

Dynamics and Spectroscopy of Molecular Systems: From the Infrared to the X-ray Regime

Prof. Oliver Kühn

Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock Email: oliver.kuehn@uni-rostock.de http://web.physik.uni-rostock.de/quantendynamik

Table of Contents

- Concepts of Molecular Physics
- Concepts of (Non-)linear Spectroscopy
- Dynamics and Spectroscopy of Hydrogen Bonds
- Frenkel Excitons in Natural and Artifical Light-Harvesting
- X-Ray Spectroscopy of Core Levels

Literature (general)

V. May, O. Kühn, *Charge and Energy Transfer Dynamics in Molecular Systems*, Wiley-VCH, Weinheim, 2011.

S. Mukamel, *Principles of Nonlinear Optical Spectroscopy*, Oxford University Press, New York, 1995.

P. Hamm, M. Zanni, *Concepts and Methods of 2D Infrared Spectroscopy*, Cambridge University Press, Cambridge, 2011.

3

F. de Groot, A. Kotani, *Core Level Spectroscopy of Solids*, CRC, Boca Raton, 2008

Lecture One: Concepts of Molecular Physics

Oliver Kühn

For personal use only. References for reprinted figures are available upon request.

The Molecular World

Time Scales

A.H. Zewail Femtochemistry—Ultrafast Dynamics of the Chemical Bond, Vols. I and II, World Scientific, New Jersey, Singapore (1994)

Overview

- Born-Oppenheimer ansatz and potential energy surfaces
- electronic structure in a nutshell
- harmonic oscillators everywhere
- condensed phase models
- quantum dynamics, from coherent to incoherent

Born-Oppenheimer Ansatz

7

• molecular Hamiltonian

 $H_{\rm mol} = T_{\rm el} + V_{\rm el-nuc} + V_{\rm el-el} + T_{\rm nuc} + V_{\rm nuc-nuc}$

 $T_{\rm el} = \sum_{i=1}^{N_{\rm el}} \frac{\mathbf{p}_j^2}{2m_{\rm el}} \qquad \qquad V_{\rm el-el} = \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}$

kinetic energy

Coulomb interaction

 $(N_{
m el}, \mathbf{r}_j, \mathbf{p}_j, m_{
m el})$ $(N_{
m nuc}, Z_A, \mathbf{R}_A, \mathbf{P}_A, M_A)$

• molecular Schrödinger equation

 $H_{\rm mol}\Psi_{\lambda}(r,R) = E_{\lambda}\Psi_{\lambda}(r,R) \longrightarrow m_{\rm el}/M_{\rm A} < 10^{-3}$

• electronic Hamilton operator for fixed nuclei

 $H_{\rm el}(R) = T_{\rm el} + V_{\rm el-nuc}(R) + V_{\rm el-el}$

• electronic Schrödinger equation: adiabatic electronic states

$$H_{\rm el}(R)\,\psi_a(r;R) = E_a(R)\,\psi_a(r;R)$$

- assuming a complete adiabatic basis
- ansatz for molecular wave function

$$\Psi(r;R) = \sum_{a} \chi_a(R) \,\psi_a(r;R)$$

• expansion coefficients are nuclear wavefunctions and obey

$$(T_{\rm nuc} + E_a(R) + V_{\rm nuc-nuc} + \Theta_{aa} - E) \ \chi_a(R) = -\sum_{b \neq a} \Theta_{ab} \chi_b(R) \qquad \blacklozenge$$

nonadiabaticity operator

$$\Theta_{ab} = \int dr \ \psi_a(r;R) T_{\text{nuc}} \ \psi_b(r;R) + \sum_n \frac{1}{M_n} \left[\int dr \ \psi_a(r;R) \mathbf{P}_n \psi_b(r;R) \right] \mathbf{P}_n$$

• potential energy surfaces (PES)

$$U_a(R) = E_a(R) + V_{\text{nuc-nuc}}(R) + \Theta_{aa}$$

- PES: 3*N*_{nuc}-dimensional hypersurfaces
 - ► 3N_{nuc}-6 internal degrees of freedom (DOF) + 3 rotations + 3 translations
 - stationary points $\nabla U_a(R)|_{R=R^{(a)}} = 0$

$$\nabla U_a(R) = \{ \partial U_a(R) / \partial R_1, \dots, \partial U_a(R) / \partial R_{3N_{\text{nuc}}} \}$$

- ▶ Hessian matrix $\kappa_{mn}^{(a)} = \frac{\partial^2 U_a(R)}{\partial R_m \partial R_n}$ $(m, n = 1, ..., 3N_{\text{nuc}})$
- degeneracies of electronic states $U_a(R) \approx U_b(R)$

• nonadiabatic effects & Born-Oppenheimer approximation

$$(T_{nuc} + E_{a}(R) + V_{nuc-nuc} + \Theta_{aa} - E) \ \chi_{a}(R) = -\sum_{b \neq a} \Theta_{ab} \chi_{b}(R)$$

$$\Theta_{ab} = \int dr \ \psi_{a}(r; R) \ T_{nuc} \ \psi_{b}(r; R) + \sum_{n} \frac{1}{M_{n}} \left[\int dr \ \psi_{a}(r; R) \mathbf{P}_{n} \psi_{b}(r; R) \mathbf{P}_{n} \right]$$

$$\mathbf{P}_{n} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0$$

adiabatic molecular wavefunction: $\Psi_{aM}^{(adia)}(r;R) = \chi_{aM}(R)\psi_a(r;R)$

Electronic Structure in a Nutshell

• electronic Schrödinger equation for fixed nuclei

 $H_{\rm el}(R)\,\psi_a(r;R) = E_a(R)\,\psi_a(r;R)$

 <u>wavefunction</u> (Hartree-Fock, MPn, CI, MCSCF, CC etc.) and <u>density</u> (DFT) based methods

• illustration for H₂

13

- LCAO-MO approach (H₂)
 - minimal basis of one atomic 1s function per nucleus

$$\psi_i(r;R) = \sum_{\mu=1}^2 C_{\mu i} \phi_\mu(\mathbf{r};\mathbf{R}) \qquad \longrightarrow \qquad \phi_\mu(\mathbf{r}-\mathbf{R}_\mu) = \frac{1}{\sqrt{\pi}} e^{-|\mathbf{r}-\mathbf{R}_\mu|}$$

• coefficients follow from linear variation principle

 $\varphi_1(\mathbf{x}) = \psi_1(\mathbf{r})\alpha(m_s) \qquad \qquad \varphi_2(\mathbf{x}) = \psi_1(\mathbf{r})\beta(m_s) \qquad \qquad \varphi_3(\mathbf{x}) = \psi_2(\mathbf{r})\alpha(m_s) \qquad \qquad \varphi_4(\mathbf{x}) = \psi_2(\mathbf{r})\beta(m_s)$

- > Pauli principle requires antisymmetric wavefunction
- fulfilled if many-electron wavefunction is chosen as in Slater determinant form

restriction to a single determinant description: Hartree-Fock theory

15

(1)excited determinants (4) (4) (6) (2)configuration interaction correlation effects electronically excited states HF limit but... exact number of configurations for N number of basis functions electrons and 2K spin orbitals (2K)!/(N!(2K-N)!)

full CI

number of SLATER determinants

ab initio wavefunction-based methods (selection)

HF	CI	MCSCF
$ oldsymbol{\kappa} angle=\hat{U}(oldsymbol{\kappa}) 0 angle$	$ {f C} angle = \sum_i C_i i angle$	$ m{\kappa}, \mathbf{C} angle = \hat{U}(m{\kappa}) \sum_{i} C_{i} i angle$

- density functional theory
 - energy functional of electron density (Hohenberg-Kohn)

$$E[\rho] = e \int d^3 \mathbf{x} \, V_{\rm el-nuc}(\mathbf{x}) \, \rho(\mathbf{x}) + T_{\rm el}[\rho] + \frac{e^2}{2} \int d^3 \mathbf{x} \, d^3 \mathbf{x}' \, \frac{\rho(\mathbf{x})\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} + E_{\rm XC}[\rho]$$

- holy grail: exchange correlation functional
- electronically excited states: linear response theory

• electronic states vs. potential energy curves

Harmonic Oscillators

- assumption: Born-Oppenheimer approximation is valid
- PES

 $U_a(R) = E_a(R) + V_{\text{nuc-nuc}}(R) + \Theta_{aa}$

- choice of internal coordinates depends on problem
 - reactive dynamics & floppy molecules: bond distances, angles, dihedrals - complicated kinetic energy
- close to equilibrium: harmonic approximation
 - small deviations w.r.t. geometry of stationary point

$$\Delta R_n^{(a)} = R_n^{(a)} - R_n \ (n = 1, \dots, 3N_{\text{nuc}})$$

▶ Taylor expansion of PES

$$H_a = U_a(R^{(a)}) + \sum_{n=1}^{3N_{\text{nuc}}} \frac{P_n^2}{2M_n} + \sum_{m,n=1}^{3N_{\text{nuc}}} \frac{1}{2} \kappa_{mn}^{(a)} \Delta R_m^{(a)} \Delta R_n^{(a)}$$

 diagonalization of Hessian by linear trafo to massweighted normal mode coordinates

$$\Delta R_n^{(a)} = \sum_{\xi} M_n^{-1/2} A_{n\xi}^{(a)} q_{a,\xi}$$

normal mode Hamiltonian

$$H_a = U_a(q_{a,\xi} = 0) + H_a^{(nm)} \qquad H_a^{(nm)} = \frac{1}{2} \sum_{\xi} \left(p_{\xi}^2 + \omega_{a,\xi}^2 q_{a,\xi}^2 \right) \qquad \bigstar$$
Normal Mode Vibrations of CO₂

• eigenvalue problem for harmonic oscillators

two electronic states:shifted oscillator model

different equilibrium positions

$$U_{a=g/e}(R) \to R^{(g/e)} \qquad U_e(R) = U_e(R^{(e)}) + \sum_{m,n=1}^{3N_{\text{nuc}}} \frac{1}{2} \kappa_{mn}^{(e)} \Delta R_m^{(e)} \Delta R_n^{(e)}$$

assume same normal modes

$$\Delta R_n^{(e)} = R_n - R_n^{(g)} - (R_n^{(e)} - R_n^{(g)}) = \sum_{\xi} M_n^{-1/2} A_{n\xi}^{(g)}(q_{\xi} - q_{\xi}^{(e)})$$
general shifted oscillator Hamiltonian
$$H_a = U_a(q_{\xi} = q_{\xi}^{(a)}) + \frac{1}{2} \sum_{\xi} \left(p_{\xi}^2 + \omega_{a,\xi}^2(q_{\xi} - q_{\xi}^{(a)})^2 \right)$$

$$\chi_{aN_{\xi}}(q_{\xi}) = \frac{\sqrt{\lambda_{a,\xi}}}{\sqrt{\sqrt{\pi} 2^{N_{\xi}} N_{\xi}!}} \exp\left(-\frac{1}{2} \lambda_{a,\xi}^2(q_{\xi} - q_{\xi}^{(a)})^2 \right) H_{N_{\xi}}(\lambda_{a,\xi}(q_{\xi} - q_{\xi}^{(a)}))$$

• Franck-Condon factor

$$\langle \chi_{aM} | \chi_{bN} \rangle = e^{-(\Delta g_{ab})^2/2} \sum_{m=0}^{M} \sum_{n=0}^{N} \frac{(-1)^n (\Delta g_{ab})^{m+n}}{m!n!}$$
 PES shift

$$\times \sqrt{\frac{M!N!}{(M-m)!(N-n)!}} \delta_{M-m,N-n}$$
 $\Delta g_{ab} = \sqrt{\frac{\omega_{\xi}}{2\hbar}} (q_{\xi}^{(b)} - q_{\xi}^{(b)})$

• special case: Poisson distribution

 $|\langle \chi_{aM} | \chi_{b0} \rangle|^2 = e^{-(\Delta g_{ab})^2} \frac{(\Delta g_{ab})^{2M}}{M!}$

$$V^{(\text{anh})} = \frac{1}{3!} \sum_{klm} K_{klm} q_k q_l q_m + \frac{1}{4!} \sum_{klmn} K_{klmn} q_k q_l q_m q_n + \dots$$

1

Reaction Surfaces

- combination of large amplitude and harmonic motion
- example: proton transfer

- ▶ divide nuclear DOF into active, *s*, and spectator, *Z*, coordinates
- expand w.r.t. a meaningful reference configuration

$$U(R) \approx U(\mathbf{s}, \mathbf{Z}^{(0)}) + \left(\frac{\partial U(\mathbf{s}, \mathbf{Z})}{\partial \mathbf{Z}}\right)_{\mathbf{Z} = \mathbf{Z}^{(0)}} \Delta \mathbf{Z} + \frac{1}{2} \Delta \mathbf{Z} \left(\frac{\partial^2 U(\mathbf{s}, \mathbf{Z})}{\partial \mathbf{Z} \partial \mathbf{Z}}\right)_{\mathbf{Z} = \mathbf{Z}^{(0)}} \Delta \mathbf{Z}$$
$$\underbrace{ }_{-\mathbf{f}(\mathbf{s})} \qquad \underbrace{ }_{\kappa(\mathbf{s})}$$

normal mode trafo

$$\Delta \mathbf{Z}(\mathbf{s}) = \mathbf{M}^{-1/2} \mathbf{A} \mathbf{q}$$

• reaction surface Hamiltonian

$$\begin{split} H &= \mathbf{T_s} + U(\mathbf{s}, \mathbf{Z}^{(0)}) + \mathbf{T_q} + \frac{1}{2} \mathbf{q} \mathbf{K}(\mathbf{s}) \mathbf{q} - \mathbf{F}(\mathbf{s}) \mathbf{q} \\ & \text{mode mixing} & \text{forces on modes} \\ \mathbf{K}(\mathbf{s}) &= \mathbf{A}^+ \mathbf{M}^{-1/2} \kappa(\mathbf{s}) \mathbf{M}^{-1/2} \mathbf{A} & \mathbf{F}(\mathbf{s}) = \mathbf{f}(\mathbf{s}) \mathbf{M}^{-1/2} \mathbf{A} \end{split}$$

(re)active system

spectator modes

$$H = \mathbf{T}_{\mathbf{s}} + U(\mathbf{s}, \mathbf{Z}^{(0)}) - E_{\text{reorg}}(\mathbf{s}) + \mathbf{T}_{\mathbf{q}} + \frac{1}{2}(\mathbf{q} - \mathbf{q}^{(0)}(\mathbf{s}))\mathbf{K}(\mathbf{s})(\mathbf{q} - \mathbf{q}^{(0)}(\mathbf{s}))$$

reorganization energy

$$E_{\text{reorg}}(\mathbf{s}) = \frac{1}{2}\mathbf{q}^{(0)}(\mathbf{s})\mathbf{K}(\mathbf{s})\mathbf{q}^{(0)}(\mathbf{s})$$

 $q^{(0)}(s) = -[K(s)]^{-1} F(s)$

Coupled Electronic States

- consider two-state one coordinate (curve-crossing) system
 - adiabatic representation (dynamic coupling)

$$\mathbf{H}^{\mathrm{ad}} = \begin{pmatrix} T_{\mathrm{nuc}} & \Theta_{+-} \\ \Theta_{+-} & T_{\mathrm{nuc}} \end{pmatrix} + \begin{pmatrix} U_{+}(R) & 0 \\ 0 & U_{-}(R) \end{pmatrix} \qquad \mathbf{H}^{\mathrm{ad}} \begin{pmatrix} \chi_{+} \\ \chi_{-} \end{pmatrix} = E \begin{pmatrix} \chi_{+} \\ \chi_{-} \end{pmatrix}$$

diabatic representation (static coupling)

$$\mathbf{H}^{\mathrm{d}} = \begin{pmatrix} T_{\mathrm{nuc}} & 0\\ 0 & T_{\mathrm{nuc}} \end{pmatrix} + \begin{pmatrix} U_{1}^{\mathrm{d}}(R) & V_{12}(R)\\ V_{12}(R) & U_{2}^{\mathrm{d}}(R) \end{pmatrix} \qquad \mathbf{H}^{\mathrm{d}}\begin{pmatrix} \chi_{1}^{\mathrm{d}}\\ \chi_{2}^{\mathrm{d}} \end{pmatrix} = E\begin{pmatrix} \chi_{1}^{\mathrm{d}}\\ \chi_{2}^{\mathrm{d}} \end{pmatrix}$$

related via an orthogonal transformation

$$\begin{pmatrix} \chi_+ \\ \chi_- \end{pmatrix} = \mathbf{C} \begin{pmatrix} \chi_1^{\mathrm{d}} \\ \chi_2^{\mathrm{d}} \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} \cos \gamma(R) & \sin \gamma(R) \\ -\sin \gamma(R) & \cos \gamma(R) \end{pmatrix}$$

mixing angle $\gamma(R) = \frac{1}{2} \arctan\left(\frac{2|V_{12}(R)|}{|U_1^d(R) - U_2^d(R)|}\right)$

• diabatic vs. adiabatic representation

$$U_{\pm}(R) = \frac{1}{2} \left(U_1^{\rm d}(R) + U_2^{\rm d}(R) \pm \sqrt{[U_1^{\rm d}(R) - U_2^{\rm d}(R)]^2 + 4|V_{12}(R)|^2} \right)$$

- diabatic states can cross
- adiabatic crossing requires diabatic crossing and vanishing coupling
- non-crossing rule: adiabatic states of the same symmetry do not cross

• vibronic coupling model

$$H_{\text{mol}} = \sum_{ab} (\delta_{ab} H_a(R) + (1 - \delta_{ab}) V_{ab}(R)) |\psi_a\rangle \langle\psi_b| \qquad \text{conical intersection}$$

$$H_0 = \frac{1}{2} \sum_{\xi} \left(p_{\xi}^2 + \omega_{\xi}^2 q_{\xi}^2 \right)$$

$$H_{a>0}(q_{\xi}) = H_0 + E_a + \sum_{\xi} \kappa_{\xi}^{(a)} q_{\xi} + \dots \qquad \text{tuning modes}$$

$$V_{ab}(q_{\xi}) = V_{ab}(q_{\xi} = 0) + \sum_{\xi} \lambda_{\xi}^{(ab)} q_{\xi} + \dots \qquad \text{scoupling modes}$$

• example: photostability of life

Molecules in the Condensed Phase

- from PES to classical force fields
 - Newton's equation for classical nuclei

$$M_A \frac{d^2 \mathbf{R}}{dt^2} = -\nabla_A U(\{\mathbf{R}(t)\})$$

- ab initio Born-Oppenheimer Molecular Dynamics (AIMD)
- Molecular Mechanics (MM) force fields

33

• Quantum Mechanics/Molecular Mechanics (QM/MM) method

- Quantum Mechanics: System-Bath models
 - recall reaction surface Hamiltonian

$$H = \mathbf{T}_{\mathbf{s}} + U(\mathbf{s}, \mathbf{Z}^{(0)}) + \mathbf{T}_{\mathbf{q}} + \frac{1}{2}\mathbf{q}\mathbf{K}(\mathbf{s})\mathbf{q} - \mathbf{F}(\mathbf{s})\mathbf{q}$$

relevant system

bath

system-bath coupling

- spectrum of bath modes arbitrary
- Caldeira-Leggett model

$$H = H_{\rm S} + \frac{1}{2} \sum_{\xi} [p_{\xi}^2 + \omega_{\xi}^2 q_{\xi}^2] + s \sum_{\xi} c_{\xi} q_{\xi}$$

fluctuating force picture

$$H = H_{\rm S} + \delta H_{\rm S}(t)$$

stochastic models (Kubo, Haken-Strobl-Reineker)

$$\langle \delta H_{\rm S}(t) \delta H_{\rm S}(0) \rangle_{\rm bath} = f(t)$$

Quantum Dynamics: Schrödinger Equation

$$i\hbar\frac{\partial|\Psi\rangle}{\partial t}=H|\Psi\rangle$$

- standard approach
 - formal solution via time evolution operator

$$|\Psi(t)\rangle = U(t)|\Psi(0)\rangle$$
 $U(t) = e^{-iHt/\hbar}$

• if eigenstates are known

$$H|a\rangle = E_a|a\rangle$$
 $|\Psi(t)\rangle = \sum_a c_a(t)|a\rangle \rightarrow c_a(t) = c_a(0)e^{-iE_at/\hbar}$

if eigenstates are unknown, but some meaningful basis exists

$$|\Psi(t)\rangle = \sum_{n} c_n(t)|n\rangle$$
 $i\hbar \frac{dc_n(t)}{dt} = \sum_{m} H_{nm}c_m(t)$

follows from Dirac-Frenkel variational principle

$$\langle \delta \Psi | H - i\hbar \frac{\partial}{\partial t} | \Psi \rangle = 0$$

• Simple example: Dynamics in a double well

37

3000 1.5 2500 1 2000 E/hc (cm-1) 0.5 1500 x/A 0 1000 -0.5 500 0 ∟ -1 -1 -0.5 0.5 0 1.5 0 50 100 150 200 1 x/A t/fs 3.5 4000 3 3500 2.5 3000 2 E/hc (cm-1) 2500 1.5 x/A 2000 1 0.5 1500 0 1000 -0.5 500 -1 0 200 600 1000 0 400 800 -0.5 0 0.5 1 x/A 1.5 2 2.5 3 -1 t/fs wave packet dephasing

harmonic vs. Morse oscillator

T

• multi-dimensional extension (*f* DOF)

$$\Psi(x_1, \dots, x_f, t) = \sum_{j_1=1}^{N_1} \cdots \sum_{j_f=1}^{N_f} C_{j_1\dots j_f}(t) \,\phi_{j_1}^{(1)}(x_1) \cdots \phi_{j_f}^{(f)}(x_f)$$

$$i\hbar \dot{C}_{j_1,\dots,j_f} = \sum_{k_1,\dots,k_f} \langle \phi_{j_1}^{(1)} \dots \phi_{j_f}^{(f)} | H | \phi_{k_1}^{(1)} \dots \phi_{k_f}^{(f)} \rangle C_{k_1,\dots,k_f}$$

- example: f=6, N=20 there are $20^6=64\times10^6$ basis functions
- requires 3GB of memory for propagation
- dimensionality bottleneck

39

• (partial) solution: time-dependent basis functions

Hartree product

• application to reaction surface Hamiltonian

$$H = H_{\rm S} + \frac{1}{2} \sum_{\xi} [p_{\xi}^2 + \omega_{\xi}^2 q_{\xi}^2] + \sum_{\xi} F_{\xi}(s) q_{\xi}$$

- coupled equations of motion (via Frenkel-Dirac principle)
 - active coordinate

$$i\hbar\frac{\partial}{\partial t}\phi(s,t) = [T_s + V_{\rm SCF}(s,t)]\phi(s,t)$$

spectator modes = driven oscillators

$$i\hbar\frac{\partial}{\partial t}\phi(q_{\xi},t) = \left[\frac{p_{\xi}^2}{2} + \frac{1}{2}\omega_{\xi}^2 q_{\xi}^2 - \bar{F}_{\xi}(t)q_{\xi}\right]\phi(q_{\xi},t)$$

mean fields

$$\bar{F}_{\xi}(t) = \int ds \, \phi^*(s;t) F_{\xi}(s) \phi(s;t)$$

 multi-configuration time-dependent Hartree (MCTDH) approach (Heidelberg group, H.D. Meyer, L. Cederbaum and coworkers)

$$\Psi(\mathbf{x};t) = \sum_{j_1\dots j_f} A_{j_1,\dots,j_f}(t) \,\phi_{j_1}^{(1)}(x_1;t) \times \dots \times \phi_{j_f}^{(f)}(x_f;t) = \sum_J A_J(t) \Phi_J(\mathbf{x};t)$$

- time-dependent compact basis
- optimal representation of moving with wave packet
- correlations included via superposition of Hartree products
- high-dimensional dynamics via multi-layer extension (ML-MCTDH)
- coupled equations of motion from Dirac-Frenkel principle

coefficient vector: $i\hbar\dot{A}_J = \sum_K H_{JK}A_K$

vector of single particle functions: $\bar{\phi}^{(\kappa)} = (\phi_1^{(\kappa)}, \dots, \phi_{n_\kappa}^{(\kappa)})^T$

$$i\hbar\dot{\phi}^{(\kappa)} = (1 - P^{(\kappa)})(\rho^{(\kappa)})^{-1}\mathcal{H}^{(\kappa)}\bar{\phi}^{(\kappa)}$$

Dissipative Quantum Dynamics

elementary processes in complex systems

system-bath (reservoir) situation

43

system-bath Hamiltonian

$$H = H_{\rm S} + H_{\rm S-R} + H_{\rm R}$$

• system defined by observable

$$\langle O \rangle(t) = \int ds \, dZ \, \Psi^*(s, Z, t) O(s) \Psi(s, Z, t) \equiv \operatorname{tr}_{S+R}\{W(t)O\}$$

introduction of reduced density operator

$$\rho(s,\bar{s},t) = \int dZ \,\Psi^*(s,Z,t)\Psi(\bar{s},Z,t) \quad \to \quad \rho(t) = \operatorname{tr}_{\mathbf{R}}\{W(t)\}$$
$$\langle O\rangle(t) = \int ds \left[O(\bar{s})\rho(s,\bar{s},t)\right]_{s=\bar{s}} = \operatorname{tr}_{\mathbf{S}}\{\rho(t)O\}$$

Liouville-von Neumann equation for total statistical operator

$$\frac{\partial}{\partial t}W(t) = -\frac{i}{\hbar} \left[H, W(t)\right]$$

- derivation of the Quantum Master Equation (QME)
 - interaction representation

$$U_0(t-t_0) = \exp\left(-\frac{i}{\hbar}H_{\rm S}(t-t_0)\right) \exp\left(-\frac{i}{\hbar}H_{\rm R}(t-t_0)\right)$$
$$W^{({\rm I})}(t) = U_0^+(t-t_0)W(t)U_0(t-t_0)$$
$$\frac{\partial}{\partial t}W^{({\rm I})}(t) = -\frac{i}{\hbar}[H_{\rm S-R}^{({\rm I})}(t), W^{({\rm I})}(t)]$$

equation of motion for reduced density density operator

$$\frac{\partial}{\partial t}\rho^{(\mathrm{I})}(t) = -\frac{i}{\hbar} \mathrm{tr}_{\mathrm{R}} \Big\{ [H^{(\mathrm{I})}_{\mathrm{S-R}}(t), W^{(\mathrm{I})}(t)] \Big\}$$

equation not closed, use perturbation theory based on formal solution

$$W^{(\mathrm{I})}(t) = W^{(\mathrm{I})}(t_0) - \frac{i}{\hbar} \int_{t_0}^t dt' \left[H^{(\mathrm{I})}_{\mathrm{S-R}}(t'), W^{(\mathrm{I})}(t') \right]$$
45

assumptions: factorized S-R coupling & bath stays in equilibrium

$$W^{(I)}(t) = \rho^{(I)}(t) \otimes R_{eq}$$
 $R_{eq} = e^{-H_{R}/k_{B}T}/\mathrm{tr}_{R}\{e^{-H_{R}/k_{B}T}\}$

$$H_{\rm S-R} = \sum_{u} K_u \Phi_u \qquad \langle \Phi_u \rangle_{\rm R} = 0$$

second-order EOM for reduced density operator

$$\frac{\partial}{\partial t}\rho^{(\mathrm{I})}(t) = -\frac{1}{\hbar^2} \int_{t_0}^t dt' \operatorname{tr}_{\mathrm{R}} \left\{ [H_{\mathrm{S-R}}^{(\mathrm{I})}(t), [H_{\mathrm{S-R}}^{(\mathrm{I})}(t'), R_{\mathrm{eq}}\rho^{(\mathrm{I})}(t')]] \right\}$$

• four terms due to commutators

$$\frac{\partial}{\partial t}\rho^{(\mathrm{I})}(t) = -\sum_{uv} \int_{t_0}^t dt' \left(C_{uv}(t-t') [K_u^{(\mathrm{I})}(t), K_v^{(\mathrm{I})}(t')\rho^{(\mathrm{I})}(t')] - C_{vu}(-t+t') [K_u^{(\mathrm{I})}(t), \rho^{(\mathrm{I})}(t')K_v^{(\mathrm{I})}(t')] \right)$$

correlation function of bath fluctuations

$$C_{uv}(t) = \frac{1}{\hbar^2} \langle \Delta \Phi_u(t) \Delta \Phi_v(0) \rangle_{\mathbf{R}} = \frac{1}{\hbar^2} \langle \Phi_u^{(\mathbf{I})}(t) \Phi_v^{(\mathbf{I})}(0) \rangle_{\mathbf{R}} - \frac{1}{\hbar^2} \langle \Phi_u \rangle_{\mathbf{R}} \langle \Phi_v \rangle_{\mathbf{R}}$$

• EOM in Schrödinger representation

$$\frac{\partial}{\partial t}\rho = -\frac{i}{\hbar}[H_{\rm S},\rho] + \left(\frac{\partial\rho}{\partial t}\right)_{\rm diss}$$
$$\left(\frac{\partial\rho}{\partial t}\right)_{\rm diss} = -\sum_{u,v} \int_{0}^{t-t_{0}} d\tau \left(C_{uv}(\tau) \left[K_{u}, U_{\rm S}(\tau)K_{v}\rho(t-\tau)U_{\rm S}^{+}(\tau)\right]\right)$$
$$-C_{vu}(-\tau) \left[K_{u}, U_{\rm S}(\tau)\rho(t-\tau)K_{v}U_{\rm S}^{+}(\tau)\right]\right)$$

- r.h.s. contains free and dissipative evolution
- retarded time argument leads to memory effects: non-Markovian dynamics
- memory time determined by bath correlation function, usually

 $C_{uv}(\tau) \propto \exp(-\tau/\tau_{\rm mem})$

• Markov approximation ($C_{uv}(au) \propto \delta(au)$)

$$\rho(t-\tau) = U_{\rm S}(t-\tau-t_0)\rho^{({\rm I})}(t-\tau)U_{\rm S}^+(t-\tau-t_0)$$

$$\approx U_{\rm S}(-\tau)U_{\rm S}(t-t_0)\rho^{({\rm I})}(t)U_{\rm S}^+(t-t_0)U_{\rm S}^+(-\tau) = U_{\rm S}^+(\tau)\rho(t)U_{\rm S}(\tau)$$
47

• Quantum Master Equation (QME)

$$\left(\frac{\partial\rho}{\partial t}\right)_{\rm diss} = -\sum_{u,v} \int_0^\infty d\tau \left\{ C_{uv}(\tau) \left[K_u, K_v^{\rm (I)}(-\tau)\rho(t) \right]_- - C_{vu}(-\tau) \left[K_u, \rho(t) K_v^{\rm (I)}(-\tau) \right]_- \right\}$$

$$C_{uv}(t) = \frac{1}{\hbar^2} \langle \Delta \Phi_u(t) \Delta \Phi_v(0) \rangle_{\mathrm{R}} \qquad K_v^{(\mathrm{I})}(-\tau) = U_{\mathrm{S}}(\tau) K_v U_{\mathrm{S}}^+(\tau)$$

- beyond the Markovian and perturbative QME
 - > path integral method
 - hierarchy equations of motion

- multi-level Redfield equations
 - eigenstates of the relevant system $H_{
 m S}|a
 angle=E_a|a
 angle$

$$\left(\frac{\partial\rho}{\partial t}\right)_{\rm diss} = -\sum_{u,v} \int_0^\infty d\tau \left\{ C_{uv}(\tau) \left[K_u, K_v^{\rm (I)}(-\tau)\rho(t) \right]_- - C_{vu}(-\tau) \left[K_u, \rho(t)K_v^{\rm (I)}(-\tau) \right]_- \right\}$$
$$\left(\frac{\partial\rho_{ab}}{\partial t}\right)_{\rm diss.} = -\sum_{cd} R_{ab,cd}\rho_{cd}(t)$$

Redfield relaxation tensor

$$R_{ab,cd} = \delta_{ac} \sum_{e} \Gamma_{be,ed}(\omega_{de}) + \delta_{bd} \sum_{e} \Gamma_{ae,ec}(\omega_{ce}) - \Gamma_{ca,bd}(\omega_{db}) - \Gamma_{db,ac}(\omega_{ca})$$

damping matrix

$$\Gamma_{ab,cd}(\omega) = \operatorname{Re}\sum_{u,v} K_{ab}^{(u)} K_{cd}^{(v)} \int_{0}^{\infty} d\tau \ e^{i\omega\tau} C_{uv}(\tau)$$
49

harmonic oscillator bath (Caldeira-Leggett model)

$$\begin{split} H_{\rm R} &= \sum_{\xi} \frac{\hbar \omega_{\xi}}{2} \left(-\frac{\partial^2}{\partial Q_{\xi}^2} + Q_{\xi}^2 \right) \qquad (Q_{\xi} = x_{\xi} / \sqrt{\hbar/m_{\xi}\omega_{\xi}}) \\ H_{\rm S-R} &= K(s) \sum_{\xi} \hbar \omega_{\xi} g_{\xi} Q_{\xi} \end{split}$$

correlation function

$$C(t) = \sum_{\xi} \omega_{\xi}^2 S_{\xi}([(1+n(\omega_{\xi})]e^{-i\omega_{\xi}t} + n(\omega_{\xi})e^{i\omega_{\xi}t}) \qquad S_{\xi} = g_{\xi}^2/2$$
$$C(\omega) = 2\pi\omega^2 [1+n(\omega_{\xi})][J(\omega) - J(-\omega)]$$

spectral density

$$J(\omega) = \sum_{\xi} S_{\xi} \delta(\omega - \omega_{\xi})$$
$$C(t) = \int_{0}^{\infty} d\omega \left(\cos(\omega t) \coth\left(\frac{\hbar\omega}{2k_{\rm B}T}\right) - i\sin(\omega t) \right) \omega^{2} J(\omega)$$

- model spectral densities
 - Ohmic spectral density with cut-off: $\omega^2 J(\omega) = \Theta(\omega) j_0 \omega e^{-\omega/\omega_c}$
 - Debye spectral density (solutes in polar solvents)

 $\omega^2 J(\omega) = \Theta(\omega) \frac{j_0 \omega}{\omega^2 + \omega_{\rm P}^2}$

correlation time: $\omega_{\rm D}^{-1}$

 $\text{Ohmic limit} \quad \omega_{\mathrm{D}}^{-1} \to 0$ $C(\omega) \propto \omega$

Markov dynamics: $C(t) \approx \delta(t)$

Redfield tensor: Rab,cd

population transfer (a=b, c=d)

$$R_{aa,cc} = 2\delta_{ac} \sum_{e} \Gamma_{ae,ea}(\omega_{ae}) - 2\Gamma_{ca,ac}(\omega_{ca}) = \delta_{ac} \sum_{e} k_{ae} - k_{ca}$$

energy relaxation rate $k_{ab} = 2\Gamma_{ab,ba}(\omega_{ab}) = \sum_{v,v} K^{(u)}_{ab} K^{(v)}_{ba} C_{uv}(\omega_{ab})$

coherence dephasing $(a \neq b, a = c, b = d)$

$$R_{ab,ab} \equiv \gamma_{ab} = \sum_{e} \left(\Gamma_{ae,ea}(\omega_{ae}) + \Gamma_{be,eb}(\omega_{be}) \right) - \Gamma_{aa,bb}(0) - \Gamma_{bb,aa}(0)$$

dephasing rate due to energy relaxation $\gamma_{ab} = \frac{1}{2} \sum k_{ae} + \frac{1}{2} \sum k_{be} + \gamma_{ab}^{(pd)}$

pure dephasing rate $\gamma^{(\mathrm{pd})}_{ab} = -\sum_{u.v} K^{(u)}_{aa} K^{(v)}_{bb} C_{uv}(\omega=0)$

• a simple example: the damped harmonic oscillator

$$\frac{\partial}{\partial t}\rho_{MN} = -\delta_{MN} \sum_{K} \left(k_{MK}\rho_{MM} - k_{KM}\rho_{KK} \right) \qquad k_{MN} = |\langle M|K(s)|N\rangle|^2 C(\omega_{MN}) -(1 - \delta_{MN}) \left(i\Omega_s(M - N) + \gamma_M + \gamma_N \right) \rho_{MN} \qquad \gamma_M = \sum_N k_{MN}/2$$

$$\langle M|K(s)|N\rangle = \left(\sqrt{N}\,\delta_{M,N-1} + \sqrt{N+1}\,\delta_{M,N+1}\right)$$

relaxation rates

