Lecture Three:
 Dynamics and Spectroscopy of Hydrogen Bonds

Oliver Kühn

For personal use only. References for reprinted figures are available upon request.

Table of Contents

- Hydrogen bonds everywhere
- IR spectra of protonated ammonia clusters
- dissipative H -bond wave packet motion
- IR spectra vs. structure of base pairs in gas phase
- correlated H -bond motion solvated base pairs

Why Hydrogen Bonds ?

H-bonds \& proton transfer \rightarrow Physics, Chemistry, Biology

- the theoreticians answer:
$>$ H-bond: van der Waals \rightarrow covalent
$>$ kinetic isotope effect (4 isotopes)
$>$ proton is quantum particle
$>$ tunneling even at room temperature
> H-bond dynamics is multidimensional
- M. L. Huggins (1936)
... hydrogen bridge theory will lead to a better understanding of the nature and behavior of complicated organic structures, such as proteins, starch, cellulose, sugar....

H^{+}in $\mathrm{H}_{2} \mathrm{O}$

Alpha-Helix

L. Pauling (1951)

DNA Structure

Freezing OfWater
$>$ fluctuating hydrogen bonded network
spontaneous formation of polyhedral nucleus

Artificial Water Channels

1D water wire

H-bonded network + fluctuations

concerted water flow (bursts)

Proton Pump

Nature Of H-Bonds

- donor-acceptor interaction involving hydrogen
- covalent A-H $\rightarrow \mathrm{H}^{+\delta} \rightarrow$ interaction with B (lone pair or polarizable π electrons)
- H-bond interactions: $>$ electrostatic (directionality)
$>$ charge transfer
$>$ dispersion
> exchange repulsion
- H-bond geometry:

IR Spectra

Weak H-Bonds

$\mathrm{E}_{\mathrm{B}}=<4 \mathrm{kcal} / \mathrm{mol}$
$\Delta v=<10 \%$
$r_{A B}=3.2-4.2 \AA$
$\mathrm{r}_{\mathrm{BH}}=2.2-3.2 \AA$
directionality
$>$ tunneling

- HCl...benzene (T-form), C-H...B in crystals, forced contacts

Moderate H-Bonds

$E_{B}=4-15 \mathrm{kcal} / \mathrm{mol}$
$\Delta \nu=10-25 \%$
$r_{A B}=2.5-3.2 \AA$
$r_{B H}=1.5-2.2 \AA$

- neutral D/A:
$>\mathrm{O}-\mathrm{H} . . . \mathrm{O}$
- intramolecular H -bonds

- biological systems:
> packing, solvation, conformation

Strong H-Bonds

$\mathrm{E}_{\mathrm{B}}=14-40 \mathrm{kcal} / \mathrm{mol}$
$\Delta v=25 \%$
$r_{A B}=2.2-2.5 \AA$
$r_{B H}=1.2-1.5 \AA$

- low/vanishing barrier
> delocalized wave function
sensitive to environment

- [FHF] ${ }^{-}$O-H...O,$~ N-H . . . N^{-}$, enzymes (?), forced contacts

IR Spectroscopy of Strong H-Bonds in Gas Phase

Protonated Ammonia Clusters $\mathrm{NH}_{4}{ }^{+}\left(\mathrm{NH}_{3}\right)_{n}$

$n=1$
$n=3$

- N...H...N HBs
- NH_{3} channels
- proton wires

NH_{3}-Networks

AmtB NH3 channel (E. coli)

NH_{3}-wires

7-hydroxyquinoline• $\left(\mathrm{NH}_{3}\right)_{3}$

[^0]IR Spectrum of $\mathrm{N}_{2} \mathrm{H}_{7}{ }^{+}$

$\mathrm{N}_{2} \mathrm{H}_{7}{ }^{+}$: 6D Model

- kinetic energy for non-Cartesian coordinates
model coordinates
- assumptions:
- use constraints to restrict motions to model coordinates
- no kinetic coupling between proton and NH_{3} fragments
- torsion decoupled from vibrations

$$
\begin{array}{rlrl}
T= & -\frac{\hbar^{2}}{2 \mu_{p}}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)-\frac{\hbar^{2}}{2 \mu_{R}} \frac{\partial^{2}}{\partial R^{2}} & & g(u)=\left(1-u^{2}\right)\left(3 m_{\mathrm{H}}+m_{\mathrm{N}}\right) /\left(3 m_{\mathrm{H}} u^{2}+m_{\mathrm{N}}\right) \\
& -\frac{\hbar^{2}}{2 I_{0}} \sum_{i=1,2} \frac{\partial}{\partial u_{i}} g\left(u_{i}\right) \frac{\partial}{\partial u_{i}}, & u_{p}=\frac{\cos \theta_{i}}{7 m_{\mathrm{H}}\left(3 m_{\mathrm{H}}+m_{\mathrm{N}}\right)} & I_{0}=3 m_{\mathrm{H}} R_{\mathrm{NH}}^{2} \\
\mu_{R}=\frac{1}{2}\left(3 m_{\mathrm{H}}+m_{\mathrm{N}}\right)
\end{array}
$$

- potential energy and dipole moment surfaces
- n -mode correlation expansion

$$
\begin{aligned}
& V(\mathbf{Q})=\sum_{i} V^{(1)}\left(Q_{i}\right)+\sum_{i<j} V^{(2)}\left(Q_{i}, Q_{j}\right)+\sum_{i<j<k} V^{(3)}\left(Q_{i}, Q_{j}, Q_{k}\right)+\ldots \\
& V^{(2)}\left(Q_{i}, Q_{j}\right)=V(\mathbf{Q})-\sum_{i} V^{(1)}\left(Q_{i}\right) \\
& \mu(\mathbf{Q})=\sum_{i} \mu^{(1)}\left(Q_{i}\right)+\sum_{i<j} \mu^{(2)}\left(Q_{i}, Q_{j}\right)
\end{aligned}
$$

- recall MCTDH

$$
\begin{gathered}
i \hbar \dot{A}_{J}=\sum_{K} H_{J K} A_{K} \\
H_{J K}=\int d \mathbf{Q} \phi_{j_{1}}^{(1)}\left(Q_{1}\right) \ldots \phi_{j_{f}}^{(f)}\left(Q_{f}\right) H \phi_{k_{1}}^{(1)}\left(Q_{1}\right) \ldots \phi_{k_{f}}^{(f)}\left(Q_{f}\right)
\end{gathered}
$$

- preferential: sum of products form

$$
H=\sum_{r=1}^{s} c_{r} \prod_{\kappa=1}^{f} h_{r}^{(\kappa)} \rightarrow \quad H_{J K}=\sum_{r=1}^{s} c_{r} \prod_{\kappa=1}^{f}\left\langle\phi_{j_{\kappa}}^{(\kappa)}\right| h_{r}^{(\kappa)}\left|\phi_{k_{\kappa}}^{(\kappa)}\right\rangle
$$

$\mathrm{N}_{2} \mathrm{H}_{7}{ }^{+}$: ZPE Effect

- reaction barrier: $\sim 350 \mathrm{~cm}^{-1}$ (>kT at RT)
- structure determined by ZPE effect

K. Asmis, M. Johnson, O.K. et al., Angew. Chem. 46, 8691 ('07)

NH-Stretching Mode

- extreme red-shift due to strong H-bond

Dissipative H-Bond Wave Packets

- oscillations in IR pump-probe spectra

Experiment
$\mathrm{T}_{1}\left(\mathrm{v}_{\mathrm{OD}}\right) \sim 200 \mathrm{fs}$
$\mathrm{T}_{\text {cool }}$ ~ 20 ps
$\mathrm{V}_{\mathrm{osz}} \sim 100 \mathrm{~cm}^{-1}$

A Simple Model

- adiabatic separation of highand low-frequency modes
- Franck-Condon like progression

absorption
- excitation of wave packets possible
- theoretically reproduced with reaction surface model

Vibrational Energy Relaxation

- two-color pump-probe spectroscopy

Probe		Pump	$\bar{\uparrow}$
$\overline{\delta_{O H}}$	$\overline{\delta_{O H}}$	$\bar{\uparrow}$	$v_{C O}$
\bar{Z}			

$$
\begin{aligned}
& \mathrm{T}_{1}\left(\mathrm{v}_{\mathrm{OH}}\right)=200 \mathrm{fs}, \mathrm{~T}_{1}\left(\delta_{\mathrm{OH}}\right)=800 \mathrm{fs} \\
& \text { relaxation via } \delta_{\mathrm{OH}}=1(>30 \%) \\
& \mathrm{T}_{\text {cool }} \sim 20 \mathrm{ps}
\end{aligned}
$$

5D Dissipative Model

4-mode correlation potential - B3LYP/6-31+G(d,p)

$v_{\mathrm{HB}}=63 \mathrm{~cm}^{-1}$

$\gamma_{1}=792 \mathrm{~cm}^{-1}$

$$
\gamma_{2}=690 \mathrm{~cm}^{-1}
$$

\qquad

$$
\text { labeling of states } \longrightarrow\left(\mathrm{v}_{v}, \mathrm{v}_{\delta}, \mathrm{v}_{\gamma_{1}}, \mathrm{v}_{\gamma_{2}}\right)
$$

- system-bath model
- low-frequency H -bond mode

$$
H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{HB})}=Q_{\mathrm{HB}} \sum_{\xi} c_{\xi} x_{\xi}
$$

- out-of-plane deformation

$$
H_{\mathrm{S}-\mathrm{R}}^{(\gamma)}=Q_{\gamma} \sum_{i, \xi} g_{\gamma, i, \xi} q_{i} x_{\xi}
$$

\rightarrow 3rd order model	$v_{\gamma_{1}} / v_{\gamma_{2}}=1$
system	
$v_{\gamma_{1}} / v_{\gamma_{2}}=0$	

- potential energy curves and IR spectrum

- cascaded energy relaxation

K. Heyne et al. JPCA 108, 6083 (2004)

Hydrogen Bonds in DNA

Guanine
Cytosine

Base Pairs in Gas Phase:The Quest for the Structure

- IR-UV Double Resonance Spectra

Kleinermanns et al., ChemPhysChem, 4, 838 (2003)

A-T Isomers

HF/6-31G(d,p)

$1038 \mathrm{~cm}^{-1}$

WC

B

$1433 \mathrm{~cm}^{-1}$

Optimized Structures

| HF
 $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ | $\mathrm{DFT} / \mathrm{B} 3 \mathrm{LYP}$
 $6-31+$
 $+\mathrm{G}(\mathrm{d}, \mathrm{p})$ | $\mathrm{MP2}$
 TZP |
| :---: | :---: | :---: | :---: |
| $0 \mathrm{~cm}^{-1}$ | $0 \mathrm{~cm}^{-1}$ | $0 \mathrm{~cm}^{-1}$ |
| $395 \mathrm{~cm}^{-1}$ | $364 \mathrm{~cm}^{-1}$ | $406 \mathrm{~cm}^{-1}$ |
| $266 \mathrm{~cm}^{-1}$ | $466 \mathrm{~cm}^{-1}$ | $420 \mathrm{~cm}^{-1}$ |

Target Modes

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{as}}=3530 \mathrm{~cm}^{-1} \\
& \mathrm{v}_{\mathrm{sy}}=3326 \mathrm{~cm}^{-1} \\
& \mathrm{v}_{\mathrm{NH}}=3295 \mathrm{~cm}^{-1}
\end{aligned}
$$

$v_{\mathrm{as}}=3698 \mathrm{~cm}^{-1}$

$v_{s y}=3411 \mathrm{~cm}^{-1}$

$$
v_{N H}=2981 \mathrm{~cm}^{-1}
$$

A

B

$\mathrm{v}_{\mathrm{as}}=3683 \mathrm{~cm}^{-1}$
$v_{\mathrm{as}}=3689 \mathrm{~cm}^{-1}$

$$
v_{\mathrm{sy}}=3386 \mathrm{~cm}^{-1}
$$

$v_{N H}=3098 \mathrm{~cm}^{-1}$

$v_{\mathrm{sy}}=3442 \mathrm{~cm}^{-1}$

$v_{N H}=3284 \mathrm{~cm}^{-1}$

Potential Energy Surfaces

- expand PES in normal mode coordinates

$$
\mathbf{Q}=\left\{Q_{a s}, Q_{s y}, Q_{N H}\right\}
$$

- use (exact) 3-mode expansion

$$
V(\mathbf{Q})=\sum_{i} V^{(1)}\left(Q_{i}\right)+\sum_{i<j} V^{(2)}\left(Q_{i}, Q_{j}\right)+\sum_{i<j<k} V^{(3)}\left(Q_{i}, Q_{j}, Q_{k}\right)
$$

$$
\begin{array}{ll}
V^{(1)}: & \text { MP2 energies on numerical grid } \\
V^{(2)}+V^{(3)}: & \text { DFT up to 4th order derivative }
\end{array}
$$

- 1-mode dipole moment

$$
\mu(\mathbf{Q}) \approx \sum_{i} \mu^{(1)}\left(Q_{i}\right)
$$

Structure vs. IR Absorption

Dynamics of DNA Base Pairs in Solution

correlated dynamics

anticorrelated dynamics

- H-Bond dynamics / correlations
- vibrational energy flow
- environmental effects

\longrightarrow IR spectrosopy

Solvated Base Pairs

QM/MM Trajectory

- 9-ethyl-8-phenyladenine : 1-cyclohexyluracil in $100 \mathrm{CDCl}_{3}$ at 298 K

N-H...N HB Geometry

Lineshape Model

- IR absorption spectrum

$$
\sigma(\omega)=\frac{1}{\pi} \operatorname{Re} \int_{0}^{\infty} d t \exp \left\{i\left(\omega-\left\langle\omega_{10}\right\rangle\right) t-t / 2 T_{1}\right\} J(t)
$$

- phenomenological decay (non-adiabatic
 transitions)
- cumulant approximation

$$
\begin{aligned}
J(t) & \simeq \exp \left\{-g_{10}(t)\right\} \\
g_{10}(t) & \equiv \int_{0}^{t} d \tau \int_{0}^{\tau} d \tau^{\prime}\left\langle\delta \omega_{10}\left(\tau^{\prime}\right) \delta \omega_{10}(0)\right\rangle_{\mathrm{eq}}
\end{aligned}
$$

On-The-Fly Potentials

On-the-Fly Correlations

N-H...N

$$
\begin{aligned}
& \Gamma_{\text {FWHM }}=56(36) \mathrm{cm}^{-1} \\
& \Gamma_{\mathrm{FWHM}}^{\mathrm{exp}}=53 \mathrm{~cm}^{-1}
\end{aligned}
$$

2nd Order Cumulant Approximation

- quantum-classical approximation

- non-Gaussian statistics of fluctuations for N-H...O
hydrogen bond

Gap-Autocorrelation N-H...N

$$
C(t)=\sum_{j} S_{j} \omega_{j}^{2}\left[\operatorname{coth}\left(\hbar \omega_{j} / 2 k T\right) \cos \omega_{j} t+i \sin \omega_{j} t\right]
$$

- reconstruction of spectral density

Nonlinear Spectroscopy of Base Pairs

- open questions
role of population relaxation $\frac{1}{T_{2}}=\frac{1}{2 T_{1}}+\frac{1}{T_{2}^{*}}$
pump-probe spectroscopy:
$\mathbf{k}_{1}=\mathbf{k}_{2}=\mathrm{k}_{\text {pump }} \quad \mathbf{k}_{s}=\mathbf{k}_{3}=\mathbf{k}_{\text {probe }}$
- correlated motion

2D spectroscopy:

$$
\mathbf{k}_{s}=-\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}
$$

\longrightarrow model for excited state absorption needed

Overtone Excitations

S. Woutersen et al., JCP 121, 5381 (2004) Y. Yan, O.K., JPCB 111, 5254 (2011)

2D IR Spectroscopy

(i) ground state bleaching/ stimulated emission
(ii) excited state absorption
(iii) cross peak absorption

- correlated dynamics

[^0]: S. Khademi et al. Science 305, 1587 (2004)
 C. Tanner et al. Science 302, 1736 (2003)

