

At the intersection of microengineering and magnetic resonance: challenges and opportunities

Dr. Neil MacKinnon: neil.mackinnon@kit.edu

Dr. Mazin Jouda, Dr. Vlad Badilita, Dr. Sören Lehmkuhl, Prof. Jürgen Brandner

INSTITUTE OF MICROSTRUCTURE TECHNOLOGY

What are your first thoughts when you think about magnetic resonance?

Organization of this week's lecture series

- General NMR & MRI Introduction
- Electronics, spectrometer, and µNMR hardware
- Hyperpolarization
- Applications

Welcome! Today's Outline

General introduction to Nuclear Magnetic Resonance

General introduction to Magnetic Resonance Imaging

Non-invasive imaging and spectroscopy

5

NMR as recognized by Nobel

Otto Stern Nobel Prize in Physics 1943

"for his contribution to the development of the molecular ray method and his discovery of the magnetic moment of the proton"

6

Isidor Isaac Rabi Nobel Prize in Physics 1944

"for his resonance method for recording the magnetic properties of atomic nuclei"

Felix Bloch & Edward Mills Purcell Nobel Prize in Physics 1952

"for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith"

Richard R. Ernst Nobel Prize in Chemistry 1991

"for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy"

Kurt Wüthrich Nobel Prize in Chemistry 2002

"for his development of nuclear magnetic resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in solution"

Paul C. Lauterbur & Sir Peter Mansfield Nobel Prize in Physiology or Medicine 2003

"for their discoveries concerning magnetic resonance imaging"

What is Nuclear Magnetic Resonance?

Nuclear

Signal originates from the nucleus of an atom!

Magnetic

 Strong magnetic fields create new nuclear quantum states

Resonance

 Induce transitions between energy levels

12 Mg 1/2, 3/2, ... Odd Na 30 Zn Cu Ni Ga Co 38 Sr 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 48 49 Even 1, 2, ... Odd Âg Ċd In 74 W 56 Ba 72 Hf 73 Ta 75 76 Os 78 Pt 79 80 81 Tl 82 55 Cs Re Ir Au Hg Pb 88 Ra 109 113 114 115 106 108 110 111 112 Even Even 0 60 Nd 61 62 63 64 Pm Sm Eu Gd 65 Tb 66 Dy 67 Ho 58 Ce Er La Pr 97 Bk 89 Ac 95 96 94 98 Cf 99 ** Δm

protons

Bi Po

What is Nuclear Magnetic Resonance?

Nuclear

Signal originates from the nucleus of an atom!

Magnetic

 Σ (protons + neutrons)

8

Strong magnetic fields create new nuclear quantum states

Many nuclei posses quantum mechanical property of spin, I

Particles with spin also have spin angular momentum, Î

Nuclear spin results in a nuclear

118

Lū

103

Atomic Structure

for two orientations of μ in **B** $E = -\mu \cdot \mathbf{B}$ 11.04.2022 Heidelberg Physics Graduate Days – Microengineering and Magnetic Resonance

Institute of Microstructure Technology

Increasing Magnetic Field Strength

What is Nuclear Magnetic Resonance?

Nuclear

Signal originates from the nucleus of an atom!

Magnetic

 Strong magnetic fields create new nuclear quantum states

Resonance

9

 Induce transitions between energy levels

I=1/2

m = -1/2

850 115

Relative

Energy

Zeeman Splitting

Quantum mechanics allows

directed along z-axis, B_z

 Signal originates from the nucleus of an atom!

Magnetic

Nuclear

 Strong magnetic fields create new nuclear quantum states

Resonance

 Induce transitions between energy levels

What is Nuclear Magnetic Resonance?

- nucleus is ¹H (hydrogen), $\gamma = 42.576$ MHz / T
- then $v \cong 40 1000$ MHz for B = 1 23 T

NMR is a technique reliant on radio frequencies

Spectrometer components

- Magnetic field Earth field (50 μT) to pulsed fields (90+ T)
- Console –transmit excitation signals (1 KW), receive sample signals (~ 10's µW) in frequencies from KHz to GHz
- Probe delivers excitation signals to sample, first step in receiving signal from sample
- Disciplines involved:
 - Mathematics
 - Physics
 - Chemistry
 - Biology
 - Engineering
 - Informatics
 - Medicine

11

11.04.2022 Heidelberg Physics Graduate Days – Microengineering and Magnetic Resonance

Institute of Microstructure Technology

NMR is sensitive to Dynamics

Prof. David Case: casegroup.rutgers.edu

Institute of Microstructure Technology

Why Micro-MR?

Why Micro-MR?

Introduction to NMR theory

- Classical Description
- Quantum Description
- Nuclear Interactions
- Relaxation
- MR Pulse sequences
- Magnetic Resonance Imaging (MRI)

Learning Objectives

- Differentiate between Classical and Quantum description of NMR
- List the interactions that influence the NMR spectrum
- Describe the relaxation mechanisms that drive the sample to equilibrium
- Identify the main components of an NMR pulse sequence

An NMR experiment

https://www.acs.org/content/acs/en/education/resources/highschool/chemmatters/past-issues/archive-2014-2015/candymaking.html

An NMR experiment

https://www.acs.org/content/acs/en/education/resources/highschool/chemmatters/past-issues/archive-2014-2015/candymaking.html

An NMR experiment

https://www.acs.org/content/acs/en/education/resources/highschool/chemmatters/past-issues/archive-2014-2015/candymaking.html

Magnetic moments in an external magnetic field

$$\vec{\mu} = \gamma \vec{J}$$
 $\tau = \frac{dJ}{dt} = \mu \times B$

Energy associated with magnetic moments in an external magnetic field

Solution to precession

$$\frac{\delta\mu_x}{\delta t} = \gamma\mu_y B_z \qquad \qquad \frac{\delta\mu_y}{\delta t} = -\gamma\mu_x B_z \qquad \qquad \frac{\delta\mu_z}{\delta t} = 0$$

 $\mu_x(t) = \mu_x(0)cos(\gamma B_z t) - \mu_y(0)sin(\gamma B_z t)$ $\mu_y(t) = \mu_y(0)cos(\gamma B_z t) + \mu_x(0)sin(\gamma B_z t)$

	В	
)		
	y y	

Nucleus	γ (MHz / T)	ω _o (MHz)	
		11.74 T	28.2 T
¹ H	42.576	500	1200
¹³ C	10.705	126	302
¹⁵ N	-4.316	-51	-122
¹⁹ F	40.052	470	1130

Important notes:

1. $\gamma \mathbf{B}_{z}$ is a frequency, defined as ω_{o} .

Ζ

Larmor Frequency: $\omega_o = -\gamma B_z$

2. NMR is sensitive to radio frequencies (RF)

Precession generates the MR signal

Bulk magnetization

A collection of nuclear spins with randomly oriented magnetic moments

Levitt, M., Spin Dynamics 2nd Ed., John Wiley & Sons Ltd, 2008

Bulk magnetization

- A collection of nuclear spins with randomly oriented magnetic moments
- In presence of magnetic field, precession at Larmor frequency begins

Levitt, M., Spin Dynamics 2nd Ed., John Wiley & Sons Ltd, 2008

Bulk magnetization

- A collection of nuclear spins with randomly oriented magnetic moments
- In presence of magnetic field, precession at Larmor frequency begins
- Bulk magnetization M will build up with time constant T₁

Levitt, M., Spin Dynamics 2nd Ed., John Wiley & Sons Ltd, 2008

$\frac{\mathrm{d}M}{\mathrm{d}t} = \gamma(\mathrm{M} \times \mathrm{B})$ $B = B_7 + B_1$ $\frac{\delta M_x}{\delta t} = \gamma (M_y B_z + M_z B_1 \sin(\omega_1 t))$ $\frac{dM}{dt} = \gamma \begin{vmatrix} i & j & k \\ M_x & M_y & M_z \\ B_1 cos(\omega_1 t) & -B_1 sin(\omega_1 t) & B_z \end{vmatrix} \quad \frac{\delta M_y}{\delta t} = \gamma (M_x B_z - M_z B_1 cos(\omega_1 t))$ $\frac{\delta M_z}{\kappa_t} = \gamma(-M_x B_1 \sin(\omega_1 t) - M_y B_1 \cos(\omega_1 t))$

Application of RF energy

 $B_{1}^{+} = \frac{1}{2}B_{1}[x * \cos(\omega_{1}t) + y * \sin(\omega_{1}t)]$

 $B_{1}^{-} = \frac{1}{2}B_{1}[x * \cos(\omega_{1}t) - y * \sin(\omega_{1}t)]$

 $B_{1}(t) = B_{1}(0)\cos(\omega_{1}t)$

32 Heidelberg Physics Graduate Days – Microengineering and Magnetic Resonance 11.04.2022

Bloch Equations

Felix Bloch Nobel Prize in Physics (shared), 1952 "for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith

- Bulk magnetization precesses
 - about B_z
 - about B_1 if $\omega_1 \cong \omega_0$ (resonance!)
- Equilibrium (re)established according to:
 - Longitudinal relaxation time, T₁
 - Transverse relaxation time, T₂
- Bloch equations successfully describe simple cases, but start to break down in complex situations
 To quantum

$$\frac{\delta M_x}{\delta t} = \gamma \left(M_y B_z + M_z B_1 \sin(\omega_1 t) \right) - \frac{M_x}{T_2}$$

$$\frac{\delta M_{y}}{\delta t} = \gamma (M_{x}B_{z} - M_{z}B_{1}\cos(\omega_{1}t)) - \frac{M_{y}}{T_{2}}$$

$$\frac{\delta M_z}{\delta t} = \gamma \left(-M_x B_1 \sin(\omega_1 t) - M_y B_1 \cos(\omega_1 t) \right) - \frac{M_z - M_z}{T_1}$$

mechanics!

Today's Outline

- Classical Description
- Quantum Description
- Nuclear Interactions
- Relaxation
- MR Pulse sequences
- Magnetic Resonance Imaging (MRI)

Learning Objectives

- Differentiate between Classical and Quantum description of NMR
- List the interactions that influence the NMR spectrum
- Describe the relaxation mechanisms that drive the sample to equilibrium
- Identify the main components of an NMR pulse sequence

35 11.04.2022 Heidelberg Physics Graduate Days – Microengineering and Magnetic Resonance

Institute of Microstructure Technology

particles"

(shared), 1965 "for their fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of elementary

First thoughts of quantum mechanics ...

Quantum mechanics - definitions

Energy level diagram, $I = \frac{1}{2}$

Bra-ket notation:

$$I = \frac{1}{2}, m_I = \frac{1}{2}, -\frac{1}{2} \longrightarrow |I, m_I\rangle \longrightarrow |\frac{1}{2}, \frac{1}{2}\rangle = |\alpha\rangle \qquad |\frac{1}{2}, -\frac{1}{2}\rangle = |\beta\rangle$$
What are the populations of the states?

$$n_i = \frac{\exp(-\frac{E_i}{k_B T})}{\sum \exp(-\frac{E_j}{k_B T})}$$

Energy of state *i* Sum over all states j = 1 to 2I+1

$$\frac{n_{\beta}}{n_{\alpha}} = \exp\left(-\frac{\Delta E}{k_B T}\right) \cong 1 - \frac{\Delta E}{k_B T}$$

Thermal energy at 293 K: $k_b T \cong 4.1 \ge 10^{-21} \text{J}$ Spectroscopic energy at 11.74 T: $\Delta E \cong 3.3 \ge 10^{-25} \text{J}$

Boltzmann distribution at 11.74 T: $n_{\beta} = 0.9999195 n_{\alpha}$

Increasing field strength increases population difference → increased signal!

Ludwig Boltzmann

Introduction to NMR theory

- Classical Description
- Quantum Description
- Nuclear Interactions
- Relaxation
- MR Pulse sequences
- Magnetic Resonance Imaging (MRI)

- Differentiate between Classical and Quantum description of NMR
- List the interactions that influence the NMR spectrum
- Describe the relaxation mechanisms that drive the sample to equilibrium
- Identify the main components of an NMR pulse sequence

Communication permits relative position determination

- An ensemble of non-interacting spins would give a single resonance – not very informative!
- Spin-spin interactions result in the rich detail obtained by NMR spectroscopy

Mechanisms of spin-spin communication

- All mechanisms cause local magnetic field perturbations
 - Small field perturbations translate to small frequency changes

Hamiltonian based description:

 $\hat{H}_{\textit{TOTAL}} = \hat{H}_{Z} + \hat{H}_{\textit{RF}} + \hat{H}_{\textit{CS}} + \hat{H}_{\textit{D}}^{\textit{II}} + \hat{H}_{\textit{D}}^{\textit{IS}} + \hat{H}_{\textit{J}} + \hat{H}_{\textit{Q}}$

$\hat{H}_{Z} = -\gamma B_{O} \cdot I$ $\hat{H}_{RF} = -\gamma B_{1} \cos(\omega t) I_{x}$	external	Zeeman Applied RF
$\begin{split} \hat{H}_{CS} &= -\gamma B_O \cdot \hat{\sigma} \cdot I \\ \hat{H}_D^{II} &= \sum_{i \neq j} (\gamma_i \gamma_j \hbar) I_i \cdot D \cdot I_j \\ \hat{H}_D^{IS} &= \sum_{i \neq j} (\gamma_I \gamma_S \hbar) I \cdot D \cdot S \\ \hat{H}_J &= \sum_{i \neq j} I_i \cdot J \cdot I_j \\ \hat{H}_Q &= \frac{eQ}{2I(2I-1)\hbar} I \cdot V \cdot I \end{split}$	internal	Chemical shift Dipolar coupling (homonuclear) Dipolar coupling (heteronuclear) J-coupling Quadrupole coupling

Through bond interactions

- Chemical shift
 - Electron density shields the nuclear spin from the applied magnetic field

J-coupling

Orientation of nuclear spin A is

transmitted via electrons of chemical

Through space interactions

Dipolar coupling

- Spin I senses position of spin S through dipole interaction
- Strongly dependent on distance and orientation wrt Bo

Quadrupole coupling

- If I > ½, nuclear charge distribution not spherical (quadrupole moment)
- Quadrupole moment interacts with electric field gradients at the nucleus

Interaction summary ($I = \frac{1}{2}$)

Introduction to NMR theory

- Classical Description
- Quantum Description
- Nuclear Interactions
- Relaxation
- MR Pulse sequences
- Magnetic Resonance Imaging (MRI)

- Differentiate between Classical and Quantum description of NMR
- List the interactions that influence the NMR spectrum
- Describe the relaxation mechanisms that drive the sample to equilibrium
- Identify the main components of an NMR pulse sequence

What do we mean by 'Relaxation'?

http://cdn.attackofthecute.com/October-30-2012-02-41-43-ttttt.jpg

How does M return to equilibrium?

Relaxation is defined by two time constants

Bloch Equations

$$\frac{\delta M_x}{\delta t} = \gamma \left(M_y B_z + M_z B_1 \sin(\omega_1 t) \right) \underbrace{\frac{M_x}{T_2}}_{\frac{\delta M_y}{\delta t}} = \gamma \left(M_x B_z - M_z B_1 \cos(\omega_1 t) \right) \underbrace{\frac{M_y}{T_2}}_{\frac{\delta M_z}{\delta t}} = \gamma \left(-M_x B_1 \sin(\omega_1 t) - M_y B_1 \cos(\omega_1 t) \right) - \frac{M_y}{T_2}$$

$$T_1$$
: Longitudinal relaxation time (spin-lattice)

- characteristic time constant for M_z to approach M
- T_2 : Transverse relaxation time (spin-spin)
 - characteristic time constant for M_{x,y} to approach 0

Levitt, M., Spin Dynamics 2nd Ed., John Wiley & Sons Ltd, 2008

Importance of relaxation time

- Spin-lattice T₁
 - Reflected in signal intensity
 - Determines maximum repetition rate of equilibrium magnetization
- **Spin-spin** T_2
 - Reflected in signal line width
 - A significant factor determining maximum spectral resolution

Introduction to NMR theory

- Classical Description
- Quantum Description
- Nuclear Interactions
- Relaxation
- MR Pulse sequences
- Magnetic Resonance Imaging (MRI)

- Differentiate between Classical and Quantum description of NMR
- List the interactions that influence the NMR spectrum
- Describe the relaxation mechanisms that drive the sample to equilibrium
- Identify the main components of an NMR pulse sequence

Reading NMR pulse sequences

Hiller, S. et al., Automated projection spectroscopy, PNAS 102 (2005) 10876.

Timing diagrams = pulse sequences

Example – measuring T_1

Now we can interpret this sequence ...

Summary

- Magnetic resonance is dependent on nuclear spin
- Classical description is useful for simple experiments
- Quantum description is necessary for complicated spin systems
 - Hamiltonian formalism is common
- Relaxation of magnetization should be considered
- Pulse sequences are how NMR signals are encoded

- Differentiate between Classical and Quantum description of NMR
- List the interactions that influence the NMR spectrum
- Describe the relaxation mechanisms that drive the sample to equilibrium
- Identify the main components of an NMR pulse sequence

Institute of Microstructure Technology

Welcome! Today's Outline

General introduction to Nuclear Magnetic Resonance

General introduction to Magnetic Resonance Imaging

Magnetic Resonance Imaging

- General Introduction
- Origin of MR signal
- Pulse sequences
- Magnetic Resonance Imaging
- MR image contrast

- · Students will be able to identify the source of the MRI signal
- · Students will be able to describe the process of producing an image
- Students will be able to identify the types of contrast available in MRI

Magnetic resonance imaging - MRI

- Relies on nuclear magnetic resonance
 - Large magnet
 - Magnetic field gradients
 - Coils as inductive detectors
 - Radio frequency electronics
- Non-invasive!
- Non-destructive!
- Can reveal dynamics
 Functional MRI (fMRI)
 - Diffusion/flow imaging

General image quality

- Color
- Contrast
- Resolution

Features of an MRI image

Size of each pixel in image

Contrast

400 µm

What distinguishes bright from dark spots?

Magnetic Resonance Imaging

- General Introduction
- Origin of MR signal
- Magnetic Resonance Imaging
- MR image contrast

- · Students will be able to identify the source of the MRI signal
- · Students will be able to describe the process of producing an image
- Students will be able to identify the types of contrast available in MRI

Karlsruhe Institute of Technology

Water is the key

- Medical MR images are produced by measuring the hydrogen of water*
- Water chemical composition:
 - Hydrogen (2 atoms)
 - Oxygen
- Hydrogen nucleus
 - 1 proton
 - **3** isotopes: ¹H, ²H, ³H
 - Abundancies: 99.98, 0.02, trace
- Oxygen nucleus
 - 8 protons
 - **3** isotopes: ¹⁶O, ¹⁷O, ¹⁸O
 - Abundancies: 99.76, 0.04, 0.20

*of course, other molecules can be imaged as well, but these are specialized examples.

Institute of Microstructure Technology

Magnetic Resonance Imaging

- General Introduction
- Origin of MR signal
- Magnetic Resonance Imaging
- MR image contrast

- · Students will be able to identify the source of the MRI signal
- · Students will be able to describe the process of producing an image
- Students will be able to identify the types of contrast available in MRI

Basics of MRI

RF

 $\mathbf{G}_{\text{slice}}$

 $\mathbf{G}_{\text{phase}}$

G_{frequency}

Signal

For an excellent description, see: https://www.cis.rit.edu/htbooks/mri/inside.htm Key concept Spatial labeling of the spins is accomplished by creating well defined magnetic field gradients in 3 dimensions.

Slice selection

$$\omega = \gamma(Bo + zG_z)$$

Apply 5 T/m gradient:

What is the frequency difference between ¹H spins at the bottom and top of the sample?

Slice selection

$$\omega = \gamma(\mathsf{Bo} + \mathsf{zG}_{\mathsf{z}})$$

Slice selection

$$\omega = \gamma(Bo + zG_z)$$

Apply RF with 10 kHz bandwidth:

What is the thickness of the slice excited when 5 T/m gradient is simultaneously applied?

Phase encoding

B₀ ⊗

* Note change in perspective!

Phase encoding

$$\omega = \gamma(\mathsf{Bo} + \mathsf{xG}_{\mathsf{x}})$$

Phase encoding

B₀ ⊗

y y $\omega = \gamma B_o$

Frequency encoding

B₀ ⊗

Extremely simplified MRI pulse sequence

$$\omega = \gamma(\mathsf{Bo} + \mathsf{yG}_{\mathsf{y}})$$

Decoding the signal to produce an image

- 3D image reconstruction not possible (not even 2D)!
- Incrementing G_{phase} can generate a 2D image
 # of increments = # of lines in image
- Incrementing G_{slice} can generate a 3D image
 # of increments = # of slices in image

Institute of Microstructure Technology

K-Space – a spatial frequency domain

74 11.04.2022

Institute of Microstructure Technology

Magnetic Resonance Imaging

- General Introduction
- Origin of MR signal
- Magnetic Resonance Imaging
- MR image contrast

- · Students will be able to identify the source of the MRI signal
- · Students will be able to describe the process of producing an image
- Students will be able to identify the types of contrast available in MRI

- Many parameters contribute to image contrast
 - The beauty of MRI!

- Proton density
- **T**1
- **T**2
- Diffusion
- Flow
- Chemical contrast agent

Xiaodong Zhang, et al., Quantitative Imaging in Medicine and Surgery 4 (2014) 112.

- Many parameters contribute to image contrast
 - The beauty of MRI!

- Proton density
- **T1**
- **T**2
- Diffusion
- Flow
- Chemical contrast agent

T1-weighted

Xiaodong Zhang, et al., *Quantitative Imaging in Medicine and Surgery 4 (2014) 112.*

- Many parameters contribute to image contrast
 - The beauty of MRI!

- Proton density
- **T**1
- **T**2
- Diffusion
- Flow
- Chemical contrast agent

T2-weighted

Xiaodong Zhang, et al., Quantitative Imaging in Medicine and Surgery 4 (2014) 112.

The beauty of MRI!

Proton density

- **T**1
- **T**2
- Diffusion
- Flow
- Chemical contrast agent

Karlsruhe Institute of Technology

Diffusion-weighted

Xiaodong Zhang, et al., Quantitative Imaging in Medicine and Surgery 4 (2014) 112.

The beauty of MRI!

- Proton density
- **T**1
- **T**2
- Diffusion
- Flow

81

Chemical contrast agent

MR Angiography

Xiaodong Zhang, et al., *Quantitative Imaging in Medicine and Surgery 4 (2014) 112.*

Many parameters contribute to image contrast
The beauty of MRI!

- Proton density
- **T**1
- **T**2
- Diffusion
- Flow
- Chemical contrast agent

Xiaodong Zhang, et al., Quantitative Imaging in Medicine and Surgery 4 (2014) 112.

Many parameters contribute to image contrast

The beauty of MRI!

Xiaodong Zhang, et al., Quantitative Imaging in Medicine and Surgery 4 (2014) 112.

Summary

- Magnetic resonance is dependent on nuclear spin
- MRI is a powerful technique to observe internal structures noninvasively
- Several forms of contrast are possible, extending the utility of MRI even further