UNIVERSITAT
DUISBURG
Fakultat fir Physik ESSEN

Econophysics V:
Credit Risk

Thomas Guhr

XXVIII Heidelberg Physics Graduate Days, Heidelberg 2012

Heidelberg, April 2012



Outline

Introduction — What is credit risk ?

v

Structural model and loss distribution

v

Numerical simulations

v

v

Random matrix approach

v

Conclusions — general, present credit crisis

Heidelberg, April 2012



Introduction

Introduction

Heidelberg, April 2012



Introduction
90000

Diversification in a Stock Portfolio — No Correlations
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Diversification in a Stock Portfolio — No Correlations

400 single stocks
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40 portfolios, 10 stocks each
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normalized returns normalized returns

» empirical distribution of normalized returns (400 stocks)
» portfolio: superposition of stocks

» risk reduction by diversification (no correlations yet!):
returns are more normally distributed,
market risk reduced by approx. 50 percent
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Correlations

correlation to market
investment value
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» stocks highly correlated to overall market

» risk reduction by diversification (with correlations):
unsystematic risk can be removed,
systematic risk (overall market) remains
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Credits and Stability of the Economy

ends
kwave round world

» credit crisis shakes economy — dramatic instability
» physics: model building based on empirical information
> econophysics: treat economy as complex system
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Credits and Stability of the Economy

ends
kwave round world

credit crisis shakes economy — dramatic instability
physics: model building based on empirical information
econophysics: treat economy as complex system

risk reduction by diversification 7

vV v.Vvyy
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Zero—Coupon Bond

=0 Creditor Obligor

t=T Creditor Face value Obligor

v

principal: borrowed amount

face value F:
borrowed amount + interest 4 risk compensation

v

v

credit contract with simplest cash-flow

v

credit portfolio comprises many such contracts
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Defaults and Losses

v

default occurs if obligor fails to repay

= |oss between 0 and face value F

v

possible losses have to be priced into credit contract

v

correlations are important to evaluate risk of credit portfolio

v

statistical model yields loss distribution
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Structural Models of Merton Type

T t

» microscopic approach

» dynamical description of risk elements Vi(t), k=1,...,K
» default occurs if asset value Vi (T) falls below face value Fy
Fi— Vi(T
» then the (normalized) loss is Ly = k,__k()
k
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Structural Models of Merton Type

» microscopic approach

» dynamical description of risk elements Vi(t), k=1,...,K
» default occurs if asset value Vi (T) falls below face value Fy
Fi— Vi(T
» then the (normalized) loss is Ly = k,__k()
k

v

e.g. credits with stock portfolio or houses as securities
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Geometric Brownian Motion with Jumps

choose the stock prices as risk elements Vi (t), k=1,..., K

d\/k(t)
Vi(t)

= g dt + O'kEk(t)\/E + dJk(l')

we include jumps !
» deterministic term py dt
» diffusion term oyey(t)V/dt
> jump term dJi(t), governed by a Poisson process

parameters can be tuned to describe the empirical price and return
distributions
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Jump Process and Price or Return Distributions

20

ogyo P(2)

IV L A z?

1% L
ol T -
-20 -15 -10 -5 o 5 10 5 20
Zio

jumps reproduce empirically found heavy tails
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Financial Correlations

stock prices Vi (t), k=1,...,K -
measured at t =1,..., T

dVi(t N
returns Rk(t) = k( ) RN

Ri(t) — (Ri(2))
VRE(D) — (Re(1)?
1

correlation Cy = (Mg (t)My(t)) , (u(t)) = 7 u(t)
t=1

normalization Mg(t) =

1
K x T data matrix M such that C = 7/\4/\4T
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Inclusion of Correlations in Risk Elements

» ¢i(t), i=1,...,1 set of random variables
» K x [ structure matrix A

» correlated diffusion, uncorrelated drift, uncorrelated jumps

dVi(t)
Vi(t)

I
= pg dt + oy ZAkiEI(t)\/E‘F dJk(t)

i=1

for T — oo correlation matrix is C = AAf

covariance matrix is ¥ =o0Co with o = diag(o1,...,0k)
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Loss Distribution
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Individual Losses

normalized loss at maturity
Vi(t) t=T

Vi(0)
F@W L, — MG(& —Vi(T))

SN AV k F

if default occurs
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Portfolio Loss Distribution

» homogeneous portfolio

) 1
» portfolio loss L = X kzzl Ly
» stock prices at maturity V = (V4(T),..., Vk(T))

» distribution p(™)(V, X) with ¥ = 6Co

want to calculate

K
p(L) = / d[VIp™ (V. E) 5 ( — > )
k=1
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Large Portfolios

Real portfolios comprise several hundred or more
individual contracts — K is large.

Central Limit Theorem: For very large K, portfolio
loss distribution p(L) must become Gaussian.

Question: how large is “very large” 7
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Typical Portfolio Loss Distributions

Frequency

Unexpected loss

Expected loss o-quantile  Loss in %

Economic capital of exposure

highly asymetric, heavy tails, rare but drastic events
mean of loss distribution is called expected loss (EL)

standard deviation is called unexpected loss (UL)

vV V. v v

kurtosis excess (KE) to measure heavy tails: 72 = pa/p3 — 3
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Simplified Model — No Jumps, No Correlations
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T T

p(L)

L L
0.000 0.002 0.004 0.006
L

Heidelberg, April 2012



Models
0000e

Simplified Model — No Jumps, No Correlations

K=1000
. 1500 -
» analytical, good ; Koo
approximations = 10op 1
500 |
> slow convergence to g
Gaussian for large portfolio son0 e e oaer oo
L

» kurtosis excess of
uncorrelated portfolios
scales as 1/K

» diversification works slowly,
but it works!

T T

p(L)
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L
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Numerical Simulations
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Numerical Simulations: Influence of Correlations, No Jumps

fixed correlation Cyy=c, k# 1, and Cy =1
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Tail as Function of Fixed Correlation
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> limiting tail behavior quickly reached
» diversification does not work, it does not reduce risk !

» standard deviation decreases, bad measure for credit risk
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Value at Risk versus Fixed Correlation
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99% quantile, portfolio losses are with probability 0.99 smaller than
VaR, and with probability 0.01 larger than VaR

Heidelberg, April 2012



Numerics
[e]ele] }

Numerical Simulations: Correlations and Jumps

K=1000
» correlated jump—diffusion E
» fixed correlation ¢ = 0.5 E
» jumps change picture only N oo0z 0065 000+ 0005

slightly

> tail behavior stays similar
with increasing K

p(L)
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Numerical Simulations: Correlations and Jumps

K=1000
» correlated jump—diffusion E
» fixed correlation ¢ = 0.5 E
» jumps change picture only N oo0z 0065 000+ 0005

slightly

> tail behavior stays similar
with increasing K

p(L)

» diversification does not work
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Random Matrix Approach
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RM Approach
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Search for Generic Features

> large portfolio — large K
» correlation matrix C is K x K
» “second ergodicity”: spectral average = ensemble average

» set C = WWT and choose W as random matrix
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RM Approach
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Search for Generic Features

> large portfolio — large K

» correlation matrix C is K x K

» “second ergodicity”: spectral average = ensemble average
» set C = WW!T and choose W as random matrix

» additional motivation: correlations vary over time
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Price Distribution at Maturity

Brownian motion, V = (V4(T),..., Vk(T)), price distribution

(v, 3y = L m ( (v Ty (vm)

C = WWT with W rectangular real K x N,
N free parameter, such that ¥ = c WWio

assume Gaussian distribution for W with variance 1/N

KN
N N
plem(W) = \/ 5. XP <—2tr Wt W>

average correlation is zero, that is (WWT) =
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Average Price Distribution

(™)) = [ AW WV, s W)

K N NoK
_ N2 weka NP . N
“VorT T(N2)” T N\ P\ T

with hyperradius p =

similar to statistics of extreme events

easily transferred to geometric Brownian motion
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Heavy Tailed Average Price Distribution

K =50 and N = K, 2K, 5K, 30K

N smaller ——  stronger correlated ——  heavier tails
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Average Loss Distribution

p(L)) = /d[V] (mV)(p (L—ZLk>

(Ca)=0, k#I

N=5 — std (Ck/) =0.45

'--.::.-::\:\-- K = 10,100, 1000, 10000

0.000 0.005 0.010 0.015 0.020
L

best case scenario, heavy tails remain, little diversification benefit
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General Conclusions

» uncorrelated portfolios: diversification works (slowly)

» correlations lead to extremely fat—tailed distribution

> fixed correlations: diversification does not work

» ensemble average reveals generic features of loss distributions

> average correlation zero, but still: heavy tails remain, little
diversification benefit
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Conclusions in View of the Present Credit Crisis

» credit contracts with high default probability,
e.g. houses as securities

» credit institutes resold the risk of credit portfolios,
grouped by credit rating

> lower ratings — higher risk and higher potential return

» problems:

> rating agencies rated way too high
» effect of correlations underestimated
» benefit of diversification overestimated
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R. Schifer, M. Sjélin, A. Sundin, M. Wolanski and T. Guhr,
Credit Risk - A Structural Model with Jumps and Correlations,
Physica A383 (2007) 533

M.C. Minnix, R. Schafer and T. Guhr,

A Random Matrix Approach to Credit Risk,
arXiv:1102.3900

both ranked for several months among the top—ten new credit risk
papers on www.defaultrisk.com
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HOW DO WE KHOW
YOURE A GOOP
CREDIT RiSK..Y
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