Dynamics and Spectroscopy of Molecular Systems: From the Infrared to the X-ray Regime

Prof. Oliver Kühn

Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock
Email: oliver.kuehn@uni-rostock.de http://web.physik.uni-rostock.de/quantendynamik

Table of Contents

- Concepts of Molecular Physics
- Concepts of (Non-)linear Spectroscopy
- Dynamics and Spectroscopy of Hydrogen Bonds
- Frenkel Excitons in Natural and Artifical Light-Harvesting
- X-Ray Spectroscopy of Core Levels

Literature (general)

V. May, O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, Wiley-VCH, Weinheim, 2011.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Oxford University Press, New York, 1995.
P. Hamm, M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy, Cambridge University Press, Cambridge, 2011.
F. de Groot, A. Kotani, Core Level Spectroscopy of Solids, CRC, Boca Raton, 2008

Lecture One: Concepts of Molecular Physics

Oliver Kühn

The Molecular World

5

Time Scales

Overview

- Born-Oppenheimer ansatz and potential energy surfaces
- electronic structure in a nutshell
- harmonic oscillators everywhere
- condensed phase models
- quantum dynamics, from coherent to incoherent

Born-Oppenheimer Ansatz

- molecular Hamiltonian

$$
H_{\mathrm{mol}}=T_{\mathrm{el}}+V_{\mathrm{el}-\mathrm{nuc}}+V_{\mathrm{el}-\mathrm{el}}+T_{\mathrm{nuc}}+V_{\mathrm{nuc}-\mathrm{nuc}}
$$

kinetic energy
Coulomb interaction

$$
T_{\mathrm{el}}=\sum_{j=1}^{N_{\mathrm{el}}} \frac{\mathbf{p}_{j}^{2}}{2 m_{\mathrm{el}}}
$$

$$
V_{\mathrm{el}-\mathrm{el}}=\frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}
$$

$$
\begin{gathered}
\left(N_{\mathrm{el}}, \mathbf{r}_{j}, \mathbf{p}_{j}, m_{\mathrm{el}}\right) \\
\left(N_{\mathrm{nuc}}, Z_{A}, \mathbf{R}_{A}, \mathbf{P}_{A}, M_{A}\right)
\end{gathered}
$$

- molecular Schrödinger equation

$$
H_{\mathrm{mol}} \Psi_{\lambda}(r, R)=E_{\lambda} \Psi_{\lambda}(r, R) \quad \longrightarrow \quad m_{\mathrm{el}} / M_{\mathrm{A}}<10^{-3}
$$

- electronic Hamilton operator for fixed nuclei

$$
H_{\mathrm{el}}(R)=T_{\mathrm{el}}+V_{\mathrm{el}-\mathrm{nuc}}(R)+V_{\mathrm{el}-\mathrm{el}}
$$

- electronic Schrödinger equation: adiabatic electronic states

$$
H_{\mathrm{el}}(R) \psi_{a}(r ; R)=E_{a}(R) \psi_{a}(r ; R)
$$

- assuming a complete adiabatic basis
- ansatz for molecular wave function

$$
\Psi(r ; R)=\sum_{a} \chi_{a}(R) \psi_{a}(r ; R)
$$

- expansion coefficients are nuclear wavefunctions and obey

$$
\left(T_{\mathrm{nuc}}+E_{a}(R)+V_{\mathrm{nuc}-\mathrm{nuc}}+\Theta_{a a}-E\right) \chi_{a}(R)=-\sum_{b \neq a} \Theta_{a b} \chi_{b}(R)
$$

- nonadiabaticity operator

$$
\Theta_{a b}=\int d r \psi_{a}(r ; R) T_{\mathrm{nuc}} \psi_{b}(r ; R)+\sum_{n} \frac{1}{M_{n}}\left[\int d r \psi_{a}(r ; R) \mathbf{P}_{n} \psi_{b}(r ; R)\right] \mathbf{P}_{n}
$$

- potential energy surfaces (PES)

$$
U_{a}(R)=E_{a}(R)+V_{\text {nuc-nuc }}(R)+\Theta_{a a}
$$

- PES: $3 N_{\text {nuc }}$-dimensional hypersurfaces
- $3 N_{\text {nuc }}-6$ internal degrees of freedom (DOF) +3 rotations +3 translations
- stationary points $\left.\nabla U_{a}(R)\right|_{R=R^{(a)}}=0$

$$
\nabla U_{a}(R)=\left\{\partial U_{a}(R) / \partial R_{1}, \ldots, \partial U_{a}(R) / \partial R_{3 N_{\mathrm{nuc}}}\right\}
$$

- Hessian matrix $\quad \kappa_{m n}^{(a)}=\frac{\partial^{2} U_{a}(R)}{\partial R_{m} \partial R_{n}} \quad\left(m, n=1, \ldots, 3 N_{\text {nuc }}\right)$
- degeneracies of electronic states $U_{a}(R) \approx U_{b}(R)$

- nonadiabatic effects \& Born-Oppenheimer approximation

$$
\begin{array}{r}
\left(T_{\mathrm{nuc}}+E_{a}(R)+V_{\mathrm{nuc}-\mathrm{nuc}}+\Theta_{a a}-E\right) \chi_{a}(R)=-\sum_{b \neq a} \Theta_{a b} \chi_{b}(R) \\
\Theta_{a b}=\int d r \psi_{a}(r ; R) T_{\mathrm{nuc}} \psi_{b}(r ; R)+\sum_{n} \frac{1}{M_{n}}\left[\int d r \psi _ { a } \left(r ; R \mathbf{P}_{n} \psi_{b}(r ; R) \mathbf{P}_{n}\right.\right.
\end{array}
$$

adiabatic molecular wavefunction: $\Psi_{a M}^{\text {(adia) }}(r ; R)=\chi_{a M}(R) \psi_{a}(r ; R)$

Electronic Structure in a Nutshell

- electronic Schrödinger equation for fixed nuclei

$$
H_{\mathrm{el}}(R) \psi_{a}(r ; R)=E_{a}(R) \psi_{a}(r ; R)
$$

- wavefunction (Hartree-Fock, MPn, CI, MCSCF, CC etc.) and density (DFT) based methods
many particle state
single particle molecular orbital (MO)
linear combination of atomic orbitals (LCAO MO)

$$
\psi_{a}(r ; R) \quad \rightarrow \quad \varphi_{i}(r ; R)=\psi_{i}(r ; R) g\left(m_{s}\right) \quad \rightarrow \quad \sum_{\mu} C_{\mu i} \phi_{\mu}(\mathbf{r} ; \mathbf{R})
$$

- illustration for H_{2}
- LCAO-MO approach (H_{2})
- minimal basis of one atomic 1 s function per nucleus

$$
\psi_{i}(r ; R)=\sum_{\mu=1}^{2} C_{\mu i} \phi_{\mu}(\mathbf{r} ; \mathbf{R}) \quad \longrightarrow \quad \phi_{\mu}\left(\mathbf{r}-\mathbf{R}_{\mu}\right)=\frac{1}{\sqrt{\pi}} e^{-\left|\mathbf{r}-\mathbf{R}_{\mu}\right|}
$$

- coefficients follow from linear variation principle

- many-electron states
- four possible spin-orbitals

$$
\varphi_{1}(\mathbf{x})=\psi_{1}(\mathbf{r}) \alpha\left(m_{s}\right) \quad \varphi_{2}(\mathbf{x})=\psi_{1}(\mathbf{r}) \beta\left(m_{s}\right) \quad \varphi_{3}(\mathbf{x})=\psi_{2}(\mathbf{r}) \alpha\left(m_{s}\right) \quad \varphi_{4}(\mathbf{x})=\psi_{2}(\mathbf{r}) \beta\left(m_{s}\right)
$$

- Pauli principle requires antisymmetric wavefunction
- fulfilled if many-electron wavefunction is chosen as in Slater determinant form

$$
\begin{array}{ll}
-\uparrow-\psi_{2} & \quad \text { electronic ground state } \\
\hline \downarrow \psi_{1} & \Psi_{0}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)
\end{array}=\frac{1}{\sqrt{2}}\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \varphi_{2}\left(\mathbf{x}_{2}\right)-\varphi_{1}\left(\mathbf{x}_{2}\right) \varphi_{2}\left(\mathbf{x}_{1}\right)\right)
$$

- restriction to a single determinant description: Hartree-Fock theory
- excited determinants
- configuration interaction
- correlation effects
(1)

(2)

(3)
(4)

(6)

(5)

- electronically excited states

number of SLATER determinants
number of configurations for N electrons and 2 K spin orbitals

$$
(2 K)!/(N!(2 K-N)!)
$$

- ab initio wavefunction-based methods (selection)

HF	CI	MCSCF
$\|\boldsymbol{\kappa}\rangle=\hat{U}(\boldsymbol{\kappa})\|0\rangle$	$\|\mathbf{C}\rangle=\sum_{i} C_{i}\|i\rangle$	$\|\boldsymbol{\kappa}, \mathbf{C}\rangle=\hat{U}(\boldsymbol{\kappa}) \sum_{i} C_{i}\|i\rangle$

- density functional theory
- energy functional of electron density (Hohenberg-Kohn)
$E[\rho]=e \int d^{3} \mathbf{x} V_{\mathrm{el}-\mathrm{nuc}}(\mathbf{x}) \rho(\mathbf{x})+T_{\mathrm{el}}[\rho]+\frac{e^{2}}{2} \int d^{3} \mathbf{x} d^{3} \mathbf{x}^{\prime} \frac{\rho(\mathbf{x}) \rho\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}+E_{\mathrm{XC}}[\rho]$
- holy grail: exchange correlation functional
- electronically excited states: linear response theory
- electronic states vs. potential energy curves

Harmonic Oscillators

- assumption: Born-Oppenheimer approximation is valid
- PES

$$
U_{a}(R)=E_{a}(R)+V_{\text {nuc-nuc }}(R)+\Theta_{a a}
$$

- choice of internal coordinates depends on problem
- reactive dynamics \& floppy molecules: bond distances, angles, dihedrals - complicated kinetic energy
- close to equilibrium: harmonic approximation
- small deviations w.r.t. geometry of stationary point

$$
\Delta R_{n}^{(a)}=R_{n}^{(a)}-R_{n}\left(n=1, \ldots, 3 N_{\mathrm{nuc}}\right)
$$

- Taylor expansion of PES

$$
H_{a}=U_{a}\left(R^{(a)}\right)+\sum_{n=1}^{3 N_{\mathrm{nac}}} \frac{P_{n}^{2}}{2 M_{n}}+\sum_{m, n=1}^{3 N_{\mathrm{nuc}}} \frac{1}{2} \kappa_{m n}^{(a)} \Delta R_{m}^{(a)} \Delta R_{n}^{(a)}
$$

- diagonalization of Hessian by linear trafo to massweighted normal mode coordinates

$$
\Delta R_{n}^{(a)}=\sum_{\xi} M_{n}^{-1 / 2} A_{n \xi}^{(a)} q_{a, \xi}
$$

- normal mode Hamiltonian

$$
H_{a}=U_{a}\left(q_{a, \xi}=0\right)+H_{a}^{(\mathrm{nm})} \quad H_{a}^{(\mathrm{nm})}=\frac{1}{2} \sum_{\xi}\left(p_{\xi}^{2}+\omega_{a, \xi}^{2} q_{a, \xi}^{2}\right)
$$

Normal Mode Vibrations of CO_{2}

- eigenvalue problem for harmonic oscillators

$$
\begin{gathered}
H_{a}^{(\mathrm{nm})} \chi_{a N}(q)=E_{a N} \chi_{a N}(q) \quad N=\left\{N_{1}, N_{2}, \ldots\right\} \\
E_{a N}=\sum_{\xi} \hbar \omega_{a, \xi}\left(N_{\xi}+\frac{1}{2}\right) \quad N_{\xi}=0,1,2, \ldots \\
\chi_{a N_{\xi}}\left(q_{a, \xi}\right)=\frac{\sqrt{\lambda_{a, \xi}}}{\sqrt{\sqrt{\pi} 2^{N_{\xi} N_{\xi}!}}} \exp \left(-\frac{1}{2} \lambda_{a, \xi}^{2} q_{a, \xi}^{2}\right) H_{N_{\xi}}\left(\lambda_{a, \xi} q_{a, \xi}\right)
\end{gathered}
$$

- two electronic states:shifted oscillator model
- different equilibrium positions

$$
U_{a=g / e}(R) \rightarrow R^{(g / e)} \quad U_{e}(R)=U_{e}\left(R^{(e)}\right)+\sum_{m, n=1}^{3 N_{\mathrm{nuc}}} \frac{1}{2} \kappa_{m n}^{(e)} \Delta R_{m}^{(e)} \Delta R_{n}^{(e)}
$$

- assume same normal modes

$$
\Delta R_{n}^{(e)}=R_{n}-R_{n}^{(g)}-\left(R_{n}^{(e)}-R_{n}^{(g)}\right)=\sum_{\xi} M_{n}^{-1 / 2} A_{n \xi}^{(g)}\left(q_{\xi}-q_{\xi}^{(e)}\right)
$$

- general shifted oscillator Hamiltonian

$$
H_{a}=U_{a}\left(q_{\xi}=q_{\xi}^{(a)}\right)+\frac{1}{2} \sum_{\xi}\left(p_{\xi}^{2}+\omega_{a, \xi}^{2}\left(q_{\xi}-q_{\xi}^{(a)}\right)^{2}\right)
$$

$\chi_{a N_{\xi}}\left(q_{\xi}\right)=\frac{\sqrt{\lambda_{a, \xi}}}{\sqrt{\sqrt{\pi} 2^{N_{\xi}} N_{\xi}!}} \exp \left(-\frac{1}{2} \lambda_{a, \xi}^{2}\left(q_{\xi}-q_{\xi}^{(a)}\right)^{2}\right) H_{N_{\xi}}\left(\lambda_{a, \xi}\left(q_{\xi}-q_{\xi}^{(a)}\right)\right)$

- Franck-Condon factor

$$
\begin{array}{rlc}
\left\langle\chi_{a M} \mid \chi_{b N}\right\rangle=e^{-\left(\Delta g_{a b}\right)^{2} / 2} \sum_{m=0}^{M} \sum_{n=0}^{N} \frac{(-1)^{n}\left(\Delta g_{a b}\right)^{m+n}}{m!n!} & \text { PES shift } \\
\times \sqrt{\frac{M!N!}{(M-m)!(N-n)!}} \delta_{M-m, N-n} & \Delta g_{a b}=\sqrt{\frac{\omega_{\xi}}{2 \hbar}}\left(q_{\xi}^{(b)}-q_{\xi}^{(b)}\right)
\end{array}
$$

special case: Poisson distribution $\quad\left|\left\langle\chi_{a M} \mid \chi_{b 0}\right\rangle\right|^{2}=e^{-\left(\Delta g_{a b}\right)^{2}} \frac{\left(\Delta g_{a b}\right)^{2 M}}{M!}$

- anharmonic corrections

- use normal mode coordinates to express higher order terms in the Taylor expansion

$$
V^{(\mathrm{anh})}=\frac{1}{3!} \sum_{k l m} K_{k l m} q_{k} q_{l} q_{m}+\frac{1}{4!} \sum_{k l m n} K_{k l m n} q_{k} q_{l} q_{m} q_{n}+\ldots
$$

Reaction Surfaces

- combination of large amplitude and harmonic motion
- example: proton transfer

3,7-dichlorotropolone

A-H ...B \mapsto A.. $\mathrm{H} . . \mathrm{B} \mapsto \mathrm{A} . . . \mathrm{H}-\mathrm{B}$

reaction coordinate

- divide nuclear DOF into active, \boldsymbol{s}, and spectator, \boldsymbol{Z}, coordinates
- expand w.r.t. a meaningful reference configuration
- normal mode trafo

$$
\Delta \mathbf{Z}(\mathrm{s})=\mathbf{M}^{-1 / 2} \mathbf{A} \mathbf{q}
$$

- reaction surface Hamiltonian

$$
\begin{aligned}
& H=\mathbf{T}_{\mathbf{s}}+U\left(\mathbf{s}, \mathbf{Z}^{(0)}\right)+\mathbf{T}_{\mathbf{q}}+\frac{1}{2} \mathbf{q K}(\mathbf{s}) \mathbf{q}-\mathbf{F}(\mathbf{s}) \mathbf{q} \\
& \text { mode mixing }
\end{aligned}
$$

$$
\mathbf{K}(\mathbf{s})=\mathbf{A}^{+} \mathbf{M}^{-1 / 2} \kappa(\mathbf{s}) \mathbf{M}^{-1 / 2} \mathbf{A}
$$

$$
\mathbf{F}(\mathbf{s})=\mathbf{f}(\mathbf{s}) \mathbf{M}^{-1 / 2} \mathbf{A}
$$

$$
\begin{aligned}
& U(R) \approx U\left(\mathbf{s}, \mathbf{Z}^{(0)}\right)+(\underbrace{\left.\frac{\partial U(\mathbf{s}, \mathbf{Z})}{\partial \mathbf{Z}}\right)_{\mathbf{z}=\mathbf{Z}^{(0)}}} \Delta \mathbf{Z}+\frac{1}{2} \Delta \mathbf{Z}(\underbrace{\frac{\partial^{2} U(\mathbf{s}, \mathbf{Z})}{\partial \mathbf{Z} \mathbf{Z}}})_{\mathbf{Z}=\mathbf{Z}^{(0)}} \Delta \mathbf{Z} \\
& -\mathbf{f}(\mathbf{s}) \\
& \kappa(\mathbf{s})
\end{aligned}
$$

$H=\mathbf{T}_{\mathbf{s}}+U\left(\mathbf{s}, \mathbf{Z}^{(0)}\right)-E_{\text {reorg }}(\mathbf{s})+\mathbf{T}_{\mathbf{q}}+\frac{1}{2}\left(\mathbf{q}-\mathbf{q}^{(0)}(\mathbf{s})\right) \mathbf{K}(\mathbf{s})\left(\mathbf{q}-\mathbf{q}^{(0)}(\mathbf{s})\right)$
reorganization energy
displacements

$$
E_{\text {reorg }}(\mathbf{s})=\frac{1}{2} \mathbf{q}^{(0)}(\mathbf{s}) \mathbf{K}(\mathbf{s}) \mathbf{q}^{(0)}(\mathbf{s}) \quad \quad \mathbf{q}^{(0)}(\mathbf{s})=-[\mathbf{K}(\mathbf{s})]^{-1} \mathbf{F}(\mathbf{s})
$$

27

Coupled Electronic States

- consider two-state one coordinate (curve-crossing) system
- adiabatic representation (dynamic coupling)
$\mathbf{H}^{\mathrm{ad}}=\left(\begin{array}{cc}T_{\text {nuc }} & \Theta_{+-} \\ \Theta_{+-} & T_{\text {nuc }}\end{array}\right)+\left(\begin{array}{cc}U_{+}(R) & 0 \\ 0 & U_{-}(R)\end{array}\right)$
$\mathbf{H}^{\mathrm{ad}}\binom{\chi_{+}}{\chi_{-}}=E\binom{\chi_{+}}{\chi_{-}}$
- diabatic representation (static coupling)

$$
\mathbf{H}^{\mathrm{d}}=\left(\begin{array}{cc}
T_{\text {nuc }} & 0 \\
0 & T_{\text {nuc }}
\end{array}\right)+\left(\begin{array}{cc}
U_{1}^{\mathrm{d}}(R) & V_{12}(R) \\
V_{12}(R) & U_{2}^{\mathrm{d}}(R)
\end{array}\right) \quad \mathbf{H}^{\mathrm{d}}\binom{\chi_{1}^{\mathrm{d}}}{\chi_{2}^{\mathrm{d}}}=E\binom{\chi_{1}^{\mathrm{d}}}{\chi_{2}^{\mathrm{d}}}
$$

- related via an orthogonal transformation

$$
\begin{array}{r}
\binom{\chi_{+}}{\chi_{-}}=\mathbf{C}\binom{\chi_{1}^{\mathrm{d}}}{\chi_{2}^{\mathrm{d}}} \quad \mathbf{C}=\left(\begin{array}{cc}
\cos \gamma(R) & \sin \gamma(R) \\
-\sin \gamma(R) & \cos \gamma(R)
\end{array}\right) \\
\text { mixing angle } \gamma(R)=\frac{1}{2} \arctan \left(\frac{2\left|V_{12}(R)\right|}{\left|U_{1}^{\mathrm{d}}(R)-U_{2}^{\mathrm{d}}(R)\right|}\right)
\end{array}
$$

- diabatic vs. adiabatic representation

$U_{ \pm}(R)=\frac{1}{2}\left(U_{1}^{\mathrm{d}}(R)+U_{2}^{\mathrm{d}}(R) \pm \sqrt{\left[U_{1}^{\mathrm{d}}(R)-U_{2}^{\mathrm{d}}(R)\right]^{2}+4\left|V_{12}(R)\right|^{2}}\right)$
- diabatic states can cross
- adiabatic crossing requires diabatic crossing and vanishing coupling
- non-crossing rule: adiabatic states of the same symmetry do not cross
- vibronic coupling model

$$
\begin{gathered}
H_{\mathrm{mol}}=\sum_{a b}\left(\delta_{a b} H_{a}(R)+\left(1-\delta_{a b}\right) V_{a b}(R)\right)\left|\psi_{a}\right\rangle\left\langle\psi_{b}\right| \\
H_{0}=\frac{1}{2} \sum_{\xi}\left(p_{\xi}^{2}+\omega_{\xi}^{2} q_{\xi}^{2}\right) \\
H_{a>0}\left(q_{\xi}\right)=H_{0}+E_{a}+\sum_{\xi} \kappa_{\xi}^{(a)} q_{\xi}+\ldots \quad \text { conical int } \\
V_{a b}\left(q_{\xi}\right)=V_{a b}\left(q_{\xi}=0\right)+\sum_{\xi} \lambda_{\xi}^{(a b)} q_{\xi}+\ldots \quad \text { tuning modes }
\end{gathered}
$$

conical intersection

- example: photostability of life

Sobolewski, Domcke, Europhys. News 37, 20 (2006)

Molecules in the Condensed Phase

- examples:
- solute-solvent system
- host-guest solid state
- chromophores in biomolecules

trajectories classical, quasi-classical,
 trajectories classical, quasi-classical, semiclassical

priori PES, models

quantum propagation

wavefunction, reduced density

- from PES to classical force fields
- Newton's equation for classical nuclei

$$
M_{A} \frac{d^{2} \mathbf{R}}{d t^{2}}=-\nabla_{A} U(\{\mathbf{R}(t)\})
$$

- ab initio Born-Oppenheimer Molecular Dynamics (AIMD)
- Molecular Mechanics (MM) force fields

- Quantum Mechanics/Molecular Mechanics (QM/MM) method

- Quantum Mechanics: System-Bath models
- recall reaction surface Hamiltonian

$$
\left.H=\mathbf{T}_{\text {relevant system }}^{\mathbf{s}_{\mathbf{s}}+U\left(\mathbf{s}, \mathbf{Z}^{(0)}\right.}\right)+\underbrace{\mathbf{T}_{\mathbf{q}}+\frac{1}{2} \mathbf{q K}(\mathbf{s})}_{\text {bath }} \mathbf{q} \underbrace{\mathbf{F}(\mathbf{s}) \mathbf{q}}_{\text {system-bath coupling }}
$$

- spectrum of bath modes arbitrary
- Caldeira-Leggett model

$$
H=H_{\mathrm{S}}+\frac{1}{2} \sum_{\xi}\left[p_{\xi}^{2}+\omega_{\xi}^{2} q_{\xi}^{2}\right]+s \sum_{\xi} c_{\xi} q_{\xi}
$$

- fluctuating force picture

$$
H=H_{\mathrm{S}}+\delta H_{\mathrm{S}}(t)
$$

- stochastic models (Kubo, Haken-Strobl-Reineker)

$$
\left\langle\delta H_{\mathrm{S}}(t) \delta H_{\mathrm{S}}(0)\right\rangle_{\text {bath }}=f(t)
$$

Quantum Dynamics: Schrödinger Equation

$$
i \hbar \frac{\partial|\Psi\rangle}{\partial t}=H|\Psi\rangle
$$

- standard approach
- formal solution via time evolution operator

$$
|\Psi(t)\rangle=U(t)|\Psi(0)\rangle \quad U(t)=e^{-i H t / \hbar}
$$

- if eigenstates are known

$$
H|a\rangle=E_{a}|a\rangle \quad|\Psi(t)\rangle=\sum_{a} c_{a}(t)|a\rangle \quad \rightarrow c_{a}(t)=c_{a}(0) e^{-i E_{a} t / \hbar}
$$

- if eigenstates are unknown, but some meaningful basis exists

$$
|\Psi(t)\rangle=\sum_{n} c_{n}(t)|n\rangle \quad i \hbar \frac{d c_{n}(t)}{d t}=\sum_{m} H_{n m} c_{m}(t)
$$

- follows from Dirac-Frenkel variational principle

$$
\langle\delta \Psi| H-i \hbar \frac{\partial}{\partial t}|\Psi\rangle=0
$$

- Simple example: Dynamics in a double well

$$
\begin{aligned}
& V(x)=\frac{E_{\text {barrier }}}{x_{0}^{4}}\left(x-x_{0}\right)^{2}\left(x+x_{0}\right)^{2} \\
& \Psi_{L / R}(x ; 0)=\frac{1}{\sqrt{2}}\left(\phi_{0}(x) \pm \phi_{1}(x)\right)
\end{aligned}
$$

$\left|\Psi_{L / R}(x ; t)\right|^{2}=\frac{1}{2}\left(e^{-i E_{0} t / \hbar} \phi_{0}(x) \pm e^{-i E_{1} t / \hbar} \phi_{1}(x)\right)\left(e^{i E_{0} t / \hbar} \phi_{0}^{*}(x) \pm e^{i E_{1} t / \hbar} \phi_{1}^{*}(x)\right)$
$=\frac{1}{2}\left(\left|\phi_{0}(x)\right|^{2}+\left|\phi_{1}(x)\right|^{2}\right) \pm \phi_{0}(x) \phi_{1}(x) \cos \left(\left(E_{1}-E_{0}\right) t / \hbar\right)$

- tunneling frequency

$$
\omega_{10}=2 \pi \nu_{10}=2 \pi / \tau_{10}=\left(E_{1}-E_{0}\right) / \hbar
$$

- harmonic vs. Morse oscillator

- multi-dimensional extension (f DOF)

$$
\begin{gathered}
\Psi\left(x_{1}, \ldots x_{f}, t\right)=\sum_{j_{1}=1}^{N_{1}} \cdots \sum_{j_{f}=1}^{N_{f}} C_{j_{1} \ldots j_{f}}(t) \phi_{j_{1}}^{(1)}\left(x_{1}\right) \cdots \phi_{j_{f}}^{(f)}\left(x_{f}\right) \\
i \hbar \dot{C}_{j_{1}, \ldots, j_{f}}=\sum_{k_{1}, \ldots, k_{f}}\left\langle\phi_{j_{1}}^{(1)} \ldots \phi_{j_{f}}^{(f)}\right| H\left|\phi_{k_{1}}^{(1)} \ldots \phi_{k_{f}}^{(f)}\right\rangle C_{k_{1}, \ldots, k_{f}}
\end{gathered}
$$

- example: $f=6, N=20$ there are $20^{6}=64 \times 10^{6}$ basis functions
- requires 3GB of memory for propagation
- dimensionality bottleneck
- (partial) solution: time-dependent basis functions

- application to reaction surface Hamiltonian

$$
H=H_{\mathrm{S}}+\frac{1}{2} \sum_{\xi}\left[p_{\xi}^{2}+\omega_{\xi}^{2} q_{\xi}^{2}\right]+\sum_{\xi} F_{\xi}(s) q_{\xi}
$$

- coupled equations of motion (via Frenkel-Dirac principle)
- active coordinate

$$
i \hbar \frac{\partial}{\partial t} \phi(s, t)=\left[T_{s}+V_{\mathrm{SCF}}(s, t)\right] \phi(s, t)
$$

- spectator modes $=$ driven oscillators

$$
i \hbar \frac{\partial}{\partial t} \phi\left(q_{\xi}, t\right)=\left[\frac{p_{\xi}^{2}}{2}+\frac{1}{2} \omega_{\xi}^{2} q_{\xi}^{2}-\bar{F}_{\xi}(t) q_{\xi}\right] \phi\left(q_{\xi}, t\right)
$$

- mean fields

$$
\bar{F}_{\xi}(t)=\int d s \phi^{*}(s ; t) F_{\xi}(s) \phi(s ; t)
$$

41

- multi-configuration time-dependent Hartree (MCTDH) approach (Heidelberg group, H.D. Meyer, L. Cederbaum and coworkers)

$$
\Psi(\mathbf{x} ; t)=\sum_{j_{1} \ldots j_{f}} A_{j_{1}, \ldots, j_{f}}(t) \phi_{j_{1}}^{(1)}\left(x_{1} ; t\right) \times \ldots \times \phi_{j_{f}}^{(f)}\left(x_{f} ; t\right)=\sum_{J} A_{J}(t) \Phi_{J}(\mathbf{x} ; t)
$$

- time-dependent compact basis
- optimal representation of moving with wave packet
- correlations included via superposition of Hartree products
- high-dimensional dynamics via multi-layer extension (ML-MCTDH)
- coupled equations of motion from Dirac-Frenkel principle
coefficient vector: $\quad i \hbar \dot{A}_{J}=\sum_{K} H_{J K} A_{K}$
vector of single particle functions: $\quad \bar{\phi}^{(\kappa)}=\left(\phi_{1}^{(\kappa)}, \ldots, \phi_{n_{\kappa}}^{(\kappa)}\right)^{T}$

$$
i \hbar \dot{\bar{\phi}}^{(\kappa)}=\left(1-P^{(\kappa)}\right)\left(\rho^{(\kappa)}\right)^{-1} \mathcal{H}^{(\kappa)} \bar{\phi}^{(\kappa)}
$$

Dissipative Quantum Dynamics

elementary processes in complex systems

- system-bath (reservoir) situation
- system-bath Hamiltonian

$$
H=H_{\mathrm{S}}+H_{\mathrm{S}-\mathrm{R}}+H_{\mathrm{R}}
$$

- system defined by observable

$$
\langle O\rangle(t)=\int d s d Z \Psi^{*}(s, Z, t) O(s) \Psi(s, Z, t) \equiv \operatorname{tr}_{\mathrm{S}+\mathrm{R}}\{W(t) O\}
$$

- introduction of reduced density operator

$$
\begin{aligned}
& \rho(s, \bar{s}, t)=\int d Z \Psi^{*}(s, Z, t) \Psi(\bar{s}, Z, t) \quad \rightarrow \quad \rho(t)=\operatorname{tr}_{\mathrm{R}}\{W(t)\} \\
&\langle O\rangle(t)=\int d s[O(\bar{s}) \rho(s, \bar{s}, t)]_{s=\bar{s}}=\operatorname{tr}\{\rho(t) O\}
\end{aligned}
$$

- Liouville-von Neumann equation for total statistical operator

$$
\frac{\partial}{\partial t} W(t)=-\frac{i}{\hbar}[H, W(t)]
$$

- derivation of the Quantum Master Equation (QME)
- interaction representation

$$
\begin{gathered}
U_{0}\left(t-t_{0}\right)=\exp \left(-\frac{i}{\hbar} H_{\mathrm{S}}\left(t-t_{0}\right)\right) \exp \left(-\frac{i}{\hbar} H_{\mathrm{R}}\left(t-t_{0}\right)\right) \\
W^{(\mathrm{I})}(t)=U_{0}^{+}\left(t-t_{0}\right) W(t) U_{0}\left(t-t_{0}\right) \\
\frac{\partial}{\partial t} W^{(\mathrm{I})}(t)=-\frac{i}{\hbar}\left[H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{R})}(t), W^{(\mathrm{I})}(t)\right]
\end{gathered}
$$

- equation of motion for reduced density density operator

$$
\frac{\partial}{\partial t} \rho^{(\mathrm{I})}(t)=-\frac{i}{\hbar} \operatorname{tr}_{\mathrm{R}}\left\{\left[H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t), W^{(\mathrm{I})}(t)\right]\right\}
$$

- equation not closed, use perturbation theory based on formal solution

$$
W^{(\mathrm{I})}(t)=W^{(\mathrm{I})}\left(t_{0}\right)-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime}\left[H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}\left(t^{\prime}\right), W^{(\mathrm{I})}\left(t^{\prime}\right)\right]
$$

- assumptions: factorized S-R coupling \& bath stays in equilibrium

$$
\begin{array}{ll}
W^{(\mathrm{I})}(t)=\rho^{(\mathrm{I})}(t) \otimes R_{\mathrm{eq}} & R_{\mathrm{eq}}=e^{-H_{\mathrm{R}} / k_{\mathrm{B}} T} / \operatorname{tr}_{\mathrm{R}}\left\{e^{-H_{\mathrm{R}} / k_{\mathrm{B}} T}\right\} \\
H_{\mathrm{S}-\mathrm{R}}=\sum_{u} K_{u} \Phi_{u} & \left\langle\Phi_{u}\right\rangle_{\mathrm{R}}=0
\end{array}
$$

- second-order EOM for reduced density operator

$$
\frac{\partial}{\partial t} \rho^{(\mathrm{I})}(t)=-\frac{1}{\hbar^{2}} \int_{t_{0}}^{t} d t^{\prime} \operatorname{tr}_{\mathrm{R}}\left\{\left[H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t),\left[H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}\left(t^{\prime}\right), R_{\mathrm{eq}} \rho^{(\mathrm{I})}\left(t^{\prime}\right)\right]\right]\right\}
$$

- four terms due to commutators

$$
\begin{aligned}
\frac{\partial}{\partial t} \rho^{(\mathrm{I})}(t)= & -\sum_{u v} \int_{t_{0}}^{t} d t^{\prime}\left(C_{u v}\left(t-t^{\prime}\right)\left[K_{u}^{(\mathrm{I})}(t), K_{v}^{(\mathrm{I})}\left(t^{\prime}\right) \rho^{(\mathrm{I})}\left(t^{\prime}\right)\right]\right. \\
& \left.-C_{v u}\left(-t+t^{\prime}\right)\left[K_{u}^{(\mathrm{I})}(t), \rho^{\mathrm{I})}\left(t^{\prime}\right) K_{v}^{(\mathrm{I})}\left(t^{\prime}\right)\right]\right)
\end{aligned}
$$

- correlation function of bath fluctuations

$$
C_{u v}(t)=\frac{1}{\hbar^{2}}\left\langle\Delta \Phi_{u}(t) \Delta \Phi_{v}(0)\right\rangle_{\mathrm{R}}=\frac{1}{\hbar^{2}}\left\langle\Phi_{u}^{(\mathrm{I}}(t) \Phi_{v}^{(\mathrm{I})}(0)\right\rangle_{\mathrm{R}}-\frac{1}{\hbar^{2}}\left\langle\Phi_{u}\right\rangle_{\mathrm{R}}\left\langle\Phi_{v}\right\rangle_{\mathrm{R}}
$$

- EOM in Schrödinger representation

$$
\begin{gathered}
\frac{\partial}{\partial t} \rho=-\frac{i}{\hbar}\left[H_{\mathrm{S}}, \rho\right]+\left(\frac{\partial \rho}{\partial t}\right)_{\text {diss }} \\
\left(\frac{\partial \rho}{\partial t}\right)_{\text {diss }}=-\sum_{u, v} \int_{0}^{t-t_{0}} d \tau\left(C_{u v}(\tau)\left[K_{u}, U_{\mathrm{S}}(\tau) K_{v} \rho(t-\tau) U_{\mathrm{S}}^{+}(\tau)\right]\right. \\
\\
\left.-C_{v u}(-\tau)\left[K_{u}, U_{\mathrm{S}}(\tau) \rho(t-\tau) K_{v} U_{\mathrm{S}}^{+}(\tau)\right]\right)
\end{gathered}
$$

- r.h.s. contains free and dissipative evolution
- retarded time argument leads to memory effects: nonMarkovian dynamics
- memory time determined by bath correlation function, usually

$$
C_{u v}(\tau) \propto \exp \left(-\tau / \tau_{\mathrm{mem}}\right)
$$

- Markov approximation ($C_{u v}(\tau) \propto \delta(\tau)$)

$$
\begin{aligned}
\rho(t-\tau) & =U_{\mathrm{S}}\left(t-\tau-t_{0}\right) \rho^{(\mathrm{I})}(t-\tau) U_{\mathrm{S}}^{+}\left(t-\tau-t_{0}\right) \\
& \approx U_{\mathrm{S}}(-\tau) U_{\mathrm{S}}\left(t-t_{0}\right) \rho^{(\mathrm{I})}(t) U_{\mathrm{S}}^{+}\left(t-t_{0}\right) U_{\mathrm{S}}^{+}(-\tau)=U_{\mathrm{S}}^{+}(\tau) \rho(t) U_{\mathrm{S}}(\tau)
\end{aligned}
$$

- Quantum Master Equation (QME)

$$
\begin{gathered}
\left(\frac{\partial \rho}{\partial t}\right)_{\text {diss }}=-\sum_{u, v} \int_{0}^{\infty} d \tau\left\{C_{u v}(\tau)\left[K_{u}, K_{v}^{(\mathrm{I})}(-\tau) \rho(t)\right]_{-}-C_{v u}(-\tau)\left[K_{u}, \rho(t) K_{v}^{(\mathrm{I})}(-\tau)\right]_{-}\right\} \\
C_{u v}(t)=\frac{1}{\hbar^{2}}\left\langle\Delta \Phi_{u}(t) \Delta \Phi_{v}(0)\right\rangle_{\mathrm{R}} \quad K_{v}^{(\mathrm{I})}(-\tau)=U_{\mathrm{S}}(\tau) K_{v} U_{\mathrm{S}}^{+}(\tau)
\end{gathered}
$$

- beyond the Markovian and perturbative QME
- path integral method
- hierarchy equations of motion
- multi-level Redfield equations
- eigenstates of the relevant system $\quad H_{\mathrm{S}}|a\rangle=E_{a}|a\rangle$

$$
\begin{gathered}
\left(\frac{\partial \rho}{\partial t}\right)_{\text {diss }}=-\sum_{u, v} \int_{0}^{\infty} d \tau\left\{C_{u v}(\tau)\left[K_{u}, K_{v}^{(\mathrm{I})}(-\tau) \rho(t)\right]_{-}-C_{v u}(-\tau)\left[K_{u}, \rho(t) K_{v}^{(\mathrm{I})}(-\tau)\right]_{-}\right\} \\
\left(\frac{\partial \rho_{a b}}{\partial t}\right)_{\text {diss. }}=-\sum_{c d} R_{a b, c d} \rho_{c d}(t)
\end{gathered}
$$

- Redfield relaxation tensor

$$
R_{a b, c d}=\delta_{a c} \sum_{e} \Gamma_{b e, e d}\left(\omega_{d e}\right)+\delta_{b d} \sum_{e} \Gamma_{a e, e c}\left(\omega_{c e}\right)-\Gamma_{c a, b d}\left(\omega_{d b}\right)-\Gamma_{d b, a c}\left(\omega_{c a}\right)
$$

- damping matrix

$$
\Gamma_{a b, c d}(\omega)=\operatorname{Re} \sum_{u, v} K_{a b}^{(u)} K_{c d}^{(v)} \int_{0}^{\infty} d \tau e^{i \omega \tau} C_{u v}(\tau)
$$

- harmonic oscillator bath (Caldeira-Leggett model)

$$
\begin{gathered}
H_{\mathrm{R}}=\sum_{\xi} \frac{\hbar \omega_{\xi}}{2}\left(-\frac{\partial^{2}}{\partial Q_{\xi}^{2}}+Q_{\xi}^{2}\right) \quad\left(Q_{\xi}=x_{\xi} / \sqrt{\hbar / m_{\xi} \omega_{\xi}}\right) \\
H_{\mathrm{S}-\mathrm{R}}=K(s) \sum_{\xi} \hbar \omega_{\xi} g_{\xi} Q_{\xi}
\end{gathered}
$$

$$
\begin{gathered}
C(t)=\sum_{\xi} \omega_{\xi}^{2} S_{\xi}\left(\left[\left(1+n\left(\omega_{\xi}\right)\right] e^{-i \omega_{\xi} t}+n\left(\omega_{\xi}\right) e^{i \omega_{\xi} t}\right) \quad S_{\xi}=g_{\xi}^{2} / 2\right. \\
C(\omega)=2 \pi \omega^{2}\left[1+n\left(\omega_{\xi}\right)\right][J(\omega)-J(-\omega)]
\end{gathered}
$$

- spectral density

$$
\begin{gathered}
J(\omega)=\sum_{\xi} S_{\xi} \delta\left(\omega-\omega_{\xi}\right) \\
C(t)=\int_{0}^{\infty} d \omega\left(\cos (\omega t) \operatorname{coth}\left(\frac{\hbar \omega}{2 k_{\mathrm{B}} T}\right)-i \sin (\omega t)\right) \omega^{2} J(\omega)
\end{gathered}
$$

- model spectral densities
- Ohmic spectral density with cut-off: $\quad \omega^{2} J(\omega)=\Theta(\omega) j_{0} \omega e^{-\omega / \omega_{c}}$
- Debye spectral density (solutes in polar solvents)

$$
\omega^{2} J(\omega)=\Theta(\omega) \frac{j_{0} \omega}{\omega^{2}+\omega_{\mathrm{D}}^{2}}
$$

in high temperature limit $C(t)=\frac{\pi j_{0}}{2 \hbar \omega_{\mathrm{D}}}\left(2 k_{\mathrm{B}} T-i \operatorname{sgn}(t) \hbar \omega_{\mathrm{D}}\right) e^{-\omega_{\mathrm{D}}|t|}$

correlation time: ω_{D}^{-1} Ohmic limit $\quad \omega_{\mathrm{D}}^{-1} \rightarrow 0$ $C(\omega) \propto \omega$

Markov dynamics: $C(t) \approx \delta(t)$

- Redfield tensor: Rab,cd
- population transfer ($a=b, c=d$)

$$
R_{a a, c c}=2 \delta_{a c} \sum_{e} \Gamma_{a e, e a}\left(\omega_{a e}\right)-2 \Gamma_{c a, a c}\left(\omega_{c a}\right)=\delta_{a c} \sum_{e} k_{a e}-k_{c a}
$$

energy relaxation rate $k_{a b}=2 \Gamma_{a b, b a}\left(\omega_{a b}\right)=\sum_{u, v} K_{a b}^{(u)} K_{b a}^{(v)} C_{u v}\left(\omega_{a b}\right)$

- coherence dephasing ($a \neq b, a=c, b=d$)

$$
R_{a b, a b} \equiv \gamma_{a b}=\sum_{e}\left(\Gamma_{a e, e a}\left(\omega_{a e}\right)+\Gamma_{b e, e b}\left(\omega_{b e}\right)\right)-\Gamma_{a a, b b}(0)-\Gamma_{b b, a a}(0)
$$

dephasing rate due to energy relaxation $\quad \gamma_{a b}=\frac{1}{2} \sum_{e} k_{a e}+\frac{1}{2} \sum_{e} k_{b e}+\gamma_{a b}^{(\mathrm{pd})}$
pure dephasing rate $\gamma_{a b}^{(\mathrm{pd})}=-\sum_{u, v} K_{a a}^{(u)} K_{b b}^{(v)} C_{u v}(\omega=0)$

- a simple example: the damped harmonic oscillator

$$
\begin{aligned}
& \frac{\partial}{\partial t} \rho_{M N}=-\delta_{M N} \sum_{K}\left(k_{M K} \rho_{M M}-k_{K M} \rho_{K K}\right) k_{M N} \\
&-\left(1-\delta_{M N}\right)\left(i \Omega_{\mathrm{s}}(M-N)+\gamma_{M}+\gamma_{N}\right) \rho_{M N} \gamma_{M}=\sum_{N} k_{M N} / 2 \\
&\langle M| K(s)|N\rangle=\left(\sqrt{N} \delta_{M, N-1}+\sqrt{N+1} \delta_{M, N+1}\right)
\end{aligned}
$$

- relaxation rates

