension: 2 x 2 mm²
- Cost per chip: 2 3 €

Inductive coupling – high sensitivity

Faster spinning – higher resolution

Slow spinning for **biological** samples 2,3 sample: early stage of Drosophila pupae $B_0 = 11.7 T$ 40 ¹H Larmor freq. = 500 MHz **Signal intensity [a.u.]** PASS with water supression + water 6 supression spinning 371 Hz spinning 371 Hz + sideband supression PASS without water supression slow spinning spinning 500 Hz single pulse sidebands 0 8 2 -2 10 6 0 -4 4 1H chemical shift [ppm] 1 – Lipid – CH₃ 2 – fatty acid – $(CH_2)_n$ $4 - \text{lipid} - \text{CH}_2 - \text{CH}_2 -$ 3 – lactate – 5 – lipid– CH=CH–CH₂–CH₂– $6 - \text{lipid}-\text{CH}_2-\text{CH}_2-$

MACS challenges

fast spinning (>100kHz)

huge centrifugal forces

- eddy currents
 - heating

21

"magnetic brake"

Reading list – MACS

- D. Sakellariou et al., *Nature* **447** (2007) 694-698
- P.M. Aguiar et al., J. Magnetic Resonance 200 (2009) 6–14
- V. Badilita et al., *PLoS ONE* **7(8)** (2012) e42848

Four micro-detectors today

wirebonded solenoidal microcoil

- imaging and spectroscopy
- on-chip MACS micro-resonator
 - for magic angle coil spinning applications
- planar array of micro-coils
 - for planar samples
- Helmholtz coil micro-detector
 - for lab-on-a-chip applications

The sample determines the coil

The sample determines the coil

Gruschke et al., Lab Chip, 2012, 495

2 Heidelberg Physics Graduate Days – Microengineering and Magnetic Resonance

The sample determines the coil

Gruschke et al., Lab Chip, 2012, 495

31

Gruschke et al., Lab Chip, 2012, 495

Phased array circuitry

Results – Imaging

Sample container:

In-plane resolution of 30 x 30 µm² → Contrast to noise ratio 10 Measurement time 13 min 49 s

FOV 0.55 cm Gruschke et al., Lab Chip, 2012, 495

Four micro-detectors today

wirebonded solenoidal microcoil

- imaging and spectroscopy
- on-chip MACS micro-resonator
 - for magic angle coil spinning applications
- planar array of micro-coils
 - for planar samples
- Helmholtz coil micro-detector
 - for lab-on-a-chip applications

Spengler et al., JMM, 2014 (in press)

Spengler et al., JMM, 2014 (in press)

42

Helmholtz coil- disposable sample holders

Helmholtz coil detector – MRI

Piece of leaf: LEFT: optical photograph RIGHT: MRI – coronal view Resolution: 20µmx20µmx400µm 2h 8min

Polymer beads – 50 µm LEFT: optical photograph RIGHT: MRI – coronal view Resolution: 10µmx10µmx100µm 11h 22min

Institut für Mikrostrukturtechnik

Institute of Microstructure Technology

44

one voxel = 1.44 nl !!

Extracted and assigned spectra from the two voxels marked in the right half of (a)

Four Two micro-detectors today + BONUS

wirebonded solenoidal microcoil

- imaging and spectroscopy
- on-chip MACS micro-resonator
 - for magic angle coil spinning applications

planar array of micro-coils

- for planar samples
- Helmholtz coil micro-detector
 - for lab-on-a-chip applications

Other geometries

stripline detectors

NMR detectors – various geometries 500 µm 100 µm solenoid planar saddle Kentgens et al., J. Chem. van Bentum et al., Analyst, van Bentum et al., Analyst, Phys. 128, 052202 2008 2004, 129, 793-803 2004, 129, 793-803 Institut für Mikrostrukturtechnik Heidelberg Physics Graduate Days - Microengineering and Magnetic Resonance 47 13/04/2022 Institute of Microstructure Technology

A simple wire is an NMR detector

Stripline NMR detector

13/04/2022 Heidelberg Physics Graduate Days - Microengineering and Magnetic Resonance

B₀ uniformity – essential for high resolution

generic µ-fluidics design

Ryan et al., Lab Chip, 2014, 14, 1678–1685

structural shimming

04/2022 Heidelberg Physics Graduate Days – Microengineering and Magnetic Resonance

B₀ uniformity – essential for high resolution а b а z [mm] -20 0 Δ*B*/*B*₀[ppb] -40 20 40 b С structural shimming through cavity shaping structural shimming Ryan et al., Lab Chip, 2014, 14, 1678–1685

Broadband detectors for multinuclear NMR

54 13/04/2022

Heidelberg Physics Graduate Days – Microengineering and Magnetic Resonance

Thank you!

