Lecture Two:
 Concepts of (Non-)linear Spectroscopy

Oliver Kühn

For personal use only. References for reprinted figures are available upon request.

Etienne-Jules Marey
Wikipedia
A. H. Zewail,
http://www.bibalex.org/English/lectures/printable/zewail.htm)

Pump-Probe Spectroscopy

A.H. Zewail

Femtochemistry—Ultrafast Dynamics of the Chemical Bond, Vols. I and II, World Scientific, New Jersey, Singapore (1994)

Predissociation

Two-Dimensional Spectroscopy

Overview

- electrodynamics of dielectric media
- response function formalism
- example: two-level system
- pump-probe spectroscopy
- two-dimensional spectroscopy

Electrodynamics of Media

- wave equation for dielectric medium

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \Delta\right) \mathbf{E}=-\frac{1}{\varepsilon_{0}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{P}[\mathbf{E}]
$$

- incoming fields $\mathbf{E}(\mathbf{r}, t)=\sum_{j=1}^{n}\left[\mathbf{E}_{j}(t) \exp \left(i \mathbf{k}_{j} \mathbf{r}-i \omega_{j} t\right)+\right.$ c.c. $]$
- signal field $\boldsymbol{E}_{\mathrm{s}}$ is generated ($\mathrm{n}+1$ wave mixing)
- polarization field

$$
\mathbf{P}(\mathbf{r}, t)=\mathbf{P}^{(1)}(\mathbf{r}, t)+\mathbf{P}_{\mathrm{NL}}(\mathbf{r}, t)
$$

- optically thin medium

$$
\left(c^{2} \Delta-n_{s}^{2} \frac{\partial^{2}}{\partial t^{2}}\right) \mathbf{E}(\mathbf{r}, t)=\frac{1}{\varepsilon_{0}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{P}_{\mathrm{NL}}(\mathbf{r}, t)
$$

- equations for fields coupled since

$$
\mathbf{P}_{\mathrm{NL}}(\mathrm{r}, t)=\mathbf{P}_{\mathrm{NL}}[\mathbf{E}]
$$

- linearization possible since $E_{s} \ll E_{j}$

- wave mixing due to $\mathbf{P}_{\mathrm{NL}}[\mathbf{E}] \propto \mathbf{E}^{p}$ yields combinations

$$
\mathbf{k}_{s}= \pm \mathbf{k}_{1} \pm \mathbf{k}_{2} \pm \ldots \pm \mathbf{k}_{n} \quad \omega_{s}= \pm \omega_{1} \pm \omega_{2} \pm \ldots \pm \omega_{n}
$$

- general form of nonlinear polarization

$$
\mathbf{P}_{\mathrm{NL}}(\mathbf{r}, t)=\sum_{n=2,3, \ldots, \ldots} \sum_{s} \mathbf{P}_{s}^{(n)}(t) \exp \left(i \mathbf{k}_{s} \mathbf{r}-i \omega_{s} t\right)
$$

- consider one-dimensional case

$$
\left(c^{2} \frac{\partial^{2}}{\partial x^{2}}-n_{s}^{2} \frac{\partial^{2}}{\partial t^{2}}\right) E(\mathbf{r}, t)=\frac{1}{\varepsilon_{0}} \frac{\partial^{2}}{\partial t^{2}} P_{\mathrm{NL}}(\mathbf{r}, t) \quad \begin{array}{ll}
k_{s}^{\prime} & =\omega_{s} n_{s} / c \\
k_{j} & =\omega_{j} n_{j} / c
\end{array}
$$

- in general due to dispersion effects one has $k_{s} \neq k_{s}^{\prime}$
- ansatz for fields

$$
P_{\mathrm{NL}}(\mathbf{r}, t)=P_{s}(t) \exp \left(i k_{s} x-i \omega_{s} t\right) \quad E(\mathbf{r}, t)=E_{s}(x, t) \exp \left(i k_{s}^{\prime} x-i \omega_{s} t\right)
$$

- within slowly varying envelope approximation

$$
\begin{array}{r}
\left|\frac{\partial P_{s}}{\partial t}\right| \ll\left|\omega_{s} P_{s}(t)\right| \quad\left|\frac{\partial E_{s}}{\partial t}\right| \ll\left|\omega_{s} E_{s}(x, t)\right| \quad\left|\frac{\partial^{2} E_{s}}{\partial x^{2}}\right| \ll\left|k_{s} \frac{\partial E_{s}}{\partial x}\right| \\
i k_{s}^{\prime} \frac{\partial E_{s}(x, t)}{\partial x}=-\frac{\omega_{s}^{2}}{2 c^{2} \varepsilon_{0}} P_{s}(t) \exp (i \Delta k x) \quad \Delta k=\left|\mathbf{k}_{s}-\mathbf{k}_{s}^{\prime}\right|
\end{array}
$$

- integration for a slab [0:L]

$$
E_{s}(L, t)=\frac{i \omega_{s} L}{2 c \varepsilon_{0} n_{s}} P_{s}(t) \operatorname{sinc}(\Delta k L / 2) \exp (i \Delta k L / 2) \quad \operatorname{sinc}(x)=\frac{\sin x}{x}=\frac{1}{2} \int_{-\pi}^{\pi} d y e^{i x y}
$$

- signal intensity

$$
I_{s}(L, t)=\varepsilon_{0} c n_{s}\left|E_{s}(L, t)\right|^{2}=\frac{\omega_{s}^{2} L^{2}}{4 c \varepsilon_{0} n_{s}}\left|P_{s}(t)\right|^{2} \operatorname{sinc}^{2}(\Delta k L / 2)
$$

- phase matching condition
$\Delta k L \ll \pi$

$\mathrm{x} / 2 \pi$

Summary

- linearization wave equation \& slowly varying envelope approximation
- incoming fields unaffected by medium
- signal field proportional to nonlinear polarization
- simple phase matching condition
- signals
- homodyne detection

$$
I_{\mathrm{H}}(t) \propto\left|E_{s}(t)\right|^{2}
$$

- heterodyne detection

$$
I_{\mathrm{HET}}(t) \propto \operatorname{Re}\left[E_{\mathrm{LO}}(t)^{*} E_{s}(t)\right]
$$

- polarization=dipole density of medium

$$
\mathbf{P}(\mathbf{r}, t)=\frac{1}{\Delta V(\mathbf{r})} \sum_{m \in \Delta V} \mathbf{d}_{m}(t)
$$

- molecular dipole operator

$$
\mathbf{d}_{m}(t)=\left\langle\vec{\mu}_{m}\right\rangle(t)=\operatorname{tr}\left\{\rho(t) \vec{\mu}_{m}\right\} \quad \vec{\mu}_{m}=\sum_{u} q_{u} \mathbf{x}_{u}=-\sum_{j} e \mathbf{r}_{j}^{(m)}+\sum_{n} e z_{n}^{(m)} \mathbf{R}_{n}^{(m)}
$$

- limit of homogeneous medium

$$
\mathbf{P}(\mathbf{r} ; t)=n_{\mathrm{mol}} \mathbf{d}(\mathbf{r} ; t)
$$

- matter-field Hamiltonian for a system of charged particles
- semiclassical dipole approximation

$$
H(t)=\sum_{u} \frac{1}{2 m_{u}} \mathbf{p}_{u}^{2}+\frac{1}{8 \pi \varepsilon_{0}} \sum_{u \neq v} \frac{q_{u} q_{v}}{\left|\mathbf{x}_{u}-\mathbf{x}_{v}\right|}-\vec{\mu}_{m} \mathbf{E}\left(\mathbf{X}_{m}, t\right)+H_{\text {field }}(t)
$$

Response Function Formalism

- time dependent perturbation theory
- Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t}|\Psi(t)\rangle=H|\Psi(t)\rangle \quad|\Psi(t)\rangle=U\left(t, t_{0}\right)\left|\Psi_{0}\right\rangle \quad H=H_{0}+V
$$

- time evolution operator

$$
U\left(t, t_{0}\right) \equiv U\left(t-t_{0}\right)=e^{-i H\left(t-t_{0}\right) / \hbar} \quad \rightarrow \quad U\left(t, t_{0}\right)=U_{0}\left(t, t_{0}\right) S\left(t, t_{0}\right)
$$

- free time evolution according to H_{0}

$$
U_{0}\left(t, t_{0}\right)=e^{-i H_{0}\left(t-t_{0}\right) / \hbar}
$$

-S-operator

$$
S\left(t, t_{0}\right)=\exp _{+}\left\{-\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau V^{(\mathrm{I})}(\tau)\right\} \quad V^{(\mathrm{I})}(t)=U_{0}^{+}\left(t, t_{0}\right) V U_{0}\left(t, t_{0}\right)
$$

- perturbation expansion of polarization

$$
\begin{gathered}
\mathbf{P}(\mathbf{r} ; t)=n_{\mathrm{mol}} \mathbf{d}(\mathbf{r}, t)=n_{\mathrm{mol}} \operatorname{tr}\{\rho(t) \vec{\mu}\} \rightarrow \mathbf{P}(\mathbf{r}, t)=\mathbf{P}^{(1)}(\mathbf{r}, t)+\mathbf{P}^{(2)}(\mathbf{r}, t)+\mathbf{P}^{(3)}(\mathbf{r}, t) \ldots \\
H=H_{\mathrm{mol}}+H_{\mathrm{int}}(t) \quad H_{\mathrm{int}}(t)=-\mathbf{E}(\mathbf{r}, t) \vec{\mu}
\end{gathered}
$$

- expansion of density operator

$$
\begin{gathered}
\rho(t)=U\left(t, t_{0}\right) \rho_{\mathrm{eq}} U^{+}\left(t, t_{0}\right) \quad \rightarrow \quad \rho(t)=\rho^{(1)}(t)+\rho^{(2)}(t)+\rho^{(3)}(t)+\ldots \\
U_{0}\left(t, t_{0}\right)=\exp \left(-i H_{\mathrm{mol}}\left(t-t_{0}\right) / \hbar\right) \quad S\left(t, t_{0}\right)=\exp _{+}\left(-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} H_{\mathrm{int}}^{(\mathrm{I})}\left(t^{\prime}\right)\right) \\
H_{\mathrm{int}}^{(\mathrm{I})}(t)=U_{0}^{+}\left(t-t_{0}\right) H_{\mathrm{int}}(t) U_{0}\left(t-t_{0}\right)=-\mathbf{E}(\mathbf{r}, t) \vec{\mu}^{\mathrm{I})}(t)
\end{gathered}
$$

- starting point

$$
\mathbf{d}(\mathbf{r} ; t)=\operatorname{tr}\left\{\rho_{\mathrm{eq}} S^{+}\left(t, t_{0}\right) \vec{\mu}^{(\mathrm{I})}(t) S\left(t, t_{0}\right)\right\}
$$

- first order term

$$
\begin{gathered}
\mathbf{d}(\mathbf{r} ; t) \approx \operatorname{tr}\left\{\rho_{\mathrm{eq}}\left[1+S^{(1)+}\left(t, t_{0}\right)\right] \vec{\mu}^{(I)}(t)\left[1+S^{(1)}\left(t, t_{0}\right)\right]\right\} \\
S^{(1)}\left(t, t_{0}\right)=\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau \mathbf{E}(\mathbf{r}, \tau) \vec{\mu}^{(\mathrm{I})}(\tau) \\
\mathbf{d}^{(1)}(\mathbf{r} ; t)=\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau \mathbf{E}(\mathbf{r}, \tau) \operatorname{tr}\left\{\rho_{\mathrm{eq}}\left[\vec{\mu}^{(I)}(t) \vec{\mu}^{(I)}(\tau)-\vec{\mu}^{(I)}(\tau) \vec{\mu}^{(I)}(t)\right]\right\}
\end{gathered}
$$

- linear polarization

$$
\mathbf{P}^{(1)}(\mathbf{r}, t)=\int_{0}^{\infty} d t_{1} R^{(1)}\left(t_{1}\right) \mathbf{E}\left(\mathbf{r}, t-t_{1}\right)
$$

- linear response function

$$
\begin{gathered}
R^{(1)}(t)=\frac{i}{\hbar} \theta(t) n_{\mathrm{mol}} \operatorname{tr}\left\{\rho_{\mathrm{eq}}\left[\vec{\mu}^{(\mathrm{I})}(t), \vec{\mu}^{(\mathrm{I})}(0)\right]_{-}\right\}=\frac{i}{\hbar} \theta(t) n_{\mathrm{mol}}\left[J(t)-J^{*}(t)\right] \\
J(t)=\operatorname{tr}\left\{\mu^{(\mathrm{I})}(t) \mu^{(\mathrm{I})}(0) \rho_{\mathrm{eq}}\right\} \equiv \operatorname{tr}\left\{\mu U_{0}(t) \mu \rho_{\mathrm{eq}} U_{0}^{+}(t)\right\}
\end{gathered}
$$

third-order term

$$
\begin{aligned}
\mathbf{d}(\mathbf{r}, t)= & \operatorname{tr}\left\{\rho_{\mathrm{eq}}\left[1+S^{(1)+}\left(t, t_{0}\right)+S^{(2)+}\left(t, t_{0}\right)+S^{(3)+}\left(t, t_{0}\right)\right] \vec{\mu}^{(I)}(t)\right. \\
\times & \left.\left.\times 1+S^{(1)}\left(t, t_{0}\right)+S^{(2)}\left(t, t_{0}\right)+S^{(3)}\left(t, t_{0}\right)\right]\right\} . \\
S^{(3)}\left(t, t_{0}\right)= & \left(-\frac{i}{\hbar}\right)^{3} \int_{t_{0}}^{t} d \tau_{1} \int_{t_{0}}^{\tau_{1}} d \tau_{2} \int_{t_{0}}^{\tau_{2}} d \tau_{3} \\
& \times \mathbf{E}\left(\mathbf{r}, \tau_{1}\right) \vec{\mu}^{(\mathrm{I})}\left(\tau_{1}\right) \mathbf{E}\left(\mathbf{r}, \tau_{2}\right) \vec{\mu}^{(\mathrm{I})}\left(\tau_{2}\right) \mathbf{E}\left(\mathbf{r}, \tau_{3}\right) \vec{\mu}^{(\mathrm{I})}\left(\tau_{3}\right) .
\end{aligned}
$$

- third order polarization

$$
\begin{aligned}
\mathbf{P}^{(3)}(\mathbf{r} ; t) & =\int_{0}^{\infty} d t_{3} d t_{2} d t_{1} R^{(3)}\left(t_{3}, t_{2}, t_{1}\right) \\
& \times \mathbf{E}\left(\mathbf{r} ; t-t_{3}\right) \mathbf{E}\left(\mathbf{r} ; t-t_{3}-t_{2}\right) \mathbf{E}\left(\mathbf{r} ; t-t_{3}-t_{2}-t_{1}\right)
\end{aligned}
$$

- third order response function

$$
\begin{aligned}
& R^{(3)}\left(t_{3}, t_{2}, t_{1}\right)=\left(\frac{i}{\hbar}\right)^{3} \theta\left(t_{3}\right) \theta\left(t_{2}\right) \theta\left(t_{1}\right) n_{\mathrm{mol}} \\
& \left.\times \operatorname{tr}\left\{\rho_{\mathrm{eq}}\left[\left[\left[\vec{\mu}^{(\mathrm{I})}\left(t_{3}+t_{2}+t_{1}\right)\right], \vec{\mu}^{(\mathrm{I})}\left(t_{2}+t_{1}\right)\right], \vec{\mu}^{\mathrm{I})}\left(t_{1}\right)\right], \vec{\mu}^{(\mathrm{I})}(0)\right]\right\}
\end{aligned}
$$

- eight multi-time dipole correlation functions

$$
\begin{gathered}
R^{(3)}\left(t_{3}, t_{2}, t_{1}\right)=n_{\mathrm{mol}}\left(\frac{i}{\hbar}\right)^{3} \theta\left(t_{3}\right) \theta\left(t_{2}\right) \theta\left(t_{1}\right) \sum_{i=1}^{8} R_{i}\left(t_{3}, t_{2}, t_{1}\right) \\
R_{1}\left(t_{3}, t_{2}, t_{1}\right)=\operatorname{tr}\left\{\rho_{\mathrm{eq}} \vec{\mu}^{(\mathrm{I})}\left(t_{1}\right) \vec{\mu}^{(\mathrm{I})}\left(t_{2}+t_{1}\right) \vec{\mu}^{(\mathrm{I})}\left(t_{3}+t_{2}+t_{1}\right) \vec{\mu}^{(\mathrm{I})}(0)\right\} \\
R_{2}\left(t_{3}, t_{2}, t_{1}\right)=\operatorname{tr}\left\{\rho_{\mathrm{eq}} \vec{\mu}^{(\mathrm{I})}(0) \vec{\mu}^{(\mathrm{I})}\left(t_{2}+t_{1}\right) \vec{\mu}^{(\mathrm{I})}\left(t_{3}+t_{2}+t_{1}\right) \vec{\mu}^{\mathrm{I})}\left(t_{1}\right)\right\} \\
R_{3}\left(t_{3}, t_{2}, t_{1}\right)=\operatorname{tr}\left\{\rho_{\mathrm{eq}} \vec{\mu}^{(\mathrm{I})}(0) \vec{\mu}^{(\mathrm{I})}\left(t_{1}\right) \vec{\mu}^{(\mathrm{I})}\left(t_{3}+t_{2}+t_{1}\right) \vec{\mu}^{\mathrm{I})}\left(t_{2}+t_{1}\right)\right\} \\
R_{4}\left(t_{3}, t_{2}, t_{1}\right)=\operatorname{tr}\left\{\rho_{\mathrm{eq}} \vec{\mu}^{\mathrm{I})}\left(t_{3}+t_{2}+t_{1}\right) \vec{\mu}^{\mathrm{I})}\left(t_{2}+t_{1}\right) \vec{\mu}^{\mathrm{I})}\left(t_{1}\right) \vec{\mu}^{\mathrm{I})}(0)\right\} \\
R_{i}\left(t_{3}, t_{2}, t_{1}\right)=-R_{i-4}^{*}\left(t_{3}, t_{2}, t_{1}\right) \quad i=5, \ldots, 8
\end{gathered}
$$

- it's all in the Feynman diagrams!
- model system

$$
\begin{array}{r}
H|a\rangle=E_{a}|a\rangle \quad \rho_{\mathrm{eq}}=|a\rangle\langle a| \quad \mu=\sum_{a \neq b} \mu_{a b}|a\rangle\langle b| \\
E(\mathbf{r}, t)=\sum_{j}\left[E_{j}(t) \exp \left(-i \omega_{j} t+i \mathbf{k}_{j} \mathbf{r}\right)+E_{j}^{*}(t) \exp \left(i \omega_{j} t-i \mathbf{k}_{j} \mathbf{r}\right)\right]
\end{array}
$$

- linear response function

$$
\begin{gathered}
J\left(t_{1}\right)=\operatorname{tr}\left\{\mu U_{0}\left(t_{1}\right) \mu \rho_{\mathrm{eq}} U_{0}^{+}\left(t_{1}\right)\right\}=\sum_{b}\left|\mu_{a b}\right|^{2} e^{-i \omega_{b a} t_{1}}=\sum_{b}\left|\mu_{a b}\right|^{2} I_{b a}\left(t_{1}\right) \\
R^{(1)}\left(t_{1}\right)=\frac{i}{\hbar} \theta\left(t_{1}\right) n_{\mathrm{mol}} \sum_{j}\left|\mu_{a b}\right|^{2}\left(I_{b a}\left(t_{1}\right)-I_{b a}^{*}\left(t_{1}\right)\right)
\end{gathered}
$$

- first order polarization

$$
\begin{aligned}
P^{(1)}(\mathbf{r}, t) & =\frac{i}{\hbar} n_{\operatorname{mol}} \sum_{b}\left|\mu_{a b}\right|^{2} \int_{0}^{\infty} d t_{1} \\
& \times\left(e^{-i \omega_{b a} t_{1}}-e^{i \omega_{b a} t_{1}}\right)\left[E_{1} e^{-i \omega_{1}\left(t-t_{1}\right)+i \mathbf{k}_{1} \mathbf{r}}+E_{1}^{*} e^{i \omega_{1}\left(t-t_{1}\right)-i \mathbf{k}_{1} \mathbf{r}}\right]
\end{aligned}
$$

- rules for double-sided Feynman diagrams
- density operator given by two vertical lines
- time runs from bottom to top
- interaction=arrow labeled by field frequency/wave vector
- signal field to the left by convention
- overall sign $(-1)^{m}, m=$ number of interactions from right

$$
\begin{gathered}
E_{j} \exp \left(-i \omega_{j} t+i \mathbf{k}_{j} \mathbf{r}\right) \\
E_{k}^{*} \exp \left(i \omega_{k} t-i \mathbf{k}_{k} \mathbf{r}\right)
\end{gathered}
$$

incoming/outgoing arrow = photon annihilation/creation

19

$$
\begin{aligned}
& J\left(t_{1}\right)
\end{aligned}
$$

$|a\rangle\langle a|$
$|a\rangle\langle a|$
$J^{*}\left(t_{1}\right)$
$|a\rangle\langle a|$
$P^{(1)}(\mathbf{r}, t)=\frac{i}{\hbar} n_{\text {mol }} \sum_{b}\left|\mu_{a b}\right|^{2} \int_{0}^{\infty} d t_{1}$
$\times\left(e^{-i \omega_{b a} t_{1}}-e^{i \omega_{b a} t_{1}}\right)\left[E_{1} e^{-i \omega_{1}\left(t-t_{1}\right)+i \mathbf{k}_{1} \mathbf{r}}+E_{1}^{*} e^{i \omega_{1}\left(t-t_{1}\right)-i \mathbf{k}_{1} \mathbf{r}}\right]$
$\omega_{1} \approx \omega_{b a}>0 \quad$ rotating wave approximation (RWA)

- Feynman diagrams and correlation functions

$$
\begin{aligned}
& |a\rangle\langle a| \\
& J\left(t_{1}\right)=\operatorname{tr}\left\{\mu U_{0}\left(t_{1}\right) \mu \rho_{\mathrm{eq}} U_{0}^{+}\left(t_{1}\right)\right\} \\
& \rho_{\mathrm{eq}}=|a\rangle\langle a| \\
& \rightarrow \sum_{b}\left|\mu_{a b}\right|^{2} e^{-i \omega_{b a} t_{1}}=\sum_{b}\left|\mu_{a b}\right|^{2} I_{b a}\left(t_{1}\right)
\end{aligned}
$$

- third order response functions: diagramatic representation

$$
R^{(3)}\left(t_{3}, t_{2}, t_{1}\right)=n_{\mathrm{mol}}\left(\frac{i}{\hbar}\right)^{3} \theta\left(t_{3}\right) \theta\left(t_{2}\right) \theta\left(t_{1}\right) \sum_{i=1}^{8} R_{i}\left(t_{3}, t_{2}, t_{1}\right)
$$

- time-ordering of fields can be different
- direction of arrows different depending on level structure
- in practice diagrams have to be drawn for the actual system
- for example R_{1}

phase matching

$$
\mathbf{k}_{s}= \pm \mathbf{k}_{1} \pm \mathbf{k}_{2} \pm \mathbf{k}_{3}
$$

in RWA only one possibility!

$$
R_{1}: \mathbf{k}_{s}=\mathbf{k}_{1}-\mathbf{k}_{2}+\mathbf{k}_{3}
$$

$$
\begin{aligned}
R_{1}\left(t_{3}, t_{2}, t_{1}\right) & =\operatorname{tr}\left\{U_{0}^{+}\left(t_{1}\right) \mu U_{0}\left(t_{1}\right) U_{0}^{+}\left(t_{1}+t_{2}\right) \mu U_{0}\left(t_{1}+t_{2}\right) U_{0}^{+}\left(t_{1}+t_{2}+t_{3}\right) \mu U_{0}\left(t_{1}+t_{2}+t_{3}\right) \mu \rho_{\mathrm{eq}}\right\} \\
& =\operatorname{tr}\left\{U_{0}^{+}\left(t_{1}\right) \mu U_{0}^{+}\left(t_{2}\right) \mu U_{0}^{+}\left(t_{3}\right) \mu U_{0}\left(t_{1}+t_{2}+t_{3}\right) \mu \rho_{\mathrm{eq}}\right\} \\
& =\sum_{b c d} \operatorname{tr}\left\{U_{0}^{+}\left(t_{1}\right)|a\rangle \mu_{a d}\langle b| U_{0}^{+}\left(t_{2}\right)|b\rangle \mu_{b c}\langle c| U_{0}^{+}\left(t_{3}\right)|c\rangle \mu_{c d}\langle d| U_{0}\left(t_{1}+t_{2}+t_{3}\right)|d\rangle \mu_{d a}\langle a|\right\} \\
& =\sum_{b c d} \operatorname{tr}\left\{|c\rangle \mu_{c d}\langle d| U_{0}\left(t_{1}+t_{2}+t_{3}\right)|d\rangle \mu_{d a}\langle a| U_{0}^{+}\left(t_{1}\right)|a\rangle \mu_{a b}\langle b| U_{0}^{+}\left(t_{2}\right)|b\rangle \mu_{b c}\langle c| U_{0}^{+}\left(t_{3}\right)\right\} \\
& \approx \sum_{b c d} \mu_{a b} \mu_{b c} \mu_{c d} \mu_{d a} I_{d c}\left(t_{3}\right) I_{d b}\left(t_{2}\right) I_{d a}\left(t_{1}\right)
\end{aligned}
$$

Frequency Domain

- equivalent formulation, but more suitable for CW fields
- linear response

$$
\begin{gathered}
P^{(1)}(\mathbf{r}, t)=\int_{0}^{\infty} d t_{1} R^{(1)}\left(t_{1}\right) E\left(\mathbf{r}, t-t_{1}\right) \\
P^{(1)}(\mathbf{r}, \omega)=\chi^{(1)}(\omega) E(\mathbf{r}, \omega)
\end{gathered}
$$

- first order susceptibility

$$
\chi=\chi^{\prime}+i \chi^{\prime \prime}
$$

$\chi^{(1)}(\omega)=\int d t \exp (i \omega t) R^{(1)}(t)$

Two-Level System

- generic two level system coupled to some heat bath

$$
\begin{gathered}
\frac{H_{a}=H_{a}(q)}{\{ } \begin{array}{c}
\omega_{e g}=\left(E_{e}-E_{g}\right) / \hbar \\
\mu_{e g} \neq \mu_{e g}(q)
\end{array} \\
\rho_{\mathrm{eq}}=|g\rangle \rho_{g}\langle g| \quad \rho_{g}=e^{-H_{g}(q) / k T} / Z
\end{gathered}
$$

- QME like description
- non-perturbative quantum description
- semiclassical approach
- Quantum Master Equation approach

$$
\frac{\partial}{\partial t} \rho_{a b}=\left(1-\delta_{a b}\right)\left(-i \omega_{a b}-\gamma_{a b}\right) \rho_{a b}-\delta_{a b}\left(k_{a b} \rho_{a a}-k_{b a} \rho_{b b}\right)
$$

- two level system $\hbar \omega_{e g} \gg k T$

$$
\rho_{e e}(t)=\left|c_{e}\right|^{2} e^{-k_{e g} t} \quad\left|c_{e}\right|^{2}=\rho_{e e}(0)
$$

$$
\rho_{e g}(t)=c_{e} c_{g}^{*} e^{-i \omega_{e g} t-\gamma_{e g} t} \quad c_{e} c_{g}^{*}=\rho_{e g}(0) \quad \gamma_{e g}=k_{e g} / 2+\gamma_{e g}^{\mathrm{pd}}
$$

- Bloch model notation

$$
\gamma_{e g} \equiv \frac{1}{T_{2}}=\frac{1}{2 T_{1}}+\frac{1}{T_{2}^{*}} \quad k_{e g} \equiv \frac{1}{T_{1}}
$$

- response functions:

$$
I_{e g}(t) \rightarrow e^{-i \omega_{e g} t-\gamma_{e g} t}
$$

- non-perturbative quantum description
- dipole correlation function for linear response

$$
\begin{array}{r}
J(t)=\operatorname{tr}\left\{\mu U_{0}(t) \mu \rho_{\mathrm{eq}} U_{0}^{+}(t)\right\} \quad U_{0}(t)|a\rangle=|a\rangle e^{-i H_{a}(q) t / \hbar} \\
J(t)=\operatorname{tr}\left\{\mu_{g e}|g\rangle\langle e| e^{-i H_{e} t / \hbar} \mu_{e g}|e\rangle\langle g| \rho_{g} e^{i H_{g} t / \hbar}|g\rangle\langle g|\right\}
\end{array}
$$

- take partial trace w.r.t. two-level system

$$
J(t)=\left|\mu_{e g}\right|^{2} \operatorname{tr}_{q}\left\{e^{-i H_{e} t / \hbar} \rho_{g} e^{i H_{g} t / \hbar}\right\}
$$

- general definition of S-operator

$$
U\left(t, t_{0}\right)=U_{0}\left(t, t_{0}\right) S\left(t, t_{0}\right) \quad S\left(t, t_{0}\right)=\exp _{+}\left\{-\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau V^{(\mathrm{I})}(\tau)\right\}
$$

- introduce reference Hamiltonian

$$
\begin{array}{ll}
H_{g}=\left(H_{g}-H_{g}^{\prime}\right)+H_{g}^{\prime} & e^{i H_{g} t / \hbar}=\exp _{-}\left\{\frac{i}{\hbar} \int_{0}^{t} d \tau\left(H_{g}-H_{g}^{\prime}\right)^{(\mathrm{I})}(\tau)\right\} e^{i H_{g}^{\prime} t / \hbar} \\
H_{e}=\left(H_{e}-H_{e}^{\prime}\right)+H_{e}^{\prime} & e^{-i H_{e} t / \hbar}=e^{-i H_{e}^{\prime} t / \hbar} \exp _{+}\left\{-\frac{i}{\hbar} \int_{0}^{t} d \tau\left(H_{e}-H_{e}^{\prime}\right)^{(\mathrm{I})}(\tau)\right\}
\end{array}
$$

- use ground state as reference $\quad H_{g}^{\prime}=H_{g} \quad H_{e}^{\prime}=H_{g}+\hbar \omega_{e g}$
- correlation function

$$
J(t)=\left|\mu_{e g}\right|^{2} e^{-i \omega_{e g} t}\left\langle\exp _{+}\left\{-\frac{i}{\hbar} \int_{0}^{t} d \tau U(\tau)\right\}\right\rangle
$$

- gap coordinate

$$
U=H_{e}-H_{g}-\hbar \omega_{e g} \quad U(t) \equiv U^{(\mathrm{I})}(t)=e^{i H_{g} t / \hbar} U e^{-i H_{g} t / \hbar}
$$

- choice of $\omega_{e g}$ arbitrary, often thermally averaged energy gap useful

$$
\hbar \omega_{e g}=\left\langle H_{e}-H_{g}\right\rangle
$$

- gap coordinate describes fluctuations of energy gap of two level system due to interaction with the thermally moving bath

$$
U(t) / \hbar \equiv \delta \omega_{e g}(t)=\omega_{e g}(t)-\left\langle\omega_{e g}\right\rangle
$$

- example: from gap fluctuations to correlation function

29

- cumulant expansion

- goal: approximate evaluation of time-ordered exponential

$$
J(t)=\left|\mu_{e g}\right|^{2} e^{-i \omega_{\omega_{g} t}}\left\langle\exp _{+}\left\{-\frac{i}{\hbar} \int_{0}^{t} d \tau U(\tau)\right\}\right\rangle
$$

- cumulant expansion: resummation of perturbation series

$$
A=A_{0}\left(1+\lambda A_{1}+\lambda^{2} A_{2}+\ldots\right) \quad \rightarrow \quad A_{0} e^{\lambda A_{1}+\lambda^{2}\left(A_{2}-\frac{1}{2} A_{1}^{2}\right)+\ldots}
$$

- application to dipole correlation function

$$
\begin{gathered}
J(t) \approx\left|\mu_{e g}\right|^{2} e^{-i \omega_{e g} t}\left\langle\left(1-\frac{i}{\hbar} \int_{0}^{t} d \tau_{1} U\left(\tau_{1}\right)+\left(-\frac{i}{\hbar}\right)^{2} \int_{0}^{t} d \tau_{2} \int_{0}^{\tau_{2}} d \tau_{1} U\left(\tau_{2}\right) U\left(\tau_{1}\right)+\ldots\right\rangle\right. \\
\rightarrow J(t)=\left|\mu_{e g}\right|^{2} e^{-i \omega_{e g} t} e^{-g(t)}
\end{gathered}
$$

- lineshape function

$$
g(t)=\frac{1}{\hbar^{2}} \int_{0}^{t} d \tau_{2} \int_{0}^{\tau_{2}} d \tau_{1}\left\langle U\left(\tau_{2}\right) U\left(\tau_{1}\right)\right\rangle=\frac{1}{\hbar^{2}} \int_{0}^{t} d \tau_{2} \int_{0}^{\tau_{2}} d \tau_{1}\left\langle U\left(\tau_{1}\right) U(0)\right\rangle
$$

- multi-time correlation functions

$$
\begin{gathered}
R_{1}\left(t_{3}, t_{2}, t_{1}\right)=\exp \left(-i \omega_{e g} t_{1}-i \omega_{e g} t_{3}\right) \exp \left(-g^{*}\left(t_{3}\right)-g\left(t_{1}\right)-f_{+}\left(t_{3}, t_{2}, t_{1}\right)\right) \\
R_{2}\left(t_{3}, t_{2}, t_{1}\right)=\exp \left(i \omega_{e g} t_{1}-i \omega_{e g} t_{3}\right) \exp \left(-g^{*}\left(t_{3}\right)-g^{*}\left(t_{1}\right)-f_{+}^{*}\left(t_{3}, t_{2}, t_{1}\right)\right) \\
R_{3}\left(t_{3}, t_{2}, t_{1}\right)=\exp \left(i \omega_{e g} t_{1}-i \omega_{e g} t_{3}\right) \exp \left(-g\left(t_{3}\right)-g^{*}\left(t_{1}\right)-f_{-}^{*}\left(t_{3}, t_{2}, t_{1}\right)\right) \\
R_{4}\left(t_{3}, t_{2}, t_{1}\right)=\exp \left(-i \omega_{e g} t_{1}-i \omega_{e g} t_{3}\right) \exp \left(-g\left(t_{3}\right)-g\left(t_{1}\right)-f_{-}\left(t_{3}, t_{2}, t_{1}\right)\right) \\
f_{+}\left(t_{3}, t_{2}, t_{1}\right)=g\left(t_{2}\right)-g\left(t_{2}+t_{3}\right)-g\left(t_{1}+t_{2}\right)+g\left(t_{1}+t_{2}+t_{3}\right) \\
f_{-}\left(t_{3}, t_{2}, t_{1}\right)=g^{*}\left(t_{2}\right)-g^{*}\left(t_{2}+t_{3}\right)-g\left(t_{1}+t_{2}\right)+g\left(t_{1}+t_{2}+t_{3}\right)
\end{gathered}
$$

- within second order cumulant approximation, all response functions can be expressed by a single lineshape function!
- Kubo lineshape model

- Kubo ansatz $\left\langle\delta \omega_{e g}(t) \delta \omega_{e g}(0)\right\rangle=\Delta^{2} e^{-|t| / \tau_{\mathrm{c}}}$

$$
g(t)=\int_{0}^{t} d \tau_{2} \int_{0}^{\tau_{2}} d \tau_{1}\left\langle\delta \omega_{e g}\left(\tau_{1}\right) \delta \omega_{e g}(0)\right\rangle
$$

- lineshape function in Kubo model

$$
g(t)=\Delta^{2} \tau_{\mathrm{c}}^{2}\left(e^{-t / \tau_{\mathrm{c}}}+\frac{t}{\tau_{\mathrm{c}}}-1\right)
$$

- fast modulation/homogeneous limit: $\Delta \tau_{\mathrm{c}} \ll 1$

$$
t / \tau_{\mathrm{c}} \gg 1 \rightarrow\left\langle\delta \omega_{e g}(t) \delta \omega_{e g}(0)\right\rangle=\frac{\delta(t)}{T_{2}^{*}} \quad \rightarrow \quad g(t)=\Delta^{2} \tau_{\mathrm{c}} t=t / T_{2}^{*}
$$

- Lorentzian absorption spectrum

$$
\begin{aligned}
\chi^{\prime \prime}(\omega) & \propto \operatorname{Re} \int_{0}^{\infty} d t e^{i \omega t} J(t)=\left|\mu_{e g}\right|^{2} \operatorname{Re} \int_{0}^{\infty} d t e^{i \omega t} e^{-i \omega_{e g} t} e^{-g(t)} \\
& =\left|\mu_{e g}\right|^{2} \frac{1 / T_{2}^{*}}{\left(\omega-\omega_{e g}\right)^{2}+1 / T_{2}^{* 2}}
\end{aligned}
$$

motional narrowing: $1 / T_{2}^{*} \ll \Delta$

- slow modulation/inhomogenous limit: $\Delta \tau_{c} \gg 1$

$$
t / \tau_{\mathrm{c}} \ll 1 \quad \rightarrow \quad\left\langle\delta \omega_{e g}(t) \delta \omega_{e g}(0)\right\rangle=\Delta^{2} \quad \rightarrow \quad g(t)=\frac{\Delta^{2}}{2} t^{2}
$$

- Gaussian absorption spectrum

$$
\chi^{\prime \prime}(\omega) \propto\left|\mu_{e g}\right|^{2} \exp \left(-\frac{\left(\omega-\omega_{e g}\right)^{2}}{2 \Delta^{2}}\right)
$$

Frequency

- oscillator model
- Caldeira-Leggett type description

$$
H_{\mathrm{R}}=\sum_{j} \frac{\hbar \omega_{j}}{2}\left(-\frac{\partial^{2}}{\partial Q_{j}^{2}}+Q_{j}^{2}\right) \quad H_{\mathrm{S}-\mathrm{R}}=|e\rangle\langle e| \sum_{j} \hbar \omega_{j} g_{j} Q_{j}
$$

- shifted oscillator model!
- gap fluctuation

$$
\begin{gathered}
\delta \omega_{e g}(t)=\sum_{j} \omega_{j} g_{j} Q_{j}(t) \\
C(t)=\sum_{j} \omega_{j}^{2} S_{j}\left(\left[\left(1+n\left(\omega_{j}\right)\right] e^{-i \omega_{j} t}+n\left(\omega_{j}\right) e^{i \omega_{j} t}\right) \quad S_{j}=g_{j}^{2} / 2\right.
\end{gathered}
$$

- lineshape function

$$
g(t)=\sum_{j} S_{j}\left[\operatorname{coth}\left(\hbar \omega_{j} / 2 k_{\mathrm{B}} T\right)\left(1-\cos \left(\omega_{j} t\right)\right)+i\left(\sin \left(\omega_{j} t\right)-\omega_{j} t\right)\right]
$$

- absorption spectrum

$$
\begin{aligned}
& \chi^{\prime \prime}(\omega)=\frac{n_{\mathrm{mol}}}{\hbar} \operatorname{Re} \int_{0}^{\infty} d t e^{i \omega t}\left[e^{-i \omega_{e g} t} e^{-g(t)}-e^{i \omega_{e g} t}-(t)\right] \\
\chi^{\prime \prime}(\omega) & =\frac{n_{\mathrm{mol}}}{\hbar} \exp \left(-S_{j} \operatorname{coth}\left(\hbar \omega_{j} / 2 k_{\mathrm{B}} T\right)\right) \\
& \times \sum_{n=-\infty}^{\infty} \exp \left(n \hbar \omega_{j} / 2\right) I_{n}\left[S_{j} \sqrt{\operatorname{coth}^{2}\left(\hbar \omega_{j} / 2 k_{\mathrm{B}} T\right)-1}\right] \delta\left(\omega-\omega_{e g}^{0}-n \omega_{j}\right)
\end{aligned}
$$

- at $T=0 \mathrm{~K}$

$$
\chi^{\prime \prime}(\omega)=\frac{n_{\mathrm{mol}}}{\hbar} \exp \left(-S_{j}\right) \sum_{n=0}^{\infty} \frac{S_{j}^{n}}{n!} \delta\left(\omega-\omega_{e g}^{0}-n \omega_{j}\right)
$$

- continuous distribution of oscillators (e.g. Debye)

$$
\begin{aligned}
& \omega^{2} J(\omega)=\Theta(\omega) \Delta_{\mathrm{S}} \omega \frac{\gamma}{\omega^{2}+\gamma^{2}} \quad C(t)=\frac{\Delta_{\mathrm{S}} \gamma}{2}\left[\frac{2 k_{\mathrm{B}} T}{\hbar \gamma}-i\right] e^{-\gamma t} \\
& g(t)=\frac{\Delta_{\mathrm{S}}}{2 \gamma}\left[\frac{2 k_{\mathrm{B}} T}{\hbar \gamma}-i\right]\left[e^{-\gamma t}+\gamma t-1\right] \quad T_{\text {nuc }}=1 / \gamma \quad T_{\text {fluc }}=\hbar / \sqrt{k_{\mathrm{B}} T \Delta_{\mathrm{S}}} \\
& \left(\omega-\omega_{\mathrm{eg}}\right) / \omega_{j} \\
& \left(\omega-\omega_{\mathrm{eg}}^{0}\right) / \omega_{j} \\
& \text { - Kubo model }
\end{aligned}
$$

- multi-mode Brownian oscillator (MBO) model
- coupling of discrete oscillators to secondary bath

$$
H_{\mathrm{SB}}=\frac{1}{2} \sum_{\xi}\left[p_{\xi}^{2}+\omega_{\xi}^{2} x_{\xi}^{2}\right]+\sum_{\xi, j} c_{\xi j} Q_{j} x_{\xi}
$$

- MBO spectral density

$$
\omega^{2} J(\omega)=2 \sum_{j} S_{j} \omega_{j}^{3} \frac{\omega \gamma_{j}}{\left(\omega_{j}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma_{j}^{2}}
$$

- classical bath

$$
H(s, q)=H(s)+H(q)+V(s, q)
$$

- quantize fast mode via eigenvalue problem for fixed bath

$$
(H(s)+V(s, q))\left|\chi_{A}(s, q)\right\rangle=E_{A}(q)\left|\chi_{A}(s, q)\right\rangle \quad A=0,1,2 \ldots
$$

- Hellmann-Feynman force

$$
F_{\xi}=-\int d s \chi_{0}^{*}(s, q(t)) \frac{\partial V(s, q(t))}{\partial q_{\xi}} \chi_{0}(s, q(t))
$$

- time-dependent potential contribution

$$
\left.V(s, q) \approx \frac{\partial V}{\partial s}\right|_{s_{0}}\left(s-s_{0}\right)+\ldots=-F_{s}\left(s-s_{0}\right)
$$

Pump-Probe Spectroscopy

wavelength conversion and pulse compression
variable time delay
pump source

$$
E(t)=E_{1}(t) e^{-i \omega_{1} t+i \mathbf{i}_{1} \mathbf{r}}+E_{2}(t-T) e^{-i \omega_{2} t+i \mathbf{i}_{\mathbf{2}} \mathbf{r}}+c . c .
$$

- pump triggers dynamics
- probe observes transient spectral changes after delay T
- phase matching direction: $\mathbf{k}_{s}=\mathbf{k}_{2} \quad\left(\omega_{s}=\omega_{2}\right)$
- probe acts like local oscillator (self-heterodyning)

$$
I_{\mathrm{HET}}(t)=2 \varepsilon_{0} c n_{s} \operatorname{Re}\left[E_{2}^{*}(t) E_{s}(t)\right] \propto 2 \omega_{2} \operatorname{Im}\left[E_{2}(t) P_{s}^{*}(t)\right]
$$

- time-integrated
\& frequency-dispersed signal

$$
S_{\mathrm{PP}}\left(\omega_{2}\right)=2 \omega_{2} \int_{-\infty}^{\infty} d t \operatorname{Im}\left[E_{2}(t) P_{s}^{*}(t)\right] \quad S_{\mathrm{disp}}(\omega)=2 \omega_{2} \operatorname{Im}\left[E_{2}(\omega) P_{s}^{*}(\omega)\right]
$$

- pump-probe signal

$$
\begin{aligned}
S_{\mathrm{PP}}\left(\omega_{2}\right) & =-2 \omega_{2} \int_{-\infty}^{\infty} d t \operatorname{Re}\left[i E_{2}^{*}(t) P_{s}(t)\right] \\
& =-\frac{2 \omega_{2} n_{\mathrm{mol}} \varepsilon_{0}}{\hbar^{3}} \operatorname{Re} \int_{-\infty}^{\infty} d t \int_{0}^{\infty} d t_{3} d t_{2} d t_{1} e^{i \omega_{2} t-i \mathbf{k}_{\mathbf{2}} \mathbf{r}} E_{2}^{*}(t) \\
& \times E\left(t-t_{3}\right) E\left(t-t_{3}-t_{2}\right) E\left(t-t_{3}-t_{2}-t_{1}\right) \sum_{i=1,8} R_{i}\left(t_{3}, t_{2}, t_{1}\right)
\end{aligned}
$$

- semi-impulsive limit (pulses shorter than molecular motion, but longer than optical period)

$$
E_{i}(t) \rightarrow \delta(t)
$$

- note that one needs to keep the wave vector dependence to find proper phase matched contributions via

$$
P_{s}=P \times \exp \left(i \omega_{s} t-i \mathbf{k}_{s} \mathbf{r}\right)
$$

- pump-probe signal for three level system (pure dephasing only)

$$
R_{1}=R_{2}=R_{3}=R_{4} \quad R_{5}=R_{6}
$$

- contributions to the signal

$$
S_{\mathrm{disp}}(\omega) \propto-\frac{4\left|\mu_{10}\right|^{4} \Gamma_{10}}{\left(\omega-\omega_{10}\right)^{2}+\Gamma_{10}^{2}}+\frac{2\left|\mu_{10}\right|^{2}\left|\mu_{21}\right|^{2} \Gamma_{21}}{\left(\omega-\omega_{21}\right)^{2}+\Gamma_{21}^{2}}
$$

azide ion $\left(\mathrm{N}_{3}{ }^{-}\right)$in $\mathrm{H}_{2} \mathrm{O}$

- quantum beat spectroscopy
- three levels, but two can be coherently excited by the pump

- new type of R_{1} diagram

$$
\begin{aligned}
R_{1} & =\left|\mu_{10}\right|^{2}\left|\mu_{1^{\prime}}\right|^{2} I_{1^{\prime} 0}\left(t_{1}\right) I_{1^{\prime} 1}\left(t_{2}\right) I_{1^{\prime} 0}\left(t_{3}\right) \approx\left|\mu_{10}\right|^{2}\left|\mu_{1^{\prime} 0}\right|^{2} I_{1^{\prime} 1}(T) I_{1^{\prime} 0}\left(t_{3}\right) \\
& =\left|\mu_{10}\right|^{2}\left|\mu_{1^{\prime}}\right|^{2} e^{-i \omega_{1^{\prime} 1_{1}} T-\Gamma_{1^{\prime} 1^{\prime}} T} e^{-i \omega_{1^{\prime} 0} t_{3}-\Gamma_{1^{\prime} 0} t_{3}}
\end{aligned}
$$

- oscillating signal as function of delay time
- Example: Wave packet dynamics of dye (S19) in chloroform
- electronic excitation with 9 fs pump pulse
- more info than in absorption spectrum

Fourier decomposition

Two-Dimensional Spectroscopy

- goal: extract full information from $R^{(3)}\left(\mathrm{t}_{3}, \mathrm{t}_{2}, \mathrm{t}_{1}\right)$
- inspired by multi-dimensional NMR spectroscopy

$$
E(t)=E_{1}(t) e^{-i \omega_{1} t+i \mathbf{k}_{1} \mathbf{r}}+E_{2}\left(t-t_{1}\right) e^{-i \omega_{2} t+i \mathbf{k}_{2} \mathbf{r}}+E_{3}\left(t-t_{1}-T\right) e^{-i \omega_{3} t+i \mathbf{k}_{3} \mathbf{r}}+c . c .
$$

- "clocking" of signal by LO field
$S\left(t_{\mathrm{LO}}, T, t_{1}\right) \propto \operatorname{Re} \int_{0}^{\infty} d t_{3} E_{\mathrm{LO}}\left(t_{3}-t_{\mathrm{LO}}\right) E_{s}\left(t_{3}, T, t_{1}\right)$
- semi-impulsive limit

$$
S\left(t_{3}, T, t_{1}\right) \propto E_{s}\left(t_{3}, T, t_{1}\right)=i R^{(3)}\left(t_{3}, T, t_{1}\right)
$$

- signal via double Fourier trafo

$$
S\left(\omega_{1}, \omega_{3}, T\right)=\int_{0}^{\infty} d t_{3} \int_{0}^{\infty} d t_{1} e^{i \omega_{1} t_{1}} e^{i \omega_{3} t_{3}} S\left(t_{3}, T, t_{1}\right)
$$

- phase matching
- rephasing direction $\quad \mathrm{k}_{\mathrm{R}}=-\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3} \quad \rightarrow R_{2}, R_{3}, R_{5}$
- non-rephasing direction $\quad \mathbf{k}_{\mathrm{NR}}=+\mathbf{k}_{1}-\mathbf{k}_{2}+\mathbf{k}_{3} \rightarrow R_{1}, R_{4}, R_{6}$

- rephasing vs. non-rephasing
- example: two-level system with pure dephasing

$$
\begin{aligned}
R_{1} & =\left|\mu_{10}\right|^{4} I_{10}\left(t_{1}\right) I_{11}\left(t_{2}=T\right) I_{10}\left(t_{3}\right)=\left|\mu_{10}\right|^{4} e^{-i \omega_{10} t_{1}-\Gamma_{10} t_{1}} e^{-i \omega_{10} t_{3}-\Gamma_{10} t_{3}} \\
R_{2} & =\left|\mu_{10}\right|^{4} I_{01}\left(t_{1}\right) I_{11}\left(t_{2}=T\right) I_{10}\left(t_{3}\right)=\left|\mu_{10}\right|^{4} e^{i \omega_{10} t_{1}-\Gamma_{10} t_{1}} e^{-i \omega_{10} t_{3}-\Gamma_{10} t_{3}}
\end{aligned}
$$

- phase of oscillation during t_{1} different
$S\left(\omega_{1}, \omega_{3}, 0\right) \propto \frac{1}{i\left(\omega_{1}-\omega_{10}\right)-\Gamma_{10}} \frac{1}{i\left(\omega_{3}-\omega_{10}\right)-\Gamma_{10}}+\frac{1}{i\left(\omega_{1}+\omega_{10}\right)-\Gamma_{10}} \frac{1}{i\left(\omega_{3}-\omega_{10}\right)-\Gamma_{10}}$
- signals in different parts of Fourier plane

Example I.Line-Broadening

- homogeneous vs. inhomogeneous broadening
- Kubo model $g(t)=\Gamma t+\frac{\Delta^{2}}{2} t^{2}$

$$
\begin{aligned}
& R_{1}\left(t_{3}, 0, t_{1}\right)=\left|\mu_{10}\right|^{4} e^{-i \omega_{10}\left(t_{1}+t_{3}\right)-\Gamma_{10}\left(t_{1}+t_{3}\right)-\left(t_{1}+t_{3}\right)^{2} \Delta / 2} \\
& R_{2}\left(t_{3}, 0, t_{1}\right)=\left|\mu_{10}\right|^{4} e^{-i \omega_{10}\left(t_{3}-t_{1}\right)-\Gamma_{10}\left(t_{1}+t_{3}\right)-\left(t_{3}-t_{1}\right)^{2} \Delta / 2}
\end{aligned}
$$

Example II: 3-level System

- Morse oscillator

$$
V(q)=D\left(1-e^{-\alpha q}\right)^{2}
$$

- eigenvalues

$$
E_{M}=\hbar \omega(M+0.5)-x(M+0.5)^{2}
$$

- anharmonicity constant $x=(\hbar \omega)^{2} / 4 D$
- if dipole moment linear and $x=0$: no nonlinear signal

51

$$
\mu_{12}^{2}=2 \mu_{10}^{2}
$$

ω_{3}

Example II: Coupled Modes

- power of 2D spectroscopy in unraveling mode couplings

Example IV: Spectral Diffusion

- signature of inhomogeneity at T=0 disappears for $\mathrm{T}>0$ if ensemble not completely frozen

ExampleV: Chemical Exchange

- reaction dynamics can be monitored as function of T

