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Abstract. Conformal symmetry allows to derive a priori properties
of relativistic quantum field theories, without the need to specify a
model Lagrangian. In four spacetime dimensions, these properties
basically concern the general form of correlation functions, and pos-
itivity conditions allow to constrain the free parameters. They go
far beyond this in two dimensions, allowing for complete solutions
or (discrete) classifications. The lecture introduces several facets
of the amazing structures arising in 2D CFT and their surprising
relations to various areas of mathematics.

0 Disclaimer

Most of you are presumably familiar with quantum field theory in terms of path-
integrals and Feynman diagrams, that are well-suited tools to compute scattering
cross sections in particle physics. You will not see anything of these in my lectures.
In contrast, I want to acquaint you with a more intrinsic approach that rather fo-
cusses on algebraic properties of quantum fields, independent of specific model input.
These algebraic properties determine the physics. They include commutation rela-
tions, that may turn out very different from the “canonical commutation relations”
imposed for free fields.

Conformal symmetry, especially in two spacetime dimensions, considerably con-
strains the possible form of these algebraic structures, so that many nontrivial solu-
tions can be found explicitly. These may give us only a faint impression of the vast
range of possibilities to be expected in the general case without special symmetries.

1 QFT

Quantum Field Theory is “the” paradigm for our understanding of the fundamental
constituents of matter, in particular Particle Physics [1].

It appears in many different versions, that all share the following features:

• Relativistic invariance

• Locality and Causality

• Particles and scattering theory

In spite of its tremendous successes, QFT is not a “final theory”. Its problems
include:
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• UV divergences in perturbation theory ⇒ Renormalization

• Indefinite-metric “Hilbert” spaces ⇒ BRST (or other)

• Various kinds of infrared problems

• Divergence of the perturbative expansion ⇒ ???

• Difficult control of non-perturbative effects

• Quark confinement and hadronization

• Inclusion of “gravitons” ⇒ ???

• A future theory of Quantum Gravity must fundamenally transcend QFT, be-
cause “spacetime”, which is the fixed stage of QFT, becomes itself the dynam-
ical player of QG.

Whether a QFT describing the Standard Model exists as a mathematically complete
and consistent theory, is not known.

Most attempts at a construction rely on the “quantization of a classical model”,
defined by a Lagrangian. These provide computational recipes for scattering cross
sections, that are perfectly confirmed by experiment. But they are known to be only
approximations of non-convergent perturbative expansions!

“Axiomatic approaches” have been pursuited for more than 50 years, with the aim
to “explore the space of theories” without specific model assumptions. The idea is
that “the true theory” should fit into such a scheme, no matter how the actual com-
putations are done. An axiomatic scheme should allow structural apriori insights,
that admit predictions without detailed computation. An example is the PCT the-
orem, that was first known to hold “by inspection of all possible Lagrangians”; but
in the axiomatic setting it became clear to be a consequence of more fundamental
properties without the assumption of an underlying Lagrangian.

In these lectures, I tacitly adopt the most widely accepted axiomatic setting for-
mulated by Wightman [2] (“Hilbert space, locality, covariance, vacuum”) without
exhibiting the technicalities.

2 Conformal QFT

2.1 Motivation

Conformal symmetry has a long history in geometry, starting from the observation
that the map

~x 7→ ~x

|~x|2

preserves angles and maps planes to spheres. The first property was used in cartog-
raphy (“Mercator projection”), and the second property entered classical physics,
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e.g., in the “method of images” to compute the electric field of charges near con-
ducting spheres. An extensive review of this classical background can be found in
[3]. Conformal QFT (= CFT) has many different motivations [4].

First, classical Maxwell theory is conformally invariant, so why not quantum Maxwell
theory? Of course, massive charged particles spoil conformal invariance, but possi-
bly QED becomes conformally invariant in the high-energy limit where the electron
mass should be negligible? This expectation was disproved by the discovery of the
“running coupling constant” by which dimensionless parameters do not scale triv-
ially. Asymptotically free theories become free in the high-energy limit: the limiting
theory is conformally invariant but tells us nothing about the actual theory. This,
historically earliest, motivation has faded away.

Second, the AdS-CFT correspondence has renewed interest in CFT in four (or more)
spacetime dimensions because it is believed to be “dual” to some gravity theory in
one dimension more.

Third, lattice (spin) systems at critical points (UV fixed points) may become con-
formally invariant Euclidean field theories, which in turn may be “Wick rotated”
Lorentzian CFTs. Indeed, some of the most studied models in two dimensions,
including the Ising model, belong to this class.

Fourth, String Theory can be formulated in terms of an internal “worldsheet dy-
namics” which is for itself a two-dimensional CFT. Classifications of the latter have
a bearing on the possible degrees of freedom (geometric or non-geometric) of the
associated ST.

Fifth, CFT is just “relativistic QFT with extra symmetries”, because the conformal
group contains the Poincaré group. Every general result that can be proven in QFT,
is also true in CFT. CFT can therefore be used as a testing ground for general QFT,
where the additional symmetry allows stronger apriori structure results and sharper
classifications. It is an ideal stage to

“explore the space of theories”.

Indeed, in two spacetime dimensions, these results are so strong that nontrivial
models can be rigorously constructed without relying on perturbation theory, and
not even invoking an underlying Lagrangian. This last one is my personal main
motivation to study conformal QFT [5].

An interesting side aspect is the fact that “particles” are not a good concept in CFT.
“Particles” in an interacting QFT are only asymptotic features of states, which can
be isolated because massive excitations of different momentum travel at different
velocities and will separate at asymptotic times. In contrast, massless particles like
photons do not separate, and cannot always be identified as individual objects. This
well-known “IR problem” in QED leads to the necessity of considering inclusive cross
sections involving arbitrary numbers of soft photons of arbitrarily low energy.
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Therefore, in conformal QFT, the quantum fields stand in the foreground, rather
than being only tools to describe the scattering of particles. One is interested in
their (algebraic) properties, whose understanding brings QFT back to its roots.

A standard text book is [4].

2.2 The conformal group: geometry and group theory

A standard text book is [4]. The conformal group Conf1,3 (in four spacetime dimen-
sions) extends the Poincaré group by the dilations x 7→ λx and the commutative
group of “special conformal transformations”

x 7→ Cb(x) =
x− x2 b

1− 2(bx) + b2x2
(b ∈ R4).

These are the transformations x 7→ x′ = g(x) that preserve the metric up to a local
scale factor:

dx′2 = ωg(x)2 · dx2.

In particular, conformal transformations preserve lightlike directions. The invariant
property of spacetime is called “conformal structure” = metric modulo factors.

The connected group generated by these transformations is isomorphic to SO(2, 4)0.
It contains the “conformal inversion”1 2

I(x) =
(−x0, ~x)

x2
, I ◦ I = id,

and the special transformations arise by conjugation with I from the translations:

Cb(x) = I(I(x) + b̃), b̃ = (b0,−~b).

One should worry about the singularities of conformal transformations. This issue
can be resolved by noticing that Minkowski spacetime is just a chart of the “Dirac
manifold” on which the action of Conf1,3 is perfectly regular. The singularities are
then only an artifact of the circumstance that the Minkowski chart misses a subset
of measure zero of the Dirac manifold (the “points at infinity”). The Dirac manifold
M1,3 is the “projective null cone in 2 + 4 dimensions”:{
X = (y−1, y0, z1, . . . , z4) ∈ R2,4\{0} : X·X ≡ ~y2−~z2 = 0

}
/x∼λx (λ 6=0) = (S1×S3)/Z2.

1For dimensional reasons, this formula should be understood with x meaning x/R for some
length scale R. Because of scale invariance, R is arbitrary, and will be suppressed in the sequel.
Thus coordinates and momenta become dimensionless quantities.

2The metric convention is ηµν = (+,− · · ·−). In the literature one often finds instead Ĩ(x) = x
x2

and Cb(x) = Ĩ(Ĩ(x)−b). This is also correct, but Ĩ does not belong to the connected group because
it differs from I by a time reversal, and is not a priori expected to be a symmetry of QFT.
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SO(2, 4) acts in the obvious way, and the standard Minkowski coordinates are

xµ =
(y0, z1, z2, z3)

y−1 + z4
.

Exercise: under conformal transformations, the tensor Rµν(z) = z2ηµν−2zµzν trans-
forms as

R(g(x)− g(y)) = (Jg(x)⊗ Jg(y))R(x− y),

where (Jg)
ν
µ = ∂g(x)ν

∂xµ
is the Jacobian of g. Because dg(x)2 = ωg(x)2dx2, one has

Jg(x) = ωg(x) · Λg(x), where Λg(x) is a Lorentz matrix; hence det(Jg(x)) = ωg(x)4.
Taking the determinant, it follows that finite Lorentz distances change by a multi-
plicative factor:

(g(x)− g(y))2 = ωg(x)ωg(y) · (x− y)2.

Taking x− y infinitesimal, gives back dg(x)2 = ωg(x)2dx2.

2.3 The conformal group: representation theory

The commutation relations of the (self-adjoint) generators (in a unitary representa-
tion) are

i[Pµ, Pν ] = 0, i[Pµ,Mκλ] = ηµλPκ − ηµκPλ, i[Mκλ,Mµν ] = ηκµMλν ± . . . ;

i[Kµ, Kν ] = 0, i[Mκλ, Kµ] = ηκµKλ − ηλµKκ, i[Pµ, Kν ] = −2ηµνD + 2Mµν ;

i[D,Pµ] = Pµ, i[D,Kµ] = −Kµ, i[D,Mκλ] = 0.

In QFT, a unitary symmetry is in general a representation of the universal covering
group. SO(2, 4)0 is not simply connected because of the “timelike” subgroup SO(2).
Its generator L0 = 1

2
(P0+K0) is called the “conformal Hamiltonian”. It is positive in

a positive-energy representation, because P0 ≥ 0 and K0 = IP0I ≥ 0. The spectrum
of L0 is discrete, because ei2πL0 (the representative of the rotation by 2π) commutes
with U(g) and hence is a multiple of 1 in every irreducible representation. It is
more informative than the spectrum of the true Hamiltonian P0 (which is always
R+.) The lowest eigenvalue of L0 in an irreducible unitary positive-energy repn is
called the “scaling dimension” d (see below).

The nontrivial irreducible unitary positive-energy repns are labelled by a pair (j1, j2)
of “spin” quantum numbers (corresponding to dotted and un-dotted spinor indices,
i.e., a matrix representation of the Lorentz group) and the scaling dimension d,
taking real values subject to the “unitarity bound” d ≥ j1 + j2 + 2 if j1, j2 6= 0, resp.
d ≥ j1 + j2 + 1 if j1 = 0 or j2 = 0 [16].
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2.4 Conformal QFT in four spacetime dimensions

In a field theory with a conserved stress-energy tensor: ∂νT
µν = 0, the four-

momentum

P µ =

∫
x0=t

T µ0(x) dsx

is independent of t. If (and only if) T µν is also symmetric, then also Jνκλ = xκT
ν
λ −

xλT
ν
κ is conserved, and

Mκλ =

∫
x0=t

J0
κλ(x) dsx

is independent of t. If (and only if) T µν is also traceless, T = T κκ = 0, then also
Jν = xκT

κν conserved, and

D =

∫
x0=t

J0(x) dsx

is independent of t. In this case, also Jνµ = 2xµxκT
κν − x2T νµ is conserved, and

Kµ =

∫
x0=t

J0
µ(x) dsx

is independent of t.

In conformal QFT, the Hilbert space carries a unitary positive-energy repn of the
conformal group, whose generators arise as above from a conserved traceless and
symmetric quantum stress-energy tensor.3

Covariant quantum fields transform according to

U(g)φ(x)U(g)∗ = R(Jg(x))tφ(g(x)).

Here, φ may be a Lorentz tensor or spinor, Jg(x) = ωg(x)Λg(x) is the Jacobi ma-
trix, and R(ωΛ) = ωd · R(Λ) is a matrix representation of the group of Lorentz
transformations and dilations, depending on the quantum numbers of the field. In
particular, for the scale transformations, Jλ = λ ·14 is represented by R(Jλ) = λd ·1:

U(g)ϕ(x)U(g)∗ = λd · ϕ(λx).

The parameter d is called the scaling dimension of the field (because its n-point
correlation functions are homogeneous distributions in all coordinates of total degree
−n · d, see below). The massless scalar Klein-Gordon field has d = 1 (d = 1

2
(D− 2)

in D dimensions) and R(J) = (det J)
1
4 , the Maxwell field strength has d = 2 and

R(J) = J ⊗ J . The stress-energy tensor has d = 4 (or d = D in D spacetime

dimensions) and R(J) = (det J)
1
2 · J ⊗ J .

3The quantization of a classical conformal field theory may exhibit anomalies, so that the
quantum stress-energy tensor may fail to be traceless, and the QFT fails to be conformal. We do
not consider this case here.
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The infinitesimal transformation laws have the form

i[PµφA(x)] = ∂µφA(x), i[D,φA(x)] = ((xµ∂µ) + d)φA(x),

i[Mµν , φA(x)] = (xµ∂ν − xν∂µ)φA(x) + (Lµν)
B
AφB(x),

i[Kµ, φA(x)] = (2xµ(x · ∂)− x2∂µ + 2dAxµ)φA(x) + 2xν(Lµν)
B
AφB(x),

where Lµν is the infinitesimal matrix representation associated with R(Λ).

Notice that derivatives ∂κφA of conformal fields transform in the same way under Pµ,
D and Mµν (with d increased by one and L adjusted for the extra Lorentz index);
but not under Kµ (hence L0, hence I). Therefore, the conformal transformation
law allows to distinguish “quasi-primary” fields (commutators as above) and their
derivatives (“secondary” fields).4

For a quasi-primary field of dimension d, one computes that φ(x)Ω = is an (im-
proper) eigenvector of the operator e2πiL0 with eigenvalue e2πid. This means that
the spectrum of L0 is contained in d+ Z. Moreover, e−P0φ(0)Ω is a ground state of
L0 with eigenvalue (“lowest weight”) = d. These facts relate the spectrum of the
conformal Hamiltonian on the full Hilbert space to the field content of the model.

In QFT, one is interested in the vacuum correlation functions (“n-point fns”)

(Ω, φ1(x1) . . . φn(xn)Ω),

because they completely determine the theory. Conformal symmetry imposes strong
constraints on their most general form. If the vacuum is invariant: U(g)Ω = Ω, then
one can show that every n-point function of tensor fields is a product of tensors
Rµν(xi − xj), (inverse)5 powers of x2

ij = (xi − xj)2, and an arbitrary function of the
conformally invariant “cross-ratios”

x2
ijx

2
kl

x2
ikx

2
jl

.

For two and three points, there are no cross-ratios, hence 2- and 3-point functions
are a priori determined up to scalar factors. In particular, for vector fields,

(Ω, Jµ(x)Jν(y)Ω) ∼ Rµν(x− y)

((x− y)2)d+1
.

Exercise: Show that if Jµ is conserved, then d = 3.

4The term “primary” is reserved for a more specific property in d = 2 dimensions, see below.
5Here, all inverse powers of x2ij (i < j) are understood as distributions by giving x0ij an infinites-

imal imaginary part.
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Also the converse is true, and the same holds for symmetric traceless conserved
tensor currents of rank r, with d = r+ 2. Thus, the scaling dimensions of conserved
currents are “protected” by conformal symmetry and cannot vary, say, as a function
of a coupling constant. Clearly, the stress-energy tensor has dimension d = 4.

The functions of the cross-ratios are model-dependent. They are not determined
by conformal symmetry; but they cannot be completely arbitrary for two reasons:
first, correlation functions must be symmetric under the exchange of two adjacent
field entries at spacelike distance; second, correlation functions are scalar products
between Hilbert space vectors, and must be subject to positivity conditions.

Example: the 4-point fn of a scalar field of dimension d = 2 is of the form

F (u, v)

(x2
12x

2
34)2

, where u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

.

When x12 resp. x23 is spacelike, locality requires invariance under x1 ↔ x2 resp.
x2 ↔ x3:

F (u, v) = F (u/v, 1/v) resp. F (u, v) = ud · F (1/u, v/u).

A very simple, rational solution is

F (u, v) = A(1 + u2 + u2/v2) +B(u+ u/v + u2/v).

Positivity requires that∫
d4x1 . . . d

4x4 f(x2, x1)f(x3, x4) · F (u, v)

(x2
12x

2
34)2
≥ 0

for arbitrary smearing functions f . This imposes further constraints on the param-
eters A and B, that are notoriously difficult to evaluate. See the next section.

2.5 OPE, PWE and conformal bootstrap

The operator product expansion is an asymptotic expansion of the form

φA(x)φB(y) =
∑

C
gCAB(x− y) · φC(y) =

∑
C qp

gCAB(x− y, ∂) · φC(y),

where the first sum extends over secondary fields, and the second sum only over
quasi-primary fields. By scale invariance, the coefficient functions gCAB(x− y) must
be homogeneous of degree dC − dA − dB, so the higher contributions with large dC
will be suppressed at short distances. Because dC ≥ 0, the strongest singularity is
O((x−y)−dA−dB). This explains why, in the above example, there are no terms more
singular than u−2.
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The quasi-primary form of the OPE allows a decomposition of the 4-point function
into its contributions from the irreducible representations of Conf1,3. These contri-
butions are called “partial waves”. They can be thought of as the result of inserting
a projection onto the repn of Conf1,3 corresponding to the quasi-primary field φC :
(Ω, φ1φ2PCφ3φ4Ω), and are determined as solutions to certain eigenvalue differential
equations, obtained by inserting Casimir operators of Conf1,3 in the middle. For
scalar fields, they were computed in [6], and the decomposition of general rational
4-point functions was worked out in [7]. Positivity requires that all coefficients are
non-negative. Thus, one can test the positivity of a given (local) 4-point function.

A more efficient method is to select a quasi-primary contribution φC within the
OPE by certain differential operators in x and y, followed by putting x = y. These
operators are also determined by conformal symmetry, and were worked out in [8].

Applying such operators to the first and the last pair of fields in a correlation function
(Ω, φAφBφBφAΩ), one obtains a 2-point function of the selected quasi-primary. Its
coefficient must be positive. The most trivial such operator (that selects the quasi-
primary field 1) is just multiplication with ((x − y)2)2 and putting x = y. Its
application to the above example gives simply F (u, v)|u=0,v=1 = A, hence A must be
positive. The operator (∂x∂y) ◦ ((x − y)2)2 . . . |x=y selects the quasi-primary scalar
field of dimension 2. Its application gives

∂uF (u, v)|u=0,v=1

((x14)2)2
=

2B

((x14)2)2
,

hence B ≥ 0. Proceeding, one also gets upper bounds for B relative to A.

This method can be recursively applied to 2n-point functions, and also triangle
inequalities between scalar products can be tested, resp. turned into conditions on
the undetermined parameters.

The “new conformal bootstrap” [9] since 2008 is a program in a very similar spirit.
But here, positivity is automatic and locality is tested via the so-called “crossing
symmetry”: The two symmetries of F (u, v) above imply (for scalar fields of dimen-
sion d, and x1, x2, x3 all spacelike separated) a third one:

vdF (u, v) = udF (v, u).

By performing the OPE both for φ(x2)φ(x1)Ω and for φ(x3)φ(x4)Ω, and collecting
the contributions of a quasi-primary field φC , one finds the general structure6

F (u, v) = 1 +
∑

C
λ2
C · FC(u, v).

6The “conformal blocks” FC are the same as the previous partial waves without the denominator
(x212x

2
34)d. Hence they are also fixed by conformal symmetry, and known in the scalar case. The

term 1 is the contribution from the trivial field 1 (assuming a proper normalization of φ). The
coefficients are positive because (Ω, φ∗CφCΩ) is positive.
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This representation of F turns the crossing symmetry into the “sum rule” condition∑
C
λ2
C ·

vdFC(u, v)− udFC(v, u)

ud − vd
!

= 1.

While the conformal blocks are known, both the list of quasi-primary fields φC
appearing in the sum, and their coefficients λ2

C are model-dependent. The idea is to
determine the possible “field contents” of a conformal QFT by solving the sum rule
with positive coefficients λ2

C ≥ 0 – which turns out to very restrictive.

This program can be efficiently automatized, and has been particularly successful
in three spacetime dimensions. Specifying the scaling dimensions of a few lowest
nontrivial fields, numerical studies show that – if the sum rule can be solved at all
with the given input – the dimensions of all other fields and their coefficients are
uniquely fixed. This substantially narrows down the “space of theories” to a few
isolated islands (presumably points) [10] and a continuum far away. One can indeed
identify some well-known models originally defined by different methods, like critical
lattice models; but it should be emphasized that the conformal bootstrap is entirely
intrinsic and does not refer to any Lagrangian or (lattice) Hamiltonian.

2.6 AdS-CFT

Four-dimensional Anti-deSitter spacetime AdS1,3 is a cosmological solution of Ein-
stein’s vacuum equations with negative cosmological constant Λ and negative spatial
curvature. With R2 = 3/|Λ|, the metric can be written as

ds2 = (r2/R2 + 1)dt2 − dr2

r2/R2 + 1
− r2dΩ2.

It can be represented as the hyperboloid X ·X = −R2 in R2,3. The same is true with
five-dimensional AdS1,4, embedded in R2,4. In particular, its connected isometry
group is SO(2, 4)0 – the same as the conformal group Conf1,3 in four dimensions.

A QFT on an AdS1,4 background comes with a unitary representation of SO(2, 4)0

with an invariant vacuum vector. Moreover, because the conformal Hamiltonian as
a generator of SO(2, 4)0 is the generator of the true AdS time evolution, a positive
conformal Hamiltonian is equivalent to a positive AdS Hamiltonian.

Thus, QFT on five-dimensional AdS and CFT on four-dimensional Minkowski come
with the same symmetry group and the same class of unitary representations. Is
there a relation among the two? Obviously, the fields cannot be directly identified
because of the different spacetime dimension, and a different transformation law

U(g)Φ(X)U(g)∗ = D(g)tΦ(gX)

on AdS as compared to the conformal transformation law on Minkowski spacetime.
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Maldacena [11] has in 1998 formulated a stunning and seminal conjecture: a string
theory in an asymptotically AdS background should be “dual” to a conformal field
theory. Here, Minkowski spacetime is identified with the “boundary” of AdS at
spacelike infinity. Writing the metric as

ds2 =
R2

z2
·
[
dxµdx

µ − dz2
]

(z > 0),

the boundary is given by z = 0 (think of a distance r = 1
z
→∞) where the prefactor

diverges and only the conformal structure of the Minkowski metric dxµdx
µ survives.

More precisely, this boundary is the Dirac manifold (Sect. 2.2). The “duality” is
formulated by a relation between the path-integral prescriptions: the sources of the
CFT are identified with prescribed boundary values of the AdS field (see below).

Witten [12] has supplemented this idea by a simple model with free fields in a fixed
AdS background. It shows on the one hand the AdS-CFT relation is not necessarily
a feature of string theory; and on the other hand that a QFT on AdS with a (free)
Lagrangean may be dual to a CFT that does not have a Lagrangean (known as
“generalized free field”).

Bertola et al. [13] have extended this model to a general result: Let Φ(x, z) be an
AdS-covariant quantum field on AdS, such that z → 0 is the boundary limit and x
a Minkowski coordinate. Then, with a suitable scaling function N(z), the limit

ϕ(x) = lim
z→0

N(z)Φ(x, z)

is a conformally covariant quantum field in four dimensions. It lives on the same
Hilbert space as the AdS field, and shares the same unitary representation of
SO(2, 4)0. The limit changes the form of the AdS covariant transformation law
of Φ(x, z) into the conformal transformation law of ϕ(x).

A similar result was derived in a more abstract, purely algebraic setting [14]. This
approach also allows to study “the way backwards from the boundary to the bulk”,
i.e., recovering the fields in AdS from their boundary limits. This proves to be a
very subtle issue, and may fail in general. Whether the absence of a positive-definite
Hilbert space in string theory and gauge theory may change the situation, because
pertinent operator-algebraic NoGo theorems may not be valid, is not clear.

The above discussion shows two different relations between bulk and boundary fields:
the boundary field as a limit z → 0, and the dual boundary field defined by the fixed
boundary values of the bulk path integral. The Maldacena conjecture refers to the
latter, while the results in [12, 13, 14] refer to the former. How can these pertain to
the same AdS-CFT relation? To exhibit the issue, let

Z(f) = (Ω, eiφ(f)Ω)

be the generating functional for the (Euclidean) correlation functions (Ω, φ(x1) . . . φ(xn)Ω),
i.e., the latter can be obtained by variation of Z(f) w.r.t. the function f .
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The usual path integral constructs Z(f) by the formula

Z(f) :=

∫
D[ψ(x)] e−S[ψ]+i

∫
dxψ(x)f(x)

where the integral extends over “all classical configurations” ψ, and S[ψ] is a classical
action. Now, the limit prescription for the boundary field is the path integral over
the bulk field, with f supported only on the boundary:

Z limit
CFT(f) := lim

z→0

∫
D[Ψ(x, z)] e−SAdS[Ψ]+i

∫
dxΨ(x,z)N(z)f(x),

while the dual prescription is instead

Zdual
CFT(f) :=

∫
D[Ψ(x, r)] e−SAdS[Ψ] δ

[
lim
z
Ñ(z)Ψ(x, z)− f(x)

]
.

Most remarkably, these two path integrals coincide! Any path integral requires a
choice of a propagator. On AdS, there are two choices with different asymptotic
behaviour at infinity, comparable to Dirichlet and Neumann boundary conditions in
flat space. Evaluating the dual prescription with the “Neumann” propagator gives
the same result as the limit prescription with the “Dirichlet” propagator.

The argument is only formal (using ill-defined path integrals), but can be shown to
be stable under perturbation theory [15]. It can be traced back to symmetry, i.e.,
properties of the SO(2, 4)-invariant propagators.

The actual Maldacena conjecture involving string theory and gravity is much richer
than these purely field-theoretical considerations, and it is not proven by them. In
more modern applications, the AdS-CFT (or more generally gravity-gauge) corre-
spondence is rather not regarded as a conjecture A = B, but as a definition B := A
of conformal field theories that do not refer to an action S[ϕ] of the CFT (which
may not even exist) but instead to an auxiliary action SAdS. It has become a most
successful tool to extend the “space of theories”.

3 CFT in two dimensions

Conformal QFT in 2D is quite special. Most of its special features have their origin
in the fact that the Minkowski metric factorizes into “lightcone coordinates” x± =
x0 ± x1 = t± x:

dx2 = dt2 − dx2 = dx+ · dx−.

It eventually leads to factorization properties of conformal quantum fields, that allow
to reduce much of the analysis to one-dimensional problems (referring to either x+

or x−). This not least simplifies computations and allows for exact solutions.
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It is customary to call x± = t ± x “chiral coordinates”. The name goes back
to the fact that the two-dimensional massless Dirac equation separates into two
spinors Π±ψ(t, x) = ψ±(t± x), that depend on only one lightcone coordinate. Here
Π± are the projections on the eigenvalues ±1 of the matrix γ5 = γ0γ1, that in
four dimensions determines the chirality of the particles in the usual sense of the
orientation of the spin relative to the momentum (helicity).

A second characteristic feature of two dimensions is that there is a Lorentz-invariant
distinction between “left” and “right”, which eventually leads to the possibility of
new types of commutation relations (“braid group statistics”) beyond the familiar
Bose-Fermi alternative.

3.1 The Möbius group

Notice that Lorentz transformations Λ =

(
cosh θ sinh θ
sinh θ cosh θ

)
act on the lightcone

coordinates like scale transformations: (Λx)± = e±θx±. Clearly, translations in
lightlike directions shift one lightcone coordinate and preserve the other.

Also the conformal inversion I(t, x) = (−t,x)
t2−x2 takes to (−t ± x)/(t2 − x2) = −1/x±,

and

Cb(x
±) =

x±

1− b±x±
(b± = b0 ± b1).

Thus, the Poincaré, scale and special transformations act on x± separately like the
Möbius group Möb of fractional linear transformations

g(x) =
ax+ b

cx+ d
(ad− bc = 1).

Their composition law is the same as the product of matrices

(
a b
c d

)
, hence Möb is

isomorphic to SL(2,R)/Z2, and SO(2, 2)0 ' Möb×Möb.

As in 4D, the conformal transformations may be singular on Minkowski spacetime,
and should be regarded as regular transformations of the Dirac manifold. The two-
dimensional Dirac manifold is given by the projective null cone (X2 = ~y2−~z2 modulo
rescaling, where ~y, ~z ∈ R2). This can be written as M1,1 = (S1×S1)/Z2 and can be
parametrized by two angles (τ, ξ) such that (τ, ξ) ∼ (τ + π, ξ + π). The conformal
structure is given by dτ 2 − dξ2. The 2D Minkowski coordinates are

t =
sin τ

cos τ + cos ξ
, x =

sin ξ

cos τ + cos ξ
.

In terms of the coordinates ξ± = τ ± ξ, the identification is modulo 2π, so in these
coordinates, M1,1 is just a product S1

+ × S1
− of two “chiral” circles. The Minkowski
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chiral coordinates become

x+ = t+ x =
sin τ + sin ξ

cos τ + cos ξ
= tan

τ + ξ

2
= tan

ξ+

2
, x− = t− x = tan

ξ−

2
.

It is also convenient to introduce the complex coordinates

z± = eiξ
±

=
1 + ix±

1− ix±
∈ S1 ⊂ C ⇔ x± = i

1− z±

1 + z±
.

The map x 7→ z is called Cayley-transformation; its inverse z 7→ x is the stere-
ographic projection of the circle onto the real axis. Notice that p± = 1

2
(p0 ± p1)

are the generators of translations of x±, and k± = 1
2
(k0 ± k1) those of the special

Möbius transformations x± 7→ x±/(1 − b±x±). The generator `0 = 1
2
(p0 + k0) is

the sum of `0,± = 1
2
(p± + k±), and `0,± are the generators of the shifts of the chiral

angles ϕ± = rotations of the complex variables z± ∈ S1. In particular, exp(π`0,±)
rotates by π, hence z 7→ −z, hence x 7→ −1/x is the chiral inversion I.

3.2 Chiral fields and non-chiral fields

We have already seen that the conformal group Conf(2) = Möb×Möb also factorizes
into two Möbius groups acting (by fractional linear transformations) independently
on the two chiral coordinates x±. In QFT, the Lie algebra generators are given by i
times self-adjoint operators Pµ, M01, D, Kµ. The chiral generators P± = 1

2
(P0±P1),

D± = 1
2
(D±M01), K± = 1

2
(K0∓K1) commute for different chiralities, and for each

chirality satisfy (index suppressed)

i[D,P ] = P, i[D,K] = −K, i[P,K] = −2D.

Another feature of 2D is that the angle-preserving group is in fact much larger than
SO(2, 2)0 = Möb×Möb because any pair of functions x+ 7→ g+(x+), x− 7→ g−(x−)
rescales the metric by a factor (namely, g+′(x+)·g−′(x−)). g± must be monotonously
increasing (orientation preserving) maps of the circle on itself, i.e., the symmetry
group is Diff+(S1) × Diff+(S1) (where smoothness is assumed). Clearly, Möb ⊂
Diff+(S1), and we shall see that Möb is the maximal subgroup under which the
vacuum may be invariant. Yet, this infinite-dimensional symmetry group allows to
extract much more a priori results, cf Prop. 3.1 and Prop. 3.2.

Using x± as coordinates for fields φ(x+, x−), the infinitesimal transformation laws
are fixed by a pair of two chiral scaling dimensions h± such that h+ + h− = d
(the proper scaling dimension under the dilations generated by D = D+ +D−) and
h+−h− = s (the “spin”, rather helicity, under the boost M01 = D+−D1). The chiral
generators transform only the dependence on the corresponding chiral coordinate.
Suppressing the respective other chiral coordinate, the transformation laws become

i[P, φ(x)] = ∂xφ(x), i[D,φ(x)] = (x∂x + d)φ(x), i[K,φ(x)] = (x2∂x + 2xd)φ(x).
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These transformation laws along with the invariance of the vacuum constrain the
correlation functions to be of the form7

(Ω, ϕ1(x1) . . . ϕ(xn)Ω) =
∏

i<j

f(u+
I , u

−
I )

(x+
ij)

µ+ij(x−ij)
µ−ij

where the exponents µ±ij = µ±ji satisfy
∑

j:j 6=i µ
±
ij = h±i , and f is a function of the

cross-ratios uI =
xijxkl
xikxjl

(for either chirality, xij = xi − xj ∈ R).

We have already mentioned the massless Dirac field decomposing in two components
that depend only on x± = t± x. Such fields are called “chiral fields”. Chiral fields
also arise whenever there are conserved (traceles symmetric) tensor fields, hence their
presence is related to symmetries. The most important example is the stress-energy
tensor:

Proposition 3.1 Lüscher-Mack theorem. The stress-energy tensor of a 2D con-
formal QFT decomposes into two chiral fields T+(x+) and T−(x−) such that T+ com-
mutes with T−, and each of them has commutation relations (suppressing the index)

i[T (x), T (y)] = −(T (x) + T (y)) · δ′(x− y) +
c

24π
· δ′′′(x− y) 1

with model-dependent non-negative constants c (= c±) called “central charge”.

By definition, a conformal stress-energy tensor is a covariant conserved and sym-
metric tensor field Tµν such that

Pµ =

∫
dx T0µ(t, x), Mµν =

∫
dx (xµT0ν − xνT0µ)(t, x),

D =

∫
dx xµT0µ(t, x), Kµ =

∫
dx (2xµx

νT0ν − x2T0µ)(t, x)

are the t-independent generators of the conformal group. The Lorentz generators
are independent of t because the stress-energy tensor is conserved: ∂µTµν = 0 and
symmetric: Tµν = Tνµ; D is independent of t iff the stress-energy tensor is traceless:
T µµ = 0, and this ensures that also Kµ are independent of t. Because eisDPµe

−isD =
esPµ, Pµ has scaling dimension 1, and hence Tµν must have scaling dimension 2.

Proof of Prop. 3.1: Because Tµν is traceless and conserved, it has only two indepen-
dent components T00 = T11 and T01 = T10. The conservation of T implies

(∂0 + ∂1)(T00 − T01) = 0, (∂0 − ∂1)(T00 + T01) = 0,

so that T± := T00 ± T01 depend on one chiral coordinate x± only:

T+ = T+(x+), T− = T−(x−).

7Here, inverse powers (xij)
−µ (i < j) are understood as distributions limε↘0(xi − xj − iε)−µ,

cf footnote 5.
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T+(x+) commutes with T−(y−) because the point x can be shifted in the −-direction
(without changing the operator T (x+)) until it is spacelike from y, where the two
operators commute by locality. For the commutator of T+(x+) with T+(y+), the
same argument applies provided x+ 6= y+ (and similar for the other chirality).
Hence, for either chirality (suppressing the index)

i[T (x), T (y)] = A0(y)δ(x− y) + A1(y)δ′(x− y) + · · ·+ A3(y)δ(3)(x− y).

The sum stops at A3 because T has scaling dimension 2, and hence An has scaling
dimension 3 − n. This can be seen by applying the dilations eisD · · · e−isD to the
ansatz. In particular, A3 must be a multiple of 1 that is customarily called c/24π,
and c is called “central charge”.

One can determine the fields A0, A1, A2, using the above infinitesimal transformation
laws together with the relations

P =

∫
dx T (x), D =

∫
dx xT (x), K =

∫
dx x2T (x).

Thus, by taking integrals
∫
dx over the ansatz, multiplied by xn (n = 0, 1, 2), one

can compute An(y), and gets the claimed commutator formula.

Because the 2-pt fn of T is N ·(x−y−iε)−4, the vacuum expectation of i[T (x), T (y)]
is N · i((x− y− iε)−4− (x− y+ iε)−4) = −N · i

6
∂3
x((x− y− iε)−1− (x− y+ iε)−1) =

2πN
6
δ′′′(x− y). By comparison, c = 8π2N . By positivity, N must be positive, hence

c > 0. (If c = 0, then T (x)Ω = 0, and by the Reeh-Schlieder theorem, T (x) = 0.) �

A similar argument holds for commutators i[T±(x±), φ(y+, y−)]: By locality is must
be a sum of derivatives of δ(x−y) (the other chiral coordinate suppressed) with fields
as coefficients, and the integrals with xn (n = 0, 1, 2) fix the lowest contributions:

i[T (x), φ(y)] = φ′(y)δ(x− y)− hφ(y)δ′(x− y) + . . .

There are finitely many additional terms “+ . . . ” involving higher derivatives of δ(x−
y) multiplying fields of lower dimension. A field without “+ . . . ” is called primary.
It is the field of lowest scaling dimension within a family of fields (“secondaries”)
coupled among each other by commutators with the stress-energy tensor.

Integrating with an arbitrary real test fn f(x), one gets for primary fields

i[T (f), φ(y)] = f(y)φ′(y) + hf ′(x)φ(y).

This is the infinitesimal form of the transformation law under diffeomorphisms x 7→
γ(x) for γ(x) ≈ x+ f(x)

U(γ)φ(x)U(γ)∗ =
(dγ(x)

dx

)h
· φ(γ(x)).
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Thus, the stress-energy tensor is the generator of the diffeomorphism symmetry,
U(γ) = eiT (f).8

Now, we apply the Cayley transform, defining the field φ(z+, z−) on S1 × S1 by
treating the Cayley transform as a Möbius transformation with complex coeffients:

φ(z+, z−) := (dx+/dz+)h+(dx−/dz−)h− · φ(x+, x−).

This field is in general only periodic if h± are integers, otherwise the field will live
on a covering of the circles (hence of M1,1). For the chiral stress-energy tensor T+

one has h+ = 2, h− = 0 (and converse for T−). Thus, T (z) = (dx/dz)2 T (x) are
periodic on S1, and have a Fourier decomposition

T (z) = − 1

2π

∑
n∈Z

Lnz
−n−2,

such that (in the original coordinates)

Ln =
1

2

∫
dx (1− ix)1−n(1 + ix)1+n T (x),

and in particular

L0 =
1

2
(P +K), L±1 =

1

2
(P −K)± iD.

The commutation relations of Prop. 3.1 turn into the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δn+m,0,

which is a central extension (the c-term) of the Lie algebra of Diff+(S1).

Möbius invariance of the vacuum is equivalent to LnΩ = 0 for n = 0,±1. We have
L∗n = L−n and [L0, Ln] = −nLn, hence Ln decreases eigenvalues of L0 by n. L0 is
positive because P and K = IPI are positive. Thus, L0Ω = 0 implies LnΩ = 0
for n ≥ 0. In contrast, L−nΩ 6= 0 for n > 1 because ||L−nΩ||2 = (Ω, [Ln, L−n]Ω) =
c

12
n(n2 − 1) 6= 0. Thus, the vacuum vector Ω cannot be diffeomorphism invariant.

3.3 Representations

Now, let φ(x) be a primary field of chiral dimension h. The primary commutation
relations [T (y), φ(x)] turn into

2i[Ln, φ(x)] =
(1 + ix

1− ix
)n · [(1 + x2)φ′(x) + 2h(1− inx)φ(x)].

8More precisely, a function f defines a one-parameter group of diffeomorphisms by ∂tγt(x) =
f(γt(x)), hence infinitesimally γt(x) = x + tf(x). Then γt is implemented by U(γt) = eitT (f) =
eiT (tf).
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Because the generator P is positive, the operator e−yP is well-defined for y > 0.
This means that one can extend the vector function9 Ψ(x) = φ(x)Ω = eiPxφ(0)Ω to
Ψ(x+ iy) := eiP (x+iy)φ(0)Ω ∈ H. Ψ(ζ) is an analytic function in the complex upper
halfplane C+; under the Cayley transform, it is an analytic extension from z ∈ S1

to |z| < 1.

The commutation relations between Ln and P imply that

2iLnΨ(ζ) =
(1 + iζ

1− iζ
)n · [(1 + ζ2)Ψ′(ζ) + 2h(1− inζ)Ψ(ζ)].

In particular, the vector |h〉 := Ψ(z)|z=i is an eigenvector of L0 that is annihilated
by all Ln (n > 0):

L0|h〉 = h|h〉, Ln|h〉 = 0 (n > 0);

in other words: a ground state (or “lowest weight state”) of the Virasoro algebra.
Thus, every primary field of chiral dimension h gives rise to a positive-energy rep-
resentation of the Virasoro algebra with lowest weight h.

This is remarkable: Recall that the Virasoro algebra is rather a re-writing of the
commutation relations of the conformal QFT generated by the chiral stress-energy
tensor. Thus, primary fields provide inequivalent representations (with different
spectrum of L0) of the same field algebra.

What is even more remarkable, is that the lowest weight h labelling (and in fact
determining) the representation is nontrivially quantized without any model input.
The argument goes like this [17]:

Because |h〉 is a ground state, the excited states are spanned by L−nk . . . L−n1|h〉
with eigenvalues h + n1 + · · · + nk. By virtue of the commutation relations, the
operators may be ordered such that nk ≥ · · · ≥ n1 > 0. One can compute the scalar
product among these vectors as functions of c and h, just by using the Virasoro
algebra. E.g., ||L−2|h〉||2 = 〈h|[L2, L−2]|h〉 = 〈h|4L0 + c

2
|h〉 = 4h+ c

2
(if |||h〉|| = 1).

Proposition 3.2 Three cases may arise.

1. Either the scalar product is positive definite. This happens for c > 1 and h > 0,
and for c = 1 and h > 0 but h 6= (1

2
n)2 (n ∈ N).

2. Or it is indefinite, i.e., there are states of negative norm square. Such values of
(c, h) do not give rise to a Hilbert space, and must be discarded. This happens
for c < 0, and for most values of h when 0 ≤ c ≤ 1.

9In the literature one finds formulations as if the field φ(x), and not only the vector Ψ(x) were
defined at complex points x+ iy. This is not quite correct.
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3. Or it is positive semi-definite. Thus, the excited states span a Hilbert space,
but they are not linearly independent. This happens for c = 1 and h = (1

2
n)2

(n ∈ N), as well as for a discrete set of values of c ∈ [0, 1):

c = cn = 1− 6

n(n+ 1)
(n = 3, 4, . . . ),

and for each of them, for a finite set of values of h:

h = hp,q(cn) =
[np− (n+ 1)q]2 − 1

4n(n+ 1)

(
1 ≤ p ≤ n− 1

1 ≤ q ≤ n

)
.

Along with Prop. 3.1, these a priori quantizations of field parameters and repns are
without precendent in QFT.

E.g., for n = 3 (c = 1
2
), the admissible values are h = 0, h = 1

2
, and h = 1

16
, and

they come with vanishing linear combinations of excited states

L−1|0〉 = 0, (4L−2 − 3L2
−1)|1

2
〉 = 0, and (3L−2 − 4L2

−1)| 1
16
〉 = 0.

The ground state with h = 0 is the vacuum state, corresponding to the trivial
“primary field” φ(x) = 1, |0〉 = Ω. The representation of the Virasoro algebra
generated by this state is, of course, just the vacuum representation of the chiral
stress-energy tensor with central charge c = 1

2
. Indeed, the stress-energy tensor of

the chiral components of the free real massless Fermi field in 2D ψ±(x±) = Π±ψ(t, x)
(cf Sect. 3; Majorana = Dirac plus reality condition), has c = 1

2
, see Sect. 3.4. It

is naturally represented on the Fermi Fock space, and this repn splits into two sub-
repns with even and odd Fermi number. These can be identified with the repns of
lowest weights h = 0 and h = 1

2
.

In contrast, the representation of lowest weight h = 1
16

is a new repn that cannot be
realized by free fields. Instead, it can be identified with a sector of the Lorentzian
version of the 2D Ising model at the critical value of the coupling constant, where
the lattice correlation length diverges. At critical points, the continuum limit of
lattice models is well-defined, and they become Euclidean quantum field theories.

The primary field of scaling dimensions h+ = h− = 1
16

corresponds in the Euclidean
to the magnetization density of the critical Ising model, which has scaling dimension
(= critical exponent) d = h+ + h− = 1

8
. Thus, h = 1

16
belongs to a genuinely

interacting QFT, without any perturbative construction, nor lattice approximation,
nor input of a Lagrangean.

The above classification of repns of the Virasoro algebra includes infinitely many
quantum field theory models with nontrivial interactions. Some of the models with
c < 1 have been identified with critical points of other Lorentzian spin models; but
most of them were not previously known.
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3.4 Models

Realizations of these admissible values can be obtained along the following lines.

The simplest free field chiral model is the massless Majorana field (= Dirac field
with a hermiticity condition). Under the chiral projections P± = 1

2
(1 + γ0γ1), it

splits into two fields ψ± that, by virtue of the Dirac equation, depend on x± only.
(This is the origin of the name “chiral”). These hermitean chiral Fermi fields satisfy
{ψ(x), ψ(y)} = 2πδ(x− y) with 2-pt fn (Ω, ψ(x)ψ(y)Ω) = −i

x−y−iε (scaling dimension

h = 1
2
). Its chiral stress-energy tensor is T = − 1

8π
:ψ
↔
∂ ψ: with c = 1

2
.

Two hermitean Fermi fields combine into a complex Fermi field ψ = ψ1 + iψ2 with

stress-energy tensor T = − 1
8π

:ψ∗
↔
∂ ψ: with c = 1. One can construct the chiral

current (the generator of the complex phase transformation) j = 1
2
:ψ∗ψ: with 2-pt fn

(Ω, j(x)j(y)Ω) = −1
(x−y−iε)2 (scaling dimension h = 1). Most remarkably, the current

is again a free field: all its correlation functions coincide with those of the derivative
j± = (∂0±∂1)ϕ of the massless scalar Klein-Gordon field. It is a Bose field satisfying
[j(x), j(y)] = 2πiδ′(x − y), and the complex Fermi stress-energy tensor can also be
written as T = 1

4π
:j2:. This phenomenon is known as “bosonization”.

If a theory contains several primary currents ja of dimension 1, their commutation
relations are fixed by locality, conformal symmetry and the Jacobi identity:

−i[ja(x), jb(y)] = fabc jc(x) · δ(x− y) +
k

2π
gab · δ′(x− y) 1,

where fabc and gab are the structure constants and the (suitably normalized) Cartan
metric of a simple Lie algebra g. This can be viewed as a non-abelian generalization
of the above “abelian” current algebra [j(x), j(y)] = 2πiδ′(x− y). The parameter k
is called the “level”. Their stress-energy tensor is a multiple of gab:j

ajb: (“Sugawara
construction”), and its central charge c > 1 is a rational function of k and the
dimension and rank of the Lie algebra (c = 3k

k+2
for su(2)).

The currents on the circle are defined via the Cayley transform: ja(z) := dx/dz ·
ja(x); under the Fourier decomposition

ja(z) =
1

2πi

∑
n∈Z

janz
−n−1,

the current algebra turns into the infinite-dimensional Lie algebra (“Kac-Moody
algebra” or “affine Lie algebra”)

[jam, j
b
n] = ifabc j

c
m+n + kgabmδm+n,0 · 1.

In particular, ja0 satisfy the commutation relations of the underlying Lie algebra g.
The primary commutation relations with the stress-energy tensor turn into

[Lm, j
a
n] = −njam+n.
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Thus, jan (n > 0) lower the eigenvalue of L0, hence ground states must be annihilated
by them. Because ja0 fix the eigenvalue, the ground states (and likewise all other
eigenspaces of L0) form a unitary representation λ of g. Selecting the ground state
repn λ fixes the repn of the affine Lie algebra on the excited states. In analogy to
the Virasoro case, one can compute scalar products among the states obtained by
applying ja−n (n > 0) to the ground state multiplets, and impose semi-definiteness.
One finds that the level k must be a positive integer, and that not all unirepns λ of
g are allowed.

Recall that unirepns of simple Lie algebras are characterized by their “weight di-
agrams” = sets of joint eigenvalues of the Cartan subalgebra (= maximal system
of commuting generators). For su(2), the CSA is given by L3 with eigenvalues =
weights m ∈ 1

2
Z, and a weight diagram is the integer-spaced set m = −j, . . . ,+j;

for su(3) the Cartan generators are the diagonal matrices λ3 and λ8, and the weight
diagrams are the triplet, octet, dekuplet etc diagrams familiar from flavour symme-
try and QCD. Each irreducible unirepn has a unique “highest” weight. The set of
all highest weights form a cone in the weight lattice, called the “Weyl alcove” (=
the set j = 0, 1

2
, 1, . . . for su(2)).

One finds that the allowed ground state repns λ of the affine Lie algebras have
highest weight in a “truncated Weyl alcove” depending on the level (= the set of j =
0, 1

2
, . . . k

2
for su(2), see the exercise). Thus, one has again an apriori quantization of

the free parameter of the field algebra (here: the level k), and of the representations
of the algebra.

Exercise: For g = su(2), let j±n = j1
n ± ij2

n such that [j+
1 , j

−
−1] = −2j3

0 + k and
[j3

0 , j
±
n ] = ±j±n , and let |`m〉 be a ground state with eigenvalues m of j3

0 and `(`+1) of
~j0

2. Compute recursively the norm square of (j−−1)n|`m〉 and conclude that m ≤ k
2
,

hence ` ≤ k
2
, and k must be a non-negative integer. (The case k = 0, hence

` = m = 0 would imply that all vectors ja−n|0〉 vanish.)

The non-abelian current algebras with compact simple Lie algebras and level k = 1
can be constructed in terms of multiplets of free Fermi fields, schematically ja =
:ψ∗τaψ:. Higher levels can be constructed by the construction ja⊗ 1 + 1⊗ ja under
which the level is additive. These models are thus very close to free fields – but
already their representations with nontrivial λ do not occur in the free field Fock
spaces, and the associated primary fields are interacting quantum fields, see below.

More interesting models can be obtained by the “coset construction”: Given a chiral
theory B and a subtheory A whose fields transforms correctly under the stress-energy
tensor of B (e.g., the current algebras for a Lie algebra and a Lie subalgebra), one
may consider the fields from B that commute with all fields of A. They form
another subtheory C of B. Its stress-energy tensor is TC = TB − TA with central
charge cC = cB − cA. It is possible to choose current algebras A and B such that
cC < 1, and all admitted values cn = 1 − 6

n(n+1)
can be found [20]. Also for these,



KH Rehren: Conformal QFT, Heidelberg Graduate Days 2018 22

the representations with hpq 6= 0 are not contained in any free field Fock space. How
can the associated nontrivial primary quantum fields be constructed?

In general, their chiral scaling dimensions hpq are not integers, so they cannot be
chiral local fields. Instead, they must be fields with two nontrivial chiral dimensions
h± such that the helicity h+−h− is integer. Hence, they have nontrivial commutation
relations with two chiral stress-energy tensors T±(x±).

Such fields are not free fields. Yet, one has a method to compute their correlation
functions, that we illustrate for central charges c± < 1. Because the scalar product of
the excited states of the Virasoro algebra is only semi-definite (case 3 in Prop. 3.2),
there are polynomials in L−n that annihilate |h〉. E.g., for c = 1

2
(Lorentzian Ising

model), there are the null vectors (4L−2 − 3L2
−1)|1

2
〉 and (3L−2 − 4L2

−1)| 1
16
〉. Hence

P (L−n)φ(x)Ω|x=i = 0. Using this equation in a correlation function, and commut-
ing the polynomial through the other fields, gives a chiral differential equation for
the correlation function (“Ward identity”), that has a finite-dimensional solution
space [18]. E.g., the null vector (3L−2 − 4L2

−1)| 1
16
〉 = 0 turns into a lengthy partial

differential equation

D(∂1, ∂2, ∂3)(Ω, φ(x1) . . . φ(x4)Ω)|x4=i = 0.

Inserting its cross-ratio representation as f(u)

(x12x34)1/8
(where u = x12x34

x13x24
), one gets a

(hypergeometric) ordinary differential equation for f(u). It has two linearly inde-

pendent solutions f1,2(u) =
√

1±
√

1− u. (In general, the solutions will be trans-
cendental functions. They are called “conformal blocks”, cf Sect. 2.5.)

The same argument applies for both chiralities, hence the 4-point function of the field
ϕ(x+, x−) with scaling dimensions h+ = h− = 1

16
must be (x+

12x
+
34)−

1
16 · (x−12x

−
34)−

1
16

= (x2
12x

2
34)−

1
16 times a quadratic expression in f1,2(u+) and f1,2(u−).

Locality of ϕ (symmetry under permutations of fields at spacelike distance) fixes
this quadratic combination to be a multiple of f1 · f1 + f2 · f2, see the next section.
All the higher correlation functions can be determined in a similar way [19]. In fact,
the case c = 1

2
is the Lorentzian version of the critical Ising model, and the field

ϕ(x+, x−) is the magnetization density.

This is a non-perturbative construction of a truely interacting quantum field.

3.5 Braid group statistics

The conformal block functions have branch cuts that are in conflict with symmetry
under exchange x+

i ↔ x+
i+1. Only in certain quadratic combinations

(Ω, φ(x1, . . . , xn)Ω) =
∑

AB
NABfA(x+

i )fB(x−i )/(powers of x±ij),
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the cuts cancel each other in precisely the correct way to ensure locality of the
correlation function under (x+

i , x
−
i ) ↔ (x+

i+1, x
−
i+1). The solutions (for each central

charge cn) with diagonal coefficient matrixN (in a suitable basis) are called “minimal
models”. Their n-point conformal blocks for every n have explicitly known integral
representations, and the coefficients NAB can be explicitly computed.

This gives an infinite family of interacting theories generalizing the Ising model.

An inspection of the precise form of the chiral conformal blocks fA(x1, . . . , xn) ex-
hibits a new feature: under exchange of xi ↔ xi+1 they turn into linear combinations
Ri(±)BAfB (times powers of cross-ratios, that absorb the change of the power factors),
where the matrices Ri(±)BA depends only on the sign of xi − xi+1.

This feature can be interpreted as commutation relations among chiral “exchange
fields” [19]

ψa(x)ψb(y) = R(±)cdabψc(y)ψd(x).

The above quadratic expressions in terms of chiral conformal blocks are then just a
consequence of the form of the local fields

φ(x+, x−) =
∑

nab ψa(x
+)⊗ ψb(x−),

and the labels A of the conformal blocks are collective labels standing for a chain of
indices a of n exchange field.

Since x = (x+, x−) and y = (y+, y−) are spacelike separated if either x+ > y+

and x− < y−, or vice versa, the commutativity is achieved by combining exchange
matrices R(+) with R(−) for the two chiralities, that invert each other. At timelike
separation, the combinations R(+) with R(+) fail to cancel, hence the Huygens
principle does not hold for the non-chiral fields φ(x+, x−).

These commutation relations are called braid group statistics, because the ma-
trices Ri for the exchanges in different positions i, i + 1 satisfy the defining re-
lations of the braid group. These are the same as for the permutation group:
bibi+1bi = bi+1bibi+1 and bibj = bjbi if |i− j| > 1; but NOT bi = b−1

i .

The braid group statistics is a nontrivial generalization of anyonic statistics where
R(±) = e±iα with an arbitrary (“any”) angle α. The exchange matrices of the
minimal models yield previously unknown repns of the braid group, that turned
out to provide a link between the the Jones polynomial (a topological invariant for
knots regarded as closed braids) and Jones index (a famous invariant in the theory
of vonNeumann algebras and noncommutative probability theory).

3.6 Diffeomorphism symmetry

We have seen that the stress-energy tensor is the generator of an infinite-dimensional
symmetry of diffeomorphisms of S1. This symmetry respects algebraic relations
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(commutators, etc), but the ground state is not invariant, cf Sect. 3.2.

The self-commutator of the stress-energy tensor in Prop. 3.1 is the infinitesimal form
of the transformation law

U(γ)T (x)U(γ)∗ =
(dγ(x)

dx

)2

· T (γ(x))− c

24π

Dγ(x)

Dx
,

where Dγ(x)
Dx

:= γ′′′

γ′
− 3

2
(γ
′′

γ′
)2 is the Schwarzian derivative satisfying the cocycle re-

lation Dγ1◦γ2(x)
Dx

= γ′2(x)2 · Dγ1(γ2(x))
Dγ2(x)

+ Dγ2(x)
Dx

. It vanishes exactly on the Möbius

transformations: D
Dx

ax+b
cx+d

= 0. The presence of the Schwarzian derivative means
that T (x) is not a primary field.

(Exercise: Verify the composition law for U(γ1 ◦ γ2) = U(γ1)U(γ2), and show that
for one-parameter groups γs as above, differentiation wrt s at s = 0 gives back the
commutation relations of Prop. 3.1. These two properties ensure that infinitesimal
diffeo’s integrate to the finite transformation law.)

The above transformation law should actually be understood on S1 (recall that
x± ∈ R is just a singular choice of coordinate on the Dirac manifold S1 × S1 where
conformal fields are defined without singularities). It reads exactly the same in terms
of γ(z) ∈ S1 and the field T (z) as defined in Sect. 3.2, by virtue of the properties of
the Schwarz derivative.

But the rhs of the transformation law also respects the commutation relations, when
γ is not invertible, or defined only on open subsets of S1. As an example, consider
γL(z) = L

2πi
· log(z), that maps S1 to a real interval of length L. On R, this is

γL(x) = L
π
· arctanx. Hence one may define the stress-energy tensor on the interval

IL with periodic boundary conditions by the pullback

TL(x) =:
(dγ−1

L (x)

dx

)2

· T (γ−1
L (x))− c

24π

Dγ−1
L (x)

Dx
.

In contrast to diffeo’s of S1, this field is not unitarily equivalent to T (x), but it
satisfies the same commutation relations.

Defining both chiral fields TL±(x±) and TL00(t, x) = TL11(t, x) := 1
2
(TL+(t + x) +

TL−(t − x)), TL01(t, x) = TL10(t, x) := 1
2
(TL+(t + x) − TL−(t − x)), one arrives at a

traceless conserved stress-energy tensor on the “periodic strip” R× IL. It describes
a conformal QFT in a periodic box of size L with Hamiltonian HL =

∫
IL
dx TL00(t, x).

Inserting the definitions in terms of the originial chiral stress-energy tensors on S1,

HL =
2π

L
·
(1

2
(L0+ + L0−)− c

24

)
.

The subtraction is due to the Schwarz derivative. Thus, the true Hamiltonian on
the strip is the sum of the two conformal Hamiltonians shifted by c

24
.
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In a similar way, one can define conformal quantum field theories on many other
“spacetimes” rather than R × IL. They all share the same local structure, i.e.,
commutation relations involving δ functions in the chiral coordinates. Because the
new fields are defined in terms of the original ones, they can be represented on the
original Hilbert spaces; but they are in general not unitarily equivalent.

In String Theory, the strip is used as a paramatrization of the world sheet of a
closed string. This is the reason why the conformal Hamiltonian shifted by c

24
is the

relevant internal string Hamiltonian. In fact, in order to avoid an anomaly of the

Poincaré symmetry, c
24

has to equal 1, hence c
!

= 24. In the traditional canonical
quantization of bosonic ST, the central charge is related to the spacetime dimension
D of the target space where the string moves, and the condition translates into

D
!

= 26.

The above presentation is the Lorentzian version of what is found in most text books
on CFT under the name “CFT on Riemann surfaces”. Euclidean QFT is an analytic
continuation of the correlation functions of Lorentzian QFT to “imaginary time”,
so that our chiral coordinates become complex variables x± = iy ± x, related by
x− = −x+. Under the Cayley transform, z− = z+. Thus, chiral fields are “holomor-
phic” and “anti-holomorphic” in a single complex variable z; and by replacing local
diffeomorphisms as above by holomorphic functions γ(z), one arrives at Euclidean
CFT on Riemann surfaces.

3.7 Characters

Consider the ground states |h〉 as in Sect. 3.3 and the representation spaces of the
Virasoro algebra generated by them. The spectrum of L0 is given by h+n (n ∈ N0)
with multiplicity given by the linearly independent states L−nk . . . L−n1|h〉 with total
excitation number n1 + · · · + nk = n. If no null vectors occur (e.g., if c > 1 and
h > 0), then this is a simple combinatorial problem that is solved by the partition
function

Tr e−βL0 = th · p(t), p(t) ≡
∏∞

n=1

1

1− tn
(t = e−β).

The coefficients of the power series p(t) count the number of inequivalent partitions
of a positive integer N into positive integers nk ≥ · · · ≥ n1, each nk corresponding
to a ladder operator L−nk . Namely, the geometric series for each factor (1− tn)−1 =∑

r≥0 t
rn accounts for all states obtained by applying L−n r times.

When there are null vectors (c ≤ 1 or h = 0), then the combinatorial partition
function p(t) overcounts states, and there arise correction factors in the numerator.
For h = 0, the correction factor is just 1 − t, cancelling the geometric series for
n = 1, thus taking care of the fact that L−1|0〉 = 0. For c < 1 and h = hp,q > 0, the
correction factors are explicitly nown, but more complicated [21].
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One calls
χh(t) := Tr he

−β(L0− c
24

)

in the representation generated by the lowest weight vector |h〉 the “characters” of
the Virasoro algebra. In particular, the thermodynamic partition function of the

CFT in the box (Sect. 3.6) is given by
∑
χh+(t) · χh−(t), evaluated by t = e

− 2π
L·kBT ,

where the sum extends over all pairs (h+, h−) such that the products of chiral ground
states |h+〉⊗ |h−〉 occur in the Hilbert space. For the “minimal models” (Sect. 3.4),
this is the sum over all h+ = h− = hp,q(c).

(For current algebra models, one defines modified characters χ(t, q) = Tr e−β(L0− c
24
−hiQi),

where Qi are the Cartan generators of the underlying Lie algebra measuring some
internal quantum numbers (“isospin”), hi are associated parameters like magnetic
fields, and qi = ehi .)

The most remarkable feature of the characters is a “high-temperature-low-temperature
symmetry”called “modularity”. Notice that the characters are easily evaluated at
low temperature by just keeping a few leading terms of the power series in t � 1,
while they clearly diverge at high temperature, t ↗ 1. The modularity allows to
quantify the divergence by an detailed asymptotic behaviour (and extract high-
temperature thermodynamical equations of state).

One writes t = e2πiτ and considers the “modular group” SL(2,Z)/Z2 of transforma-
tions

τ 7→ g(τ) =
kτ + l

mτ + n
, (k, l,m, n ∈ Z, kn−mn = 1),

that take the upper complex halfplane C+ to itself, hence |t| < 1 to |g(t)| < 1. It is
generated by T : τ 7→ τ + 1 and S : τ 7→ − 1

τ
, satisfying relations S2 = (ST )3 = id.

The former just takes th 7→ e2πih · th, hence

χh(T (t)) = e2πi(h− c
24

) · χh(t);

the latter takes |t| ≈ 1 to |S(t)| ≈ 0. In thermodynamic terms, 2πiτ = −β, hence
S(β) = 4π2/β takes high to low temperature.

Modular symmetry of the characters is the statement that there exist unitary ma-
trices (also called T and S) such that

χa(T (t, . . . )) = Tabχb(t, . . . ), χa(S(t, . . . )) = Sabχb(t, . . . ).

The index a runs over the lowest weight vectors of the model (i.e., the labels (p, q)
in the minimal models, and over the “truncated Weyl alcove” of lowest weights of
the underlying Lie algebra in current algebra models), and . . . stands for possible
“magnetic” parameters in the current algebra cases, that are also transformed by T
and S. T is always the diagonal matrix with entries e2πi(h− c

24
).
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These formulas are nontrivial generalizations of Ramanujan’s inversion formula (fa-
mous in number theory) for the combinatorial partition function

t′−
1
24p(t′) = (i/τ)

1
2 · t−

1
24p(t)

where t = e2πiτ , t′ = S(t) = e−2πi/τ . This formula can already be used to determine
the high-temperature behaviour of the characters for c > 1.

In the general case with primary fields that are not hermitean, the matrices S and
T actually represent SL(2,Z) (and not only the quotient by Z2). They satisfy the
relations

S2 = (S−1T )3 = C

where C is the matrix Cab = δab, where a stands for the representation generated
by the hermitean conjugate field. Obviously C2 = 1. Moreover, the remarkable
“Verlinde formula” holds [22]: ∑

d

SadSbdS
∗
cd

S0d

= N c
ab.

Here, the sum runs over all (finitely many) representations, 0 stands for the vacuum
representation (h = 0), and N c

ab are integer “fusion coefficients” that count the
number of copies of a field ϕc appearing in the operator product expansion of ϕa ·ϕb.
These remarkable properties were established explicitly for Virasoro and affine Lie
algebras, and were shown to pass to their coset models. They could also be derived
by a formal argument using path integrals, by the following idea: A partition func-
tion at inverse temperature β can be represented as a path-integral over a periodic
interval β of imaginary time. If the system is in a periodic box of length 2π, one
gets a torus with the sides β and 2π. But the path integral over a torus should be
invariant under exchange of the two sides, hence the partition function should be
the same for inverse temperatures β and 4π2/β. In a CFT in 2D, the total partition
function is a sum of products of chiral characters, and the invariance of the total
partition functions requires a linear transformation law for the chiral characters.

Accepting this formal argument, the modular transformation law of characters was
elevated to a postulate, and used for classifications of unknown models [23]. The
mere fact that the unitary matrix S produces non-negative integers in the Verlinde
matrix, and satisfies the SL(2,Z) relations with the diagonal matrix T , poses strong
constraints on the entries of T , i.e., the on scaling dimensions of a theory. Unfortu-
nately, it turned out that there exist solutions to the modular properties for which
an associated CFT does not exist.

There exists an approach to QFT that exploits properties of vonNeumann algebras
(of observables on a Hilbert space) rather than properties of fields. Almost every-
thing we have learned about CFT can be reformulated in this framework. In this
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approach, “primary fields” are replaced by “representations of the chiral algebra”
(we have already used this relation), and the fusion coefficients N c

ab arise as mul-
tiplicities in the decomposition of a “product of representation”, that shares many
properties with the tensor product of representations of a group (although it is not
a tensor product!).

One can formulate braid-group statistics (Sect. 3.5) very naturally in this framework
as a unitary representation of the braid group (“statistics operators”); and it is a
most intriguing fact that one can extract from this representation unitary matri-
ces S and T (certain traces of simple statistics operators) that satisfy the SL(2,Z)
relations and the Verlinde formula [25, 24, 27], but the relation to modular transfor-
mations of characters can be established in general only for the matrix T . (This fact
is a conformal Spin-Statistics theorem beyond the Fermi-Bose alternative that does
not hold in two spacetime dimensions.) In cases where modular transformations
under S are known, the modular and the braid group S matrices also coincide.

3.8 Boundary CFT

CFT in 2D admits an intersting explicit version of the AdS-CFT correspondence[26].
The standard chart of AdS2 is the Minkowski halfspace R1,1

+ = {(t, x) : x > 0} with
the metric ds2 = 1

c2
(dt2 − x2). Here, x is the same as the coordinate called z in

Sect. 2.6, measuring the distance from the boundary. Thus, a QFT on AdS2 is a
QFT on the halfspace, with a boundary at x = 0. In the construction to be sketched,
this QFT will also be conformal, hence it is called “boundary CFT”. The sketch will
be highly non-technical.

A point (t, x) in the halfspace is specified by the pair x± = t ± x that may be
viewed as “advanced and retarded” times on the time axis, x+ > x−. Now suppose
a chiral CFT is given on the time axis R, e.g., a stress-energy tensor with c < 1.
For (t, x) ∈ R1,1

+ , define

T00(t, x) = T11(t, x) =
1

2
(T (x+)+T (x−)), T01(t, x) = T10(t, x) =

1

2
(T (x+)−T (x−)).

This is a stress-energy tensor on R1,1
+ constructed from a single chiral stress-energy

tensor (unlike the situation in Prop. 3.1 where the 2D stress-energy tensor is com-
posed of two opposite chiral stress-energy tensors). It is local on the halfspace, and
satisfies the boundary condition T01(t, 0) = 0. Because T01 is the energy flow, the
boundary condition means that no energy flows out of the boundary.

We say that an operator is “localized in an interval” if it is a chiral field smeared
over the interval or any function of smeared fields. All operators localized in a given
interval form an algebra.

For (t, x) ∈ R1,1
+ , define intervals I+ε = (x− − ε, x+ + ε) and I−ε = (x− + ε, x+ − ε);
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i.e., I+ε is slightly larger than I−ε. Consider the algebra of operators localized in I+ε

that commute with all operators localized in I−ε. In the limit ε→ 0, these “relative
commutants” contain local fields ϕ(t, x) on the halfspace. The crucial feature of
locality is an immediate consequence of the construction via relative commutants:
If two points x, y are spacelike separated, and WLOG y to the right of x, then I+ε(x)
is contained in I−ε(y) for sufficiently small ε, hence ϕ(y) commutes with ϕ(x).

Moreover, the stress-energy tensor Tµν(x) provides generators of conformal trans-
formations of the halfspace fields. Now consider only fields at a distance x > R
from the boundary, and take the limit R → ∞. This is the same as “moving the
boundary to the left”. The resulting algebra is a CFT in 2D without boundary. One
can even show that if the chiral theory is a stress-energy tensor with c < 1, then the
resulting CFT is the associated minimal model, cf Sect. 3.4.

This constructs an interacting local CFT on R1,1 from a free chiral CFT on R.
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[15] M. Dütsch, KHR: A comment on the dual field in the AdS-CFT correspondence,
Lett. Math. Phys. 62 (2002) 171-184.

[16] G. Mack: Introduction to conformal invariant quantum field theory in two and more
dimensions, in: ’tHooft, G., et al. (eds.), Nonperturbative QFT, pp. 353-383, Plenum
Press, NewYork (1988)

[17] D. Friedan, Z. Qiu, S. Shenker: Conformal invariance, unitarity, and critical expo-
nents in two dimensions, Phys. Rev. Lett. 52 (1984) 1575-1578.

[18] A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Infinite conformal symmetry in
twodimensional quantum field theory, Nucl. Phys. B241 (1984) 333-380.

[19] KHR, B. Schroer: Exchange algebra on the light-cone and order/disorder 2n-point
functions in the Ising field theory, Phys. Lett. B198 (1987) 84-88; Einstein causality
and Artin braids, Nucl. Phys. B312 (1989) 715-750.

[20] P. Goddard, A. Kent, D. Olive: Unitary representations of the Virasoro and super-
Virasoro algebras. Commun. Math. Phys. 103 (1986) 105-119.

[21] V.G. Kac: Infinite Dimensional Lie Algebras. Cambridge University Press, Cam-
bridge (1985)

[22] E. Verlinde: Fusion rules and modular transformations in 2D conformal field theory,
Nucl. Phys. B 300 (1988) 360-376.

[23] A. Cappelli, C. Itzykson, J.-B. Zuber: The A-D-E classification ofminimal and A
(1)
1

conformal invariant theories, Commun. Math. Phys. 113 (1987) 1-26.
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