Classical dynamics

$$F:\left(\begin{array}{c}p'\\q'\end{array}\right)=\left(\begin{array}{c}p-V'(q)\\q+p'\end{array}\right)$$

Forbidden process in classical dynamics

 $\mathcal{A}_a \cap F^{-n}(\mathcal{B}_b) = \emptyset$ for $\forall n$, if $\mathcal{A}_a, \mathcal{B}_b (\in \mathbb{R})$ are dynamically separated.

Quantum dynamics

$$K(\boldsymbol{a},\boldsymbol{b}) = \langle \boldsymbol{b} | \hat{\boldsymbol{U}}^{n} | \boldsymbol{a} \rangle = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \prod_{j} dq_{j} \prod_{j} dp_{j} \exp\left[\frac{i}{\hbar} S(\{q_{j}\},\{p_{j}\})\right]$$

Tunneling process in quantum dynamics

 $K(a, b) \neq 0$ even if $\mathcal{A}_a, B_b \in \mathbb{R}$ are dynamically separated.

$$F:\left(\begin{array}{c}p'\\q'\end{array}\right)=\left(\begin{array}{c}p+K\sin q\\q+\omega\end{array}\right)$$

 $\mathcal{M}_{n}^{a,b} = A_{a} \cap F^{-n}(B_{b}) = \emptyset$ for $\forall n \in \mathbb{Z}$ if B_{b} is outside the classically allowed region.

where

classically allowed

$$A_a = \{ (p,q) \in \mathbb{R}^2 | p = p_a \}$$
$$B_b = \{ (p,q) \in \mathbb{R}^2 | p = p_b \}$$

Initial value representation of complex orbits

Set of initial conditions contributing to semiclassical propagator

$$\mathcal{M}_n^{\alpha,*} = \{ q_0 = \xi + i\eta \mid p_0 = \alpha \in \mathbb{R}, -\infty < p_n < \infty \}$$

Completely integrable map

Completely integrable map

Nonintegrable map

Nonintegrable map

Set $\mathcal{M}_n^{\alpha,*}$

Nonintegrable map

Modfied standard K = 1.2

4-th order polynomial potential

$K^+\cap \mathcal{I}$

 $\mathcal{M}_n^{lpha,st}$

$K^+\cap \mathcal{I}$

