
15. Carbon-based electronics:  
Carbon nanotubes and graphene 



15.1 Graphene – A two-dimensional material 

Graphene is a basic 2D structure for building carbon 
materials of all other dimensionalities. It can be wrapped 
up into 0D buckyballs, rolled into 1D nanotubes or stacked 
into 3D graphite. 

Graphene: 2D layer of carbon 
atoms in a honeycomb lattice 
(trigonal lattice with two-
dimensional basis) 
 
2D crystal should not exist 
Mermin-Wagner-Theorem: 
2D structures unstable due to 
long wavelength thermal 
phonons  
 
2004 fabricated on a 
substrate by the groups of K. 
S. Novoselov and A. K. Geim  
→ Nobel prize 2010 

A. K. Geim et al., Nature 
Materials 6, 183 (2007) 



Graphene on a substrate 
optical detection 

Free-standing (better free-hanging) graphene 

A. Fasolino et al., Nature 
Materials 6, 858 (2007) 

A. K. Geim et al., Nature 
Materials 6, 183 (2007) 

A. K. Geim et al., Nature 
Materials 6, 183 (2007) 

Formation of ripples 

15.1 Graphene – A two-dimensional material 

• Anharmonic interactions 
stabilize graphene 

• Height variations ~1 Å 
• Length of fluctuations ~80 Å 
 



15.1 Graphene – Properties of carbon 

2s 

sp2 hybrid orbitals 

http://javierdelucas.es/orbitalescuanticos.htm http://de.wikipedia.org/wiki/Hybridorbital 

• Carbon has 4 valence electrons 
• 2s, 2px and 2py orbitals form bonding sp2 hybrid orbitals in a plane 
• 2pz orbital is perpendicular to the plane and contains 1 free electron per C atom 

1s 2s 2px 2py 2pz 1s 2pz 
2sp2 



15.1 Graphene – Crystal lattice 

A. H. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009) 

Triangular lattice with basis of 
two atoms.  
Lattice vectors 

1 2(3, 3),  (3, 3)
2 2
a aa a= = −

 

Carbon-carbon distance 
a≈1.42 Å. 

Reciprocal lattice vectors 

1 2
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3 3

b b
a a
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= = −
 

Dirac points 
2 1 2 1(1, ),  ' (1, )
3 33 3

K K
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= = −
 

Nearest-neighbor vectors 

1 2 3
1(1, 3),  (1, ),  (1,0)

2 2 3
a a aδ δ δ= = − = −

  



15.1 Graphene – Electronic structure 
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15.1 Graphene – Electronic structure 

J.-C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79, 677 (2007) 

Consideration of all energy bands 



• Linear dispersion at two inequivalent K points or „valleys“, called K and K‘ 
• Charge carriers behave like massless Dirac particles 
• Two sublattices lead to „pseudospin“ (spinor structure of the wave function) 

A. H. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009) 
M. I. Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge University Press (2012) 

15.1 Graphene – Electronic structure 
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Expansion around Dirac points 
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Low-energy Hamiltonian from expansion around K 
(upper sign) and K’ (lower sign) 
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15.1 Graphene – Electronic structure 

Density of states 
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A. H. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009) 



T. T. Heikkila, The Physics of Nanoelectronics, Oxford University Press (2013) 

15.1 Graphene – Electronic structure 
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Low-energy Hamiltonian from expansion around K (upper sign) and K’ (lower 
sign) in real space 

Solution 
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x y e
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ψ
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 arctan( / )x yq qφ =
sgn( )s E=

Energy eigenstates are eigenstates of the helicity operator  
(“spin” in direction of motion or opposite) 
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2

qh
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2
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Valley K (K’):  
Electrons have positive (negative), 
holes negative (positive) helicity 



M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nature Physics 2, 620 (2006) 
T. T. Heikkila, The Physics of Nanoelectronics, Oxford University Press (2013) 

15.1 Graphene – Klein tunneling (or paradox) 

Transmission probability T through a 
100-nm-wide barrier as a function of 
the incident angle for graphene. 

Chirality prevents backscattering 
• Perfect transmission through a square barrier 

(for edges sharp compared to Fermi wavelength) 

Disadvantage: No “gap” for carriers as needed for a 
transistor. 
 



Fig. 1. Looking through one-atom-thick crystals. (A) Photograph of a 50-µm aperture partially covered by 
graphene and its bilayer. The line scan profile shows the intensity of transmitted white light along the 
yellow line. (B) Transmittance spectrum of single-layer graphene (open circles). Slightly lower 
transmittance for < 500 nm is probably due to hydrocarbon contamination. (Inset) Transmittance of white 
light as a function of the number of graphene layers (squares). The dashed lines correspond to an 
intensity reduction by πα with each added layer. 

R. R. Nair et al., Science 320, 1308 (2008) 

15.1 Graphene – Optical properties (just for fun) 

Graphene: Relativistic electrons (except for vF instead of the speed of light c). 
The interaction of light with relativistic particles is described by the fine structure constant α. The Fermi 
velocity is only a prefactor for the Hamiltonian of graphene and the interaction with light, and, accordingly, 
the coefficient may not change the strength of the interaction. 



15.2 Bilayer graphene – Electronic structure 
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• Quadratic dispersion 
for V=0 

• Voltage difference 
between the layers 
allows to open a gap 

15.2 Bilayer graphene – Electronic structure 



Evolution of gap closing and reopening by changing the doping level by 
potassium adsorption. Experimental and theoretical bands (solid lines) (A) 
for an as-prepared graphene bilayer and (B and C) with progressive 
adsorption of potassium are shown. The number of doping electrons per unit 
cell, estimated from the relative size of the Fermi surface, is indicated at the 
top of each panel.  

 T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 951 (2006) 

15.2 Bilayer graphene – Electronic structure 

→ Further graphene stacks with more layers are possible. 



Why boundaries? 

Experimentally: Finite structures 

A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 - 191 (2007) 

M. Koch et al., Nat. Nanotechnol. 7, 713 (2012) 

15.3 Graphene nanoribbons 



Edges – Armchair vs. zigzag 

(a) Graphene with indicated cuts 
(b) Armchair edge 
(c)  Zigzag edge 
 
GNR:  Graphene Nanoribbon 

S.M.-M. Dubois, Z. Zanolli, X. Declerck and J.-C. Charlier, Eur. Phys. J. B 72, 1 (2009)  

15.3 Graphene nanoribbons 



P. Dietl, Diploma thesis, KIT 2009 

3( 1)
2ac acW N a= − 3( 1)

2zz zzW N a= −

Armchair Zigzag 

C-C distance  a=1.42 Å 
lattice constant 0 3a a=

15.3 Graphene nanoribbons 



Armchair nanoribbon 

Dirac equation Tight Binding 

347
2acW a=

349
2acW a=

P. Dietl, Diploma thesis, KIT 2009 

There is no gap 
for every third 
ribbon 
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3 1acN m= −
Metallic for: 

15.3 Graphene nanoribbons – Band structure 



Dirac equation Tight Binding 

Deviations in the degeneracy of bands 
→ continuous limit not completely justified 

Armchair nanoribbon 

15.3 Graphene nanoribbons – Band structure 
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15.3 Graphene nanoribbons – Band structure 
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L. Brey und H. A. Fertig, 
Phys. Rev. B 73, 235411 (2006) 

The dispersion-free state is 
located at the edge and decays 
exponentially towards the 
middle.  

Zigzag nanoribbon 

15.3 Graphene nanoribbons – Band structure 



X. Jia et al., Science 323, 1701 (2009) 

zigzag  
armchair 

Controlled Formation of Sharp Zigzag and Armchair Edges 

Armchair edges rearrange to 
zigzag edges when a bias 
voltage is applied 

15.3 Graphene nanoribbons – Controlling edges 



Conductance of ribbons 
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determined by number of modes 
below the Fermi energy.  

S. Datta, Electronic Transport in Mesoscopic Systems, 
Cambridge University Press (1997)  Y.-M. Lin et al., Phys. Rev. B 78, 161409(R) (2008) 

Transmission probability: τn=0,1 

Conductance quantization: 

15.3 Graphene nanoribbons – Charge transport 



Conductance of ribbons – ideal case 

E 
(t

) 

E 
(t

) 

E 
(t

) 

Zigzag Armchair – metallic Armchair – semiconducting 

15.3 Graphene nanoribbons – Charge transport 



Experimental results 

Y.-M. Lin et al.,  
Phys. Rev. B 78, 161409(R) 2008 

“Subband formation in 
graphene nanoribbons” 

W = 30 nm 
(a) L= 900 nm 
(b) L= 1.7 µm 
Voltage 10 mV 

(a) ΔG=1.7 µS 
(b) ΔG=0.6 µS 

2

0
2 77.5 SeG
h

µ= ≈

Compare 

→ Low total transmission 

15.3 Graphene nanoribbons – Charge transport 



15.4 Carbon nanotubes 

Three types of nanotubes: 
zigzag, armchair, chiral 
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Chiral vector 

1 2hC na ma= +
  

Circumference 

hU C=


Translational vector 

1 21 2T t a t a= +
  

J.-C. Charlier et al., Rev. Mod. 
Phys. 79, 677 (2007) 



Metallic tube for 

3     1, 2,3,...n m l l− = =

15.4 Carbon nanotubes – Electronic structure 

J.-C. Charlier et al., Rev. Mod. Phys. 79, 677 (2007) 

Zone-folding 
approximation 



15.4 Carbon nanotubes – Electronic structure 

Metallic tube Semiconducting tube 

exp( ) exp(2 / 3)hiK C iπ⋅ = ±
 

exp( ) 1hiK C⋅ =
 

2hq C lπ⋅ =
 

( ) exp( ) ( ) ( )h hk k kr C ik C r rψ ψ ψ+ = ⋅ =
     

Condition for phase of wave function 

1 2 ( , )hC na ma n m= + =
  

k K q= +
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hq C lπ⋅ = ±
 

3 1n m l− = ±3n m l− =

Condition fulfilled for  
• (n,n) tube: armchair 
• (n,0) tube: zigzag, if n=3l 

J.-C. Charlier et al., Rev. Mod. 
Phys. 79, 677 (2007) 
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15.4 Carbon nanotubes 
Beyond the zone-folding approximation 

Curvature effects 
a) C-C Bond normal and parallel to axis are different (different lengths) 
b) no planar symmetry (pz orbitals not exactly parallel) 

→ Mixing of σ and π states 

G. A. Steele et 
al., Science 325, 
1103 (2009) 

Strong coupling between single-electron tunneling and 
nanomechanical motion 



a, Typical three-dimensional structure of a metal-based junction with unbound (1), bound (2) 
and cluster-bound (3) molecules. Drifting gold surface atoms (4) limit the stability and render 
the potential landscape of the junction undefined because of remote protrusions (5). 
Stochastic sulphur-gold switching in the anchor group affects (7) the conductance of the 
molecule under test (6). b, A graphene-based junction constrains the structure to two 
dimensions. It consists of hydrophobic single-layer graphene (1) on a hydrophilic substrate. 
Large-area anchor groups (2) provide low-contact resistances. Fault-tolerant design to 
compensate edge defects (3) is achieved by spacers (4) and cages (6). Self-alignment 
(indicated by the arrows) of the functional unit (7) is attained by hydrophilic side groups (5). 

15.5 Graphene nanostructures in molecular electronics 

E. Lörtscher, Nature Nanotechnology 8, 381 (2013) 



15.5 Graphene nanostructures in molecular electronics 

F. Prins et al., Nano Lett. 11, 4607 (2011) 



15. Summary 

Graphene: Two-dimensional carbon 
• Symmetry of the lattice leads to bandstructure that causes unique electronic 

properties: Low energy excitations close to Dirac points behave like massless, 
relativistic fermions. 

 
Graphene nanoribbons (GNRs) 
Two kinds of (main) edges in GNRs: armchair and zigzag. 
• Armchair GNRs: Some with, some without band gap (semiconducting vs. 

metallic). 
• Zigzag GNRs are metallic, exhibit dispersionless states at high momenta. 
• Quantized conductance at low temperatures.  

 
Carbon nanotubes 
• (n,n) tubes are of type armchair; (n,0) tubes are of type zigzag. 
• Tubes can be semiconducting or metallic. 
• Armchair tubes are always metallic. 
• Used as quantum dots (see chapter 8). 
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