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I Introduction — What is credit risk ?

I Structural model and loss distribution

I Numerical simulations

I Random matrix approach

I Conclusions — general, present credit crisis

Heidelberg, April 2012



Introduction Models Numerics RM Approach Conclusions

Introduction

Heidelberg, April 2012



Introduction Models Numerics RM Approach Conclusions

Diversification in a Stock Portfolio — No Correlations

I empirical distribution of normalized returns (400 stocks)

I portfolio: superposition of stocks

I risk reduction by diversification (no correlations yet!):
returns are more normally distributed,
market risk reduced by approx. 50 percent
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Correlations

I stocks highly correlated to overall market

I risk reduction by diversification (with correlations):
unsystematic risk can be removed,
systematic risk (overall market) remains
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Credits and Stability of the Economy

I credit crisis shakes economy −→ dramatic instability
I physics: model building based on empirical information
I econophysics: treat economy as complex system

I risk reduction by diversification ?
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Zero–Coupon Bond

Creditor Obligort = 0 Principal

Creditor Obligort = T Face value

I principal: borrowed amount

I face value F :
borrowed amount + interest + risk compensation

I credit contract with simplest cash-flow

I credit portfolio comprises many such contracts
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Defaults and Losses

I default occurs if obligor fails to repay

⇒ loss between 0 and face value F

I possible losses have to be priced into credit contract

I correlations are important to evaluate risk of credit portfolio

I statistical model yields loss distribution
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Modeling Credit Risk
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Structural Models of Merton Type

t

Vk(t)

F

Vk(0)

T

I microscopic approach

I dynamical description of risk elements Vk(t), k = 1, . . . ,K

I default occurs if asset value Vk(T ) falls below face value Fk

I then the (normalized) loss is Lk =
Fk − Vk(T )

Fk

I e.g. credits with stock portfolio or houses as securities
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Geometric Brownian Motion with Jumps

choose the stock prices as risk elements Vk(t), k = 1, . . . ,K

dVk(t)

Vk(t)
= µk dt + σkεk(t)

√
dt + dJk(t)

we include jumps !

I deterministic term µk dt

I diffusion term σkεk(t)
√
dt

I jump term dJk(t), governed by a Poisson process

parameters can be tuned to describe the empirical price and return
distributions
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Jump Process and Price or Return Distributions
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Financial Correlations

stock prices Vk(t), k = 1, . . . ,K
measured at t = 1, . . . ,T

returns Rk(t) =
dVk(t)
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〈R2
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correlation Ckl = 〈Mk(t)Ml(t)〉 , 〈u(t)〉 =
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K × T data matrix M such that C =
1

T
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Inclusion of Correlations in Risk Elements

I εi (t), i = 1, . . . , I set of random variables

I K × I structure matrix A

I correlated diffusion, uncorrelated drift, uncorrelated jumps

dVk(t)

Vk(t)
= µk dt + σk

I∑
i=1

Akiεi (t)
√
dt + dJk(t)

for T →∞ correlation matrix is C = AA†

covariance matrix is Σ = σCσ with σ = diag (σ1, . . . , σK )
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Loss Distribution
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Individual Losses

t

Vk(t)

F

Vk(0)

T

normalized loss at maturity
t = T

Lk =
Fk − Vk(T )

Fk
Θ(Fk −Vk(T ))

if default occurs
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Portfolio Loss Distribution

I homogeneous portfolio

I portfolio loss L =
1

K

K∑
k=1

Lk

I stock prices at maturity V = (V1(T ), . . . ,VK (T ))

I distribution p(mv)(V ,Σ) with Σ = σCσ

want to calculate

p(L) =

∫
d [V ]p(mv)(V ,Σ) δ

(
L− 1

K

K∑
k=1

Lk

)
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Large Portfolios

Real portfolios comprise several hundred or more
individual contracts −→ K is large.

Central Limit Theorem: For very large K , portfolio
loss distribution p(L) must become Gaussian.

Question: how large is “very large” ?
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Typical Portfolio Loss Distributions

Unexpected loss

Expected loss

Economic capital

α-quantile Loss in %

of exposure

Frequency

I highly asymetric, heavy tails, rare but drastic events

I mean of loss distribution is called expected loss (EL)

I standard deviation is called unexpected loss (UL)

I kurtosis excess (KE) to measure heavy tails: γ2 = µ4/µ
2
2 − 3
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Simplified Model — No Jumps, No Correlations

I analytical, good
approximations

I slow convergence to
Gaussian for large portfolio

I kurtosis excess of
uncorrelated portfolios
scales as 1/K

I diversification works slowly,
but it works!
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Numerical Simulations
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Numerical Simulations: Influence of Correlations, No Jumps

fixed correlation Ckl = c , k 6= l , and Ckk = 1

c = 0.2 c = 0.5
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Tail as Function of Fixed Correlation

kurtosis excess standard deviation (UL)

I limiting tail behavior quickly reached

I diversification does not work, it does not reduce risk !

I standard deviation decreases, bad measure for credit risk

Heidelberg, April 2012



Introduction Models Numerics RM Approach Conclusions

Value at Risk versus Fixed Correlation
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p(L)dL = α

here α = 0.99

K = 10, 100, 1000

99% quantile, portfolio losses are with probability 0.99 smaller than
VaR, and with probability 0.01 larger than VaR
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Numerical Simulations: Correlations and Jumps

I correlated jump–diffusion

I fixed correlation c = 0.5

I jumps change picture only
slightly

I tail behavior stays similar
with increasing K

I diversification does not work
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Random Matrix Approach
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Search for Generic Features

I large portfolio → large K

I correlation matrix C is K × K

I “second ergodicity”: spectral average = ensemble average

I set C = WW † and choose W as random matrix

I additional motivation: correlations vary over time
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Price Distribution at Maturity

Brownian motion, V = (V1(T ), . . . ,VK (T )), price distribution

p(mv)(V ,Σ) =
1

√
2πT

K

1√
det Σ

exp

(
− 1

2T
(V − µT )†Σ−1(V − µT )

)
C = WW † with W rectangular real K × N,
N free parameter, such that Σ = σWW †σ

assume Gaussian distribution for W with variance 1/N

p(corr)(W ) =

√
N

2π

KN

exp

(
−N

2
trW †W

)
average correlation is zero, that is 〈WW †〉 = 1K
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Average Price Distribution

〈p(mv)(ρ)〉 =

∫
d [W ]p(corr)(W )p(mv)(V , σWW †σ)

=

√
N

2πT

K
21−

N
2

Γ(N/2)
ρ

N+K−1
2

√
N

T

N−K
2

KN−K
2

(
ρ

√
N

T

)

with hyperradius ρ =

√√√√ K∑
k=1

V 2
k (T )

σ2k

similar to statistics of extreme events

easily transferred to geometric Brownian motion
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Heavy Tailed Average Price Distribution
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Average Loss Distribution

〈p(L)〉 =

∫
d [V ]〈p(mv)(ρ)〉 δ

(
L− 1

K

K∑
k=1

Lk

)
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〈Ckl〉 = 0 , k 6= l

N = 5 → std (Ckl) = 0.45

K = 10, 100, 1000, 10000

best case scenario, heavy tails remain, little diversification benefit
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General Conclusions

I uncorrelated portfolios: diversification works (slowly)

I correlations lead to extremely fat–tailed distribution

I fixed correlations: diversification does not work

I ensemble average reveals generic features of loss distributions

I average correlation zero, but still: heavy tails remain, little
diversification benefit
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Conclusions in View of the Present Credit Crisis

I credit contracts with high default probability,
e.g. houses as securities

I credit institutes resold the risk of credit portfolios,
grouped by credit rating

I lower ratings → higher risk and higher potential return

I problems:
I rating agencies rated way too high
I effect of correlations underestimated
I benefit of diversification overestimated
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R. Schäfer, M. Sjölin, A. Sundin, M. Wolanski and T. Guhr,
Credit Risk - A Structural Model with Jumps and Correlations,
Physica A383 (2007) 533

M.C. Münnix, R. Schäfer and T. Guhr,
A Random Matrix Approach to Credit Risk,
arXiv:1102.3900

both ranked for several months among the top–ten new credit risk
papers on www.defaultrisk.com
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