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Outline

Portfolio optimization is a key issue when investing money. It is
applied science and everyday work for many physicists who join
the finanical industry.

• importance of financial correlations

• portfolio optimization with Markowitz theory

• problem of noise dressing

• cleaning methods filtering and power mapping

• application to Swedish and US market data

• rôle of constraints in portfolio optimization
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Portfolio, Risk and Correlations
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Putting together a Portfolio

Portfolio 1

ExxonMobil

British Petrol

Toyota

Portfolio 2

British Petrol

Sony

Coca Cola

Novartis

Daimler Daimler

ThyssenKrupp

VoestalpineVoestalpine
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Putting together a Portfolio

Portfolio 1

ExxonMobil

British Petrol

Toyota

Portfolio 2

British Petrol

Sony

Coca Cola

Novartis

Daimler Daimler

ThyssenKrupp

VoestalpineVoestalpine

correlations −→ diversification lowers portfolio risk!
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Correlations between Stocks

visual inspection for Coca Cola and Procter & Gamble

correlations change over time!
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Portfolio and Risk Management

portfolio is linear combination of stocks, options and other
financial instruments

V (t) =

K∑

k=1

wk(t)Sk(t) +

L∑

l=1

wCl(t)GCl(Sl, t) +

M∑

m=1

wPm(t)GPm(Sm, t) + . . .

with time–dependent weights!

portfolio or fund manager has to maximize return

• high return requires high risk: speculation

• low risk possible with hedging and diversification

find optimum for risk and return according to investors’ wishes

−→ risk management
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Risk of a Portfolio

general: V (t) =
K∑

k=1

wk(t)Fk(t) with risk elements Fk(t)

define moments within a time T

〈V (t)〉 = 1

T

T∑

t=1

V (t) and 〈V 2(t)〉 = 1

T

T∑

t=1

V 2(t)

risk is the variance of the portfolio 〈V 2(t)〉 − 〈V (t)〉2

often normalized
〈V 2(t)〉 − 〈V (t)〉2

〈V (t)〉2
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Diversification — Empirically

systematic risk (market) and unsystematic risk (portfolio specific)

risk

10 20 K1

systematic

unsystematic

a wise choice of K = 20 stocks (or risk elements) turns out
sufficient to eliminate unsystematic risk
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Risk, Covariances and Correlations

if the weights wk(t) are time–independent within the time interval
T under consideration, one has

〈V 2(t)〉 − 〈V (t)〉2 =
∑

k,l

wkwl〈Fk(t)Fl(t)〉 −
(

K∑

k=1

wk〈Fk(t)〉
)2

=
∑

k,l

wkwl

(
〈Fk(t)Fl(t)〉 − 〈Fk(t)〉〈Fl(t)〉

)

=
∑

k,l

wkwl

〈(
Fk(t)− 〈Fk(t)〉

)(
Fl(t)− 〈Fl(t)〉

)〉

︸ ︷︷ ︸

covariance matrix element Σkl
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Measuring Financial Correlations

stock prices Sk(t), k = 1, . . . ,K for K companies measured at
times t = 1, . . . , T

returns Gk(t) = ln
Sk(t+∆t)

Sk(t)
≃ dSk(t)

Sk(t)

volatilites σk(T ) =
√

〈G2
k(t)〉 − 〈Gk(t)〉2

normalized time series Mk(t) =
Gk(t)− 〈Gk(t)〉

σk

correlation Ckl(T ) = 〈Mk(t)Ml(t)〉 =
1

T

T∑

t=1

Mk(t)Ml(t)
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Financial Correlation and Covariance Matrices

correlation matrix C = C(T ) is K ×K with elements Ckl(T )

C = C(T ) =
1

T
MM †

covariance Σkl(T ) =
〈
(Gk(t)− 〈Gk(t)〉) (Gl(t)− 〈Gl(t)〉)

〉

covariance and correlation are related by

Σkl(T ) = σk(T )Ckl(T )σl(T ) , such that Σ = σCσ ,

where σ = diag (σ1, . . . , σK) measured volatilities
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Markowitz Portfolio Optimization
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Portfolio Risk and Return

portfolio V (t) =
K∑

k=1

wkSk(t) = w · S(t)

wk fraction of wealth invested, normalization

1 =
K∑

k=1

wk = w · e with e = (1, . . . , 1)

desired return for portfolio R =

K∑

k=1

wkrk = w · r

rk = dSk/Sk expected return for stock k

risk Ω2 =
K∑

k,l

wkΣklwl = w†Σw = w†σCσw
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Optimial Portfolio

find those fractions w
(opt)
k which yield the desired return R at the

minimum risk Ω2

Euler–Lagrange optimization problem

L =
1

2
w†Σw − α (w · r − R)− β (w · e− 1)

α, β Langrange multipliers, Σ = σCσ covariance

−→ ∂L

∂w
= 0,

∂L

∂α
= 0,

∂L

∂β
= 0

system of K + 2 equations
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No Constraints: Closed Form Solutions

K + 2 coupled equations read explicitly

0 = Σw(opt) − αr − βe

0 = r · w(opt) − R
0 = e · w(opt) − 1

if they exist, solutions are given by

w(opt) =
Σ−1e

e†Σ−1e
+

e†Σ−1eR− r†Σ−1e

e†Σ−1e r†Σ−1r − (e†Σ−1e)2
Σ−1

(
r − e†Σ−1r

e†Σ−1e
e

)

check that they minimize risk

risk Ω2 is a quadratic function in desired return R
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Efficient Frontier
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available

impossible

risk Ω2

return R

rejected

return R is a square
root in the risk Ω2

inclusion of further constraints possible, for example no short
selling, wk ≥ 0 −→ efficient frontier changes
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Noise Dressing of Financial Correlations
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Empirical Results

correlation matrices of S&P500 and TAQ data sets

eigenvalue density

distribution of spacings
between the eigenvalues

true correlations are noise dressed −→ DISASTER!

Laloux, Cizeau, Bouchaud, Potters, PRL 83 (1999) 1467
Plerou, Gopikrishnan, Rosenow, Amaral, Stanley, PRL 83 (1999) 1471
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Quantum Chaos

result in statistical nuclear physics (Bohigas, Haq, Pandey)

resonances

“regular”

“chaotic”

spacing distribution

universal in a huge variety of systems: nuclei, atoms, molecules,
disordered systems, lattice gauge quantum chromodynamics,
elasticity, electrodynamics

−→ quantum “chaos” −→ random matrix theory
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Major Reason for the Noise

Ckl =
1

T

T∑

t=1

Mk(t)Ml(t) we look at zkl =
1

T

T∑

t=1

ak(t)al(t)

with uncorrelated standard normal time series ak(t)

zkl to leading order Gaussian distributed with variance T

zkl = δkl +

√
1 + δkl

T
αkl with standard normal αkl

−→ noise dressing C = Ctrue + Crandom for finite T

it so happens that Crandom is equivalent to a random matrix in the
chiral orthogonal ensemble
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Chiral Random Matrices

Dirac operator in relativistic quantum mechanics, M is K × T

D =

[
0 M/

√
T

M †/
√
T 0

]

chiral symmetry implies off–block diagonal form

eigenvalue spectrum follows from

0 = det (λ1K+T −D) = λT−K det
(
λ21K −MM †/T

)

where C = MM †/T has the form of the correlation matrix

if entries of M are Gaussian random numbers, eigenvalue density

R1(λ) =
1

2πλ

√
(λmax − λ)(λ− λmin)
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Correlation Matrix is Largely Random

random matrix behavior

is here a DISASTER

serious doubts about practical usefulness of correlation matrices

... but: what is the meaning of the large eigenvalues ?
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A Model Correlation Matrix

one–factor model (called Noh’s
model in physics)

Mk(t) =

√
pb(k)ηb(k)(t)√
1 + pb(k)

+
εk(t)√
1 + pb(k)

branch plus idiosyncratic
0 100 200 300 400 500

k

0

100

200

300

400

500

l

ηb(k)(t) and εk(t) are standard normal, uncorrelated time series
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Explanation of the Large Eigenvalues

κb × κb matrix




1 . . . 1
...

...
1 . . . 1


 = ee† with e =




1
...
1




for T → ∞, one block has the form
1

1 + pb

(
pbee

† + 1κb

)

e itself is an eigenvector! — it yields large eigenvalue
1 + pbκb

1 + pb

in addition, there are κb − 1 eigenvalues
1

1 + pb
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Noise Reduction and Cleaning
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Noise Reduction by Filtering

digonalize K ×K correlation matrix C = U−1ΛU

remove noisy eigenvalues Λ = diag (λ1, . . . , λc, λc+1, . . . , λK)

⇓

keep branch eigenvalues Λ(filtered) = diag (0, . . . , 0, λc+1, . . . , λK)

obtain filtered K ×K correlation matrix C(filtered) = U−1Λ(filtered)U

restore normalization C
(filtered)
kk = 1

Bouchaud, Potters, Theory of Financial Risk (2000)
Plerou, Gopikrishnan, Rosenow, Amaral, Guhr, Stanley, PRE 65 (2002) 066126
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Parameter and Input Free Alternative?

What if “large” eigenvalue of a smaller branch lies in the bulk?
Also: For smaller correlation matrices, cut–off eigenvalue λc not
so obvious.

There are many more noise reduction methods.

It seems that all these methods involve parameters to be chosen
or other input.

Introduce the power mapping as an example for a new method.
It needs little input.

The method exploits the chiral structure and the normalization.
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Illustration Using the Noh Model Correlation Matrix

We look at a synthetic correlation matrix.

one–factor model (called Noh’s
model in physics)

Mk(t) =

√
pb(k)ηb(k)(t)√
1 + pb(k)

+
εk(t)√
1 + pb(k)

branch plus idiosyncratic
0 100 200 300 400 500

k

0

100

200

300

400

500

l
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Spectral Densities and Length of the Time Series
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−→ correlations and noise separated
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Power Mapping

0.5 1. 1.5 2.
Λ

0.2

0.4
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HqL
HΛL q=1

−→

0.5 1. 1.5 2.
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0.5

1
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ΡT0

HqL
HΛL q=1.5

Ckl(T ) −→ sign (Ckl(T )) |Ckl(T )|q

large eigenvalues (branches) only little affected

time series are effectively “prolonged” !

T. Guhr and B. Kälber, J. Phys. A36 (2003) 3009
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Heuristic Explanation

matrix element Ckl containing true correlation u and noise v/
√
T

(
u+

v√
T

)q

= uq + q
uq−1v√

T
+O

(
1

T

)

matrix element Ckl containing only noise v/
√
T

(
v√
T

)q

=
vq

T q/2

−→ noise supressed for q > 1
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Self–determined Optimal Power
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optimal power q ≈ 1.5 is automatically determined by the very
definition of the correlation matrix
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Internal Correlation Structure
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power mapping sensitive enough to clean the internal structure
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Power Mapping is a New Shrinkage Method

shrinkage in mathematical statistics means removal of something
which one does not want to be there (noise)
−→ in practice: linear substraction methods
−→ shrinkage parameter (and other input) needed

power mapping is non–linear

it is parameter free and input free, because

• “chirality”
correlation matrix elements Ckl are scalar products
−→ noise goes like 1/

√
T to leading order

• normalization
boundness |Ckl| ≤ 1 −→ |Ckl|q ≤ 1
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Sketch of Analytical Discussion

λk(T ) eigenvalues of K ×K correlation matrix C = C(T )

before power mapping λk(T ) = λk(∞) +
vk√
T
ak +O(1/T )

ρT (λ) =

+∞∫

−∞

dλ′ 1

K

K∑

k=1

G

(
λ− λ′,

v2k
T

)
ρ∞(λ′) +O(1/T )

thereafter λ
(q)
k (T ) = λ

(q)
k (∞) +

v
(q)
k√
T
a
(q)
k +

ṽ
(q)
k

T q/2
ã
(q)
k +O(1/T )

ρ
(q)
T (λ) =

+∞∫

−∞

dλ′ 1

K

K∑

k=1

G

(
λ− λ′,

(ṽ
(q)
k )2

T q

)
ρT (λ

′)

∣∣∣∣
v
(q)
k

+O(1/T )
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Result for Power–Mapped Noh Model
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Mk(t) =

√
pb(k)ηb(k)(t)√
1 + pb(k)

+
εk(t)√
1 + pb(k)

B branches, sizes κb, b = 1, . . . , B
κ companies in no branch

ρ
(q)
T (λ) = (K − κ− B)G

(
λ− µ

(q)
B ,

(v
(q)
B )2

T

)
+ κG

(
λ− 1,

(v
(q)
0 )2

T q

)

+
B∑

b=1

δ

(
λ−

(
1 + (κb − 1)

(
pb

1 + pb

)q))

where µ
(q)
B = 1− 1

B

B∑

b=1

(
pb

1 + pb

)q
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Application to Market Data
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Markowitz Optimization after Noise Reduction

portfolio optimization

Markowitz theory
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evaluationsample

Swedish stock returns
197 companies, daily, from July 12, 1999 to July 18, 2003
sample: one year — evaluation steps: one week

Standard & Poor’s 500
100 most actively traded stocks, daily data 2002 to 2006
sample: 150 days — evaluation steps: 14 days
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Swedish Stocks — No Constraints

Markowitz theory with desired return of 0.3% per week

risk return

yearly actual risk [%] yearly actual return [%]

sample 20.7 11.1

power mapped 11.3 5.0

filtered 11.4 10.5
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Swedish Stocks — Constraint: No Short Selling

Markowitz theory with desired return of 0.1% per week

risk return

yearly actual risk [%] yearly actual return [%]

sample 10.1 0.5

power mapped 9.9 1.1

filtered 9.9 0.7
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Swedish Stocks — Weights

no constraints constraint: no short selling

−→ less rigid: filtering seems favored

more rigid: power mapping seems favored
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Mean Value of Correlation Matrix

in a sampling period

c =
1

K2

∑

k,l

Ckl

very similar curves!

important: Markowitz optimization is invariant under scaling
C −→ γC for all γ > 0

power mapped C can be readjusted with c(original)/c(power mapped)
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Standard & Poor’s — Adjusted Power

K = 100, T = 150, qopt = 1.8

constraint: no short selling

Mean realized risk

Csample 1.548e-2
Cfilter 0.809e-2
C(q) 0.812e-2

Mean realized return

Csample 0.42e-4
Cfilter 5.45e-4
C(q) 5.90e-4
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Standard & Poor’s — Varying Power

K = 100, T = 150, qopt = 1.8

constraint:
no short selling

Power–mapping yields good risk-reduction for wide range
of q values
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Summary and Conclusions

• portfolio risk depends on correlations

• Markowitz optimization is an Euler–Lagrange problem

• correlations are noise dressed
• two noise reduction methods discussed: filtering and power

mapping

• both are good at reducing risk, perform differently in the
presence of constraints (no short selling)

• example for everyday work in financial industry

Heidelberg, April 2012


	
	Outline
	
	Putting together a Portfolio
	Correlations between Stocks
	Portfolio and Risk Management
	Risk of a Portfolio
	Diversification --- Empirically
	Risk, Covariances and Correlations
	Measuring Financial Correlations
	Financial Correlation and Covariance Matrices
	
	Portfolio Risk and Return
	Optimial Portfolio
	No Constraints: Closed Form Solutions
	Efficient Frontier
	
	Empirical Results
	Quantum Chaos
	Major Reason for the Noise
	Chiral Random Matrices
	Correlation Matrix is Largely Random
	A Model Correlation Matrix
	Explanation of the Large Eigenvalues
	
	Noise Reduction by Filtering
	Parameter and Input Free Alternative?
	Illustration Using the Noh Model Correlation Matrix
	Spectral Densities and Length of the Time Series
	Power Mapping
	Heuristic Explanation
	Self--determined Optimal Power
	Internal Correlation Structure
	Power Mapping is a New Shrinkage Method
	Sketch of Analytical Discussion
	Result for Power--Mapped Noh Model
	
	Markowitz Optimization after Noise Reduction
	Swedish Stocks --- No Constraints
	Swedish Stocks --- Constraint: No Short Selling
	Swedish Stocks --- Weights
	Mean Value of Correlation Matrix
	Standard & Poor's --- Adjusted Power
	Standard & Poor's --- Varying Power
	Summary and Conclusions

