Introduction	Models	Numerics	RM Approach	Conclusions
00000	00000000000	0000	00000	0000
Fakultät für Ph	ysik		UNIVERSITÄT DUISBURG ESSEN	i

Econophysics V:

Credit Risk

Thomas Guhr

XXVIII Heidelberg Physics Graduate Days, Heidelberg 2012

Introduction	Models	Numerics	RM Approach	Conclusions
00000	0000000000	0000	00000	0000

Outline

- Introduction What is credit risk ?
- Structural model and loss distribution
- Numerical simulations
- Random matrix approach
- Conclusions general, present credit crisis

Introduction	Models		RM Approach	Conclusions
00000	0000000000	0000	00000	0000

Introduction

Introduction	Models	RM Approach	Conclusions
•0000			

Diversification in a Stock Portfolio — No Correlations

empirical distribution of normalized returns (400 stocks)

Introduction	Models	RM Approach	Conclusions
00000			
			-

Diversification in a Stock Portfolio — No Correlations

- empirical distribution of normalized returns (400 stocks)
- portfolio: superposition of stocks

Introduction	Models	RM Approach	Conclusions
00000			
			-

Diversification in a Stock Portfolio — No Correlations

- empirical distribution of normalized returns (400 stocks)
- portfolio: superposition of stocks
- risk reduction by diversification (no correlations yet!): returns are more normally distributed, market risk reduced by approx. 50 percent

Introduction	Models	RM Approach	Conclusions
0000			

Correlations

- stocks highly correlated to overall market
- risk reduction by diversification (with correlations): unsystematic risk can be removed, systematic risk (overall market) remains

Introduction	Models	RM Approach	Conclusions
00000			

Credits and Stability of the Economy

- credit crisis shakes economy —> dramatic instability
- physics: model building based on empirical information
- econophysics: treat economy as complex system

Introduction	Models	RM Approach	Conclusions
00000			

Credits and Stability of the Economy

- credit crisis shakes economy —> dramatic instability
- physics: model building based on empirical information
- econophysics: treat economy as complex system
- risk reduction by diversification ?

Introduction	Models	RM Approach	Conclusions
00000			

Zero-Coupon Bond

- principal: borrowed amount
- ► face value *F*:

borrowed amount + interest + risk compensation

- credit contract with simplest cash-flow
- credit portfolio comprises many such contracts

Introduction	Models	RM Approach	Conclusions
00000			

Defaults and Losses

default occurs if obligor fails to repay

 \Rightarrow loss between 0 and face value F

- possible losses have to be priced into credit contract
- correlations are important to evaluate risk of credit portfolio
- statistical model yields loss distribution

	Models		RM Approach	Conclusions
00000	0000000000	0000	00000	0000

Modeling Credit Risk

Models	RM Approach	Conclusions
• 00000 00000		

Structural Models of Merton Type

- microscopic approach
- dynamical description of risk elements $V_k(t)$, k = 1, ..., K
- default occurs if asset value $V_k(T)$ falls below face value F_k

• then the (normalized) loss is
$$L_k = \frac{F_k - V_k(T)}{F_k}$$

Models	RM Approach	Conclusions
• 00000 00000		

Structural Models of Merton Type

- microscopic approach
- dynamical description of risk elements $V_k(t)$, k = 1, ..., K
- default occurs if asset value $V_k(T)$ falls below face value F_k
- ▶ then the (normalized) loss is $L_k = \frac{F_k V_k(T)}{F_k}$
- e.g. credits with stock portfolio or houses as securities

	Models		RM Approach	Conclusions
00000	0000000000	0000	00000	0000

Geometric Brownian Motion with Jumps

choose the stock prices as risk elements $V_k(t), \ k = 1, \dots, K$

$$\frac{dV_k(t)}{V_k(t)} = \mu_k \, dt + \sigma_k \varepsilon_k(t) \sqrt{dt} + dJ_k(t)$$

we include jumps !

- deterministic term $\mu_k dt$
- diffusion term $\sigma_k \varepsilon_k(t) \sqrt{dt}$
- jump term $dJ_k(t)$, governed by a Poisson process

parameters can be tuned to describe the empirical price and return distributions

Models	RM Approach	Conclusions
0000000000		

Jump Process and Price or Return Distributions

jumps reproduce empirically found heavy tails

Introduction	Models	Numerics	RM Approach	Conclusions
00000	ooo●ooooooo	0000	00000	
Financial C	orrelations			

stock prices
$$V_k(t)$$
, $k = 1, ..., K$
measured at $t = 1, ..., T$

returns
$$R_k(t) = rac{dV_k(t)}{V_k(t)}$$

normalization
$$M_k(t) = \frac{R_k(t) - \langle R_k(t) \rangle}{\sqrt{\langle R_k^2(t) \rangle - \langle R_k(t) \rangle^2}}$$

correlation $C_{kl} = \langle M_k(t) M_l(t) \rangle$, $\langle u(t) \rangle = \frac{1}{T} \sum_{t=1}^T u(t)$

K imes T data matrix M such that $C = rac{1}{ au} M M^\dagger$

Inclusion of Correlations in Risk Elements

- $\varepsilon_i(t), i = 1, \dots, I$ set of random variables
- $K \times I$ structure matrix A
- correlated diffusion, uncorrelated drift, uncorrelated jumps

$$rac{dV_k(t)}{V_k(t)} = \mu_k \, dt + \sigma_k \sum_{i=1}^l A_{ki} arepsilon_i(t) \sqrt{dt} + dJ_k(t)$$

for $T \to \infty$ correlation matrix is $C = AA^{\dagger}$

covariance matrix is $\Sigma = \sigma C \sigma$ with $\sigma = \text{diag}(\sigma_1, \ldots, \sigma_K)$

	Models		RM Approach	Conclusions
00000	0000000000	0000	00000	0000

Loss Distribution

Models	RM Approach	Conclusions
000000 00000		

Individual Losses

normalized loss at maturity t = T

$$L_k = \frac{F_k - V_k(T)}{F_k} \Theta(F_k - V_k(T))$$

if default occurs

Portfolio Loss Distribution

homogeneous portfolio

• portfolio loss
$$L = \frac{1}{K} \sum_{k=1}^{K} L_k$$

- stock prices at maturity $V = (V_1(T), \ldots, V_K(T))$
- distribution $p^{(mv)}(V, \Sigma)$ with $\Sigma = \sigma C \sigma$

want to calculate

$$p(L) = \int d[V] p^{(\mathsf{mv})}(V, \Sigma) \,\delta\left(L - \frac{1}{K} \sum_{k=1}^{K} L_k\right)$$

Large Portfolios

Real portfolios comprise several hundred or more individual contracts $\longrightarrow K$ is large.

Central Limit Theorem: For very large K, portfolio loss distribution p(L) must become Gaussian.

Question: how large is "very large" ?

Typical Portfolio Loss Distributions

- highly asymetric, heavy tails, rare but drastic events
- mean of loss distribution is called expected loss (EL)
- standard deviation is called unexpected loss (UL)
- kurtosis excess (KE) to measure heavy tails: $\gamma_2 = \mu_4/\mu_2^2 3$

Models	RM Approach	Conclusions
0000000000		

Simplified Model — No Jumps, No Correlations

- analytical, good approximations
- slow convergence to Gaussian for large portfolio
- kurtosis excess of uncorrelated portfolios scales as 1/K

Models	RM Approach	Conclusions
0000000000		

Simplified Model — No Jumps, No Correlations

- analytical, good approximations
- slow convergence to Gaussian for large portfolio
- kurtosis excess of uncorrelated portfolios scales as 1/K
- diversification works slowly, but it works!

00000 000000000 0000 00000 0000		Models	Numerics	RM Approach	Conclusions
	00000	0000000000	0000	00000	0000

Numerical Simulations

Numerical Simulations: Influence of Correlations, No Jumps

fixed correlation $C_{kl}=c,\ k
eq l$, and $C_{kk}=1$

Heidelberg, April 2012

- limiting tail behavior quickly reached
- diversification does not work, it does not reduce risk !
- standard deviation decreases, bad measure for credit risk

Models	Numerics	RM Approach	Conclusions
	0000		

Value at Risk versus Fixed Correlation

99% quantile, portfolio losses are with probability 0.99 smaller than VaR, and with probability 0.01 larger than VaR

00000 000000	0000 0000	• 000	000 0	000

Numerical Simulations: Correlations and Jumps

- correlated jump-diffusion
- fixed correlation c = 0.5
- jumps change picture only slightly
- tail behavior stays similar with increasing K

	Models	Numerics	RM Approach	Conclusions
00000	0000000000	0000	00000	0000

Numerical Simulations: Correlations and Jumps

- correlated jump-diffusion
- fixed correlation c = 0.5
- jumps change picture only slightly
- tail behavior stays similar with increasing K
- diversification does not work

	Models		RM Approach	Conclusions
00000	0000000000	0000	00000	0000

Random Matrix Approach

Search for Generic Features

- large portfolio \rightarrow large K
- correlation matrix C is $K \times K$
- "second ergodicity": spectral average = ensemble average
- set $C = WW^{\dagger}$ and choose W as random matrix

Search for Generic Features

- large portfolio \rightarrow large K
- correlation matrix C is $K \times K$
- "second ergodicity": spectral average = ensemble average
- set $C = WW^{\dagger}$ and choose W as random matrix
- additional motivation: correlations vary over time

	Models		RM Approach	Conclusions
00000	0000000000	0000	0000	0000

Price Distribution at Maturity

Brownian motion, $V = (V_1(T), \ldots, V_K(T))$, price distribution

$$p^{(\mathsf{mv})}(V,\Sigma) = \frac{1}{\sqrt{2\pi T}^{K}} \frac{1}{\sqrt{\det \Sigma}} \exp\left(-\frac{1}{2T}(V-\mu T)^{\dagger} \Sigma^{-1}(V-\mu T)\right)$$

 $C = WW^{\dagger}$ with W rectangular real $K \times N$, N free parameter, such that $\Sigma = \sigma WW^{\dagger}\sigma$

assume Gaussian distribution for W with variance 1/N

$$p^{(\mathrm{corr})}(W) = \sqrt{\frac{N}{2\pi}}^{KN} \exp\left(-\frac{N}{2} \mathrm{tr} W^{\dagger} W\right)$$

average correlation is zero, that is $\langle WW^{\dagger}
angle = 1_{K}$

	Models		RM Approach	Conclusions
00000	0000000000	0000	00000	0000

Average Price Distribution

$$\begin{split} \langle p^{(\mathrm{mv})}(\rho) \rangle &= \int d[W] p^{(\mathrm{corr})}(W) p^{(\mathrm{mv})}(V, \sigma W W^{\dagger} \sigma) \\ &= \sqrt{\frac{N}{2\pi T}}^{K} \frac{2^{1-\frac{N}{2}}}{\Gamma(N/2)} \rho^{\frac{N+K-1}{2}} \sqrt{\frac{N}{T}}^{\frac{N-K}{2}} \mathcal{K}_{\frac{N-K}{2}} \left(\rho \sqrt{\frac{N}{T}} \right) \end{split}$$
 with hyperradius $\rho = \sqrt{\sum_{k=1}^{K} \frac{V_{k}^{2}(T)}{\sigma_{k}^{2}}}$

similar to statistics of extreme events

easily transferred to geometric Brownian motion

Introduction	Models	Numerics	RM Approach	Conclusions
00000	00000000000	0000	00000	0000

Heavy Tailed Average Price Distribution

K = 50 and N = K, 2K, 5K, 30K

N smaller \longrightarrow stronger correlated \longrightarrow heavier tails

Models	RM Approach	Conclusions
	00000	

Average Loss Distribution

$$\langle \boldsymbol{p}(L) \rangle = \int \boldsymbol{d}[V] \langle \boldsymbol{p}^{(\mathsf{mv})}(\rho) \rangle \, \delta\left(L - \frac{1}{K} \sum_{k=1}^{K} L_k\right)$$

$$\langle C_{kl}
angle = 0$$
, $k \neq l$
 $N = 5 \rightarrow \text{std} (C_{kl}) = 0.45$
 $K = 10, 100, 1000, 10000$

best case scenario, heavy tails remain, little diversification benefit

General Conclusions

- uncorrelated portfolios: diversification works (slowly)
- correlations lead to extremely fat-tailed distribution
- fixed correlations: diversification does not work
- ensemble average reveals generic features of loss distributions
- average correlation zero, but still: heavy tails remain, little diversification benefit

Conclusions in View of the Present Credit Crisis

- credit contracts with high default probability, e.g. houses as securities
- credit institutes resold the risk of credit portfolios, grouped by credit rating
- \blacktriangleright lower ratings \rightarrow higher risk and higher potential return
- problems:
 - rating agencies rated way too high
 - effect of correlations underestimated
 - benefit of diversification overestimated

Introduction	Models	Numerics	RM Approach	Conclusions
00000	0000000000	0000	00000	00●0

R. Schäfer, M. Sjölin, A. Sundin, M. Wolanski and T. Guhr, *Credit Risk - A Structural Model with Jumps and Correlations*, Physica **A383** (2007) 533

M.C. Münnix, R. Schäfer and T. Guhr, *A Random Matrix Approach to Credit Risk*, arXiv:1102.3900

both ranked for several months among the top-ten new credit risk papers on www.defaultrisk.com

Introduction 00000	Models 0000000000	Numerics 0000	RM Approach	Conclusions

