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What is market risk and how can we measure it ?
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Examples and definitions
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What is market risk ?

Market risk : potential losses in the value of financial instruments / assets due to (stochastic) changes in 

the market conditions

Relevant questions (e.g. for an investor):

» How much money can I loose from one day to the other  if I am invested in a specific asset?

» Are bit coins really ‘riskier’ than (say) shares of Deutsche Telekom or BMW ?

» Should I invest in gold instead ?

» ....

» Market risk is hidden behind many everyday phenomena and news but becomes ‘visible’ every 

now and then ....

Bloomberg, 22/06/2018Forbes, 23/06/2018

BBC, 24/06/2016
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Market risk is an important factor for many financial institutions

» The market variables driving the changes of the asset prices are called risk factors. 

» The correct identification of all relevant risk factors is an important  step in the development of market 

risk models

» Examples for risk factors: (stock) prices, exchange rates, interest rates

» Measuring market risk is important for banks (and indeed other institution) for different reasons:

› actual management / steering of a bank (investment decisions, risks to take or to avoid,...)

› comply with regulation, for example 

› bank has to understand the risks it takes

› equity capital to be kept is determined by the amount of risk the bank is taking

» There are other important risk categories which will not be looked at here

› credit risk

› operational risk

› ...

Measurement and management of market risk is key for many financial institutions, in particular banks. 

» The measurement of market risk requires the use of statistical models

» Goal of today will be to present some of the standard models as well as 

some more advanced approaches
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Measures for market risk
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General setup and notations

» We consider a portfolio with value 𝑉𝑃
𝑡 at time 𝑡 , consisting of 𝐾 different positions of sizes 𝑁𝑖 in assets with 

value 𝑆𝑖
𝑡 (𝑖 = 1,…𝐾). Example: A portfolio of 500 Deutsche Telekom shares would have 𝑁1 = 500 and  𝑆1

𝑡

would denote the price of one Telekom share.

» Portfolio values and 1-day portfolio P&Ls (“profit-and-loss”) are then given by

𝑉𝑃
𝑡 = 

𝑖=1

𝐾

𝑁𝑖 ⋅ 𝑆𝑖
𝑡 𝑃𝑛𝐿𝑃

𝑡+1 = 𝑉𝑃
𝑡+1 − 𝑉𝑃

𝑡

» We are interested in modelling a probability distribution 𝐹𝑃𝑛𝐿𝑃
𝑡+1 which forecasts 𝑷𝒏𝑳𝑷

𝒕+𝟏 on day 𝒕. The 

corresponding density is denoted by 𝑓𝑃𝑛𝐿𝑃
𝑡+1

» We consider the Value-at-Risk

𝑉𝑎𝑅𝑡
𝛼 = −sup(𝑥 ∈ 𝑅, 𝑥

∞
𝑓𝑃𝑛𝐿𝑃

𝑡+1 𝑥 𝑑𝑥 ≥ 𝛼 )

with 𝛼 = 99%. 

» An alternative would be the Expected Shortfall 

𝐸𝑆𝑡
𝛼 =

1

1−𝛼
⋅ 𝛼

1
𝑉𝑎𝑅𝑡

𝛽
𝑑𝛽

which quantities the expected loss beyond VaR.

𝑓𝑃𝑛𝐿𝑃
𝑡+1

𝑉𝑎𝑅𝑡
𝛼

The goal of a market risk model is to forecast the profit-and-loss probability distribution, which contains 

all needed information. The information is usually condensed into a risk measure.

2018-10-03  |  The evolution of simulation methods in market risk  |  What is market risk and how can we measure it ?  (5/10)



© d-fine — All rights reserved© d-fine — All rights reserved  |  8

Example portfolios

» Market risk is a portfolio-specific quantity. In particular it is in general not the sum of the market risk of the 

portfolio constituents.

» In the examples, we will consider portfolios consisting of positions in different assets. In particular the 

following portfolios will be frequently looked at for illustration

› Portfolio 1: One Bitcoin (BTC)

› Portfolio 2: 500 Shares of DTE (Deutsche Telekom)

› Portfolio 3: 200 shares of DBK (Deutsche Bank)

» Examples: In the time between 01.06.2017 and 01.01.2018 value 𝑉𝑃
𝑡 and P&L 𝑃𝑛𝐿𝑃

𝑡+1 of portfolios 1 and 5 

look like this 

› Portfolio 4: 5 ounces of fine gold

› Portfolio 5: All assets of portfolios 1-4 in one portfolio

𝑽𝑷
𝒕

𝑷𝒏𝑳𝑷
𝒕+𝟏 = 𝑽𝑷

𝒕+𝟏 − 𝑽𝑷
𝒕
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Backtesting – assessing the quality of a market risk model
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Assessment of market risk models – examples

The quality of market risk models can be assessed by comparing them to realized price movements

Model 1:  
» Modell shows no VaR-violations 

at all

» Fewer VaR-violations than 

expected  - model (overly ?) 

conservative

Model 2:
» Modell shows 4 VaR – violations

» These are a few more violations 

than one would expect - is the 

model still acceptable ? 

» Some VaR- violations due to 

statistical fluctuations ?

Model 3:
» Modell shows VaR – violations 

for 15 days

» These are fare more violations 

than one would expect

» Model should be rejected with 

high confidence

The picture shows risk figures for three 

different  VaR-99% models for portfolio 4

» Backtesting period is 01.01.2017 –

31.12.2017, which amounts to 250 data 

points

» Blue circles denote the actual portfolio 

movements

» The three colored lines show the risk 

figures computed at  the time

» Expected number of VaR-violations is 

250 ⋅ 0.01 = 2.5, so about 2 – 3 violations

VaR violations 

(Model 2 and 3) VaR violations 

(Model 3)

» The quality of different models is assessed via backtesting, i.e. the comparison of the models risk forecast 

with actual market movements
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Assessment of market risk models – backtesting (1/2)

𝒏 = 𝟓𝟎𝟎, 𝜶 = 𝟗𝟗%

VaR-Violations Traffic Light

0-8 green

9-14 yellow

15 or more red

» Traffic Lights: defined as function of p
› 𝑝 ≤ 95%: Green zone

› 95% < 𝑝 ≤ 99.99% : Yellow zone

› 𝑝 > 99.99%: Red zone

» For an observation period of 2 years (n = 500) and a 

Value-at-Risk confidence level of 𝛼 = 99%

» Mathematically this idea can be implemented by applying statistical tests, which may allow to reject a 

model according to defined confidence level.

» Backtest 1: Basel Traffic Lights

› One – sided test based on binomial distribution.

› If model is correct: Probability of 𝑟 or less VaR-violations for n days of observation given by 𝑃𝑟 = σ𝑖=0,…,𝑟𝐵𝑛,𝛼(𝑖) with the 

binomial distribution 𝐵𝑛,𝛼 =
𝑛
𝑟

⋅ 1 − 𝛼 𝑟 ⋅ 𝛼𝑛−𝑟

› Fix confidence level p of the test and determine maximal r so that 𝑃≤𝑟 ≤ 𝑝. 

› If there are more than r VaR-violations the model can be rejected with confidence level p
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» Backtest 2: Kupiec Test

› Two sided test. Also based on binomial distribution but evaluated via maximum likelihood estimation

› Very similar to Basel Traffic Lights but test also detects models which are too conservative

› Compute maximum likelihood function of the binomial distribution 𝐿𝑅𝑃𝑂𝐹 = −2 𝑙𝑛
1−𝛼 𝑛−𝑟𝛼𝑟

1−
𝑟

𝑛

𝑛−𝑟 𝑟

𝑛

𝑟

› This converges against a 𝜒2 1 distribution for large n

› Test is considered to have failed if 𝐿𝑅𝑃𝑂𝐹 > 𝐹𝜒2(𝑝), where 𝐹𝜒2 is a 𝜒2 1 distribution function

» Following the same logic as before, one could define Traffic Lights for n = 500 and 𝛼 = 0.99

» But it is more common to consider ‘non-rejection’ intervals for the different p-values. For example for n = 500 

and 𝛼 = 0.99. In what follows we will typically use p = 95%

Assessment of market risk models – backtesting (2/2)

p-value 95% 99% 99.99%

non-rejection interval 2-9 1-11 0-15

VaR-Violations Traffic Light (Kupiec)

2 - 9 green

0-1 or 10-15 yellow

16 or more red

There are many more tests available – we will restrict ourselves to these two tests
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Current market standards

Monte Carlo simulation and historical simulation
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General setup for simulations
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Overview: simulation methods

90s: JP Morgan / Risk Metrics 

» Introduction of VaR as risk 

measure into fin. industry

» Methodology published in 1994

90s – 00s – Standard

simulation methods 

» Monte Carlo

» Historical simulation

» Filtered historical simulation (1998)

› Barone-Adesi et.al., 

› Hull et. al. 

» The increasing computing power and increase in availability of data made simulation methods more and 

more attractive in the past decade

» As we will see, modern methods are statistically much more accurate but also more demanding with 

respect to computational power and the quality and quantity of input data.

» Generally speaking simulation methods try to approximate the P&L distribution by a set of scenarios.

» The art is to generate appropriate scenarios which reflect market conditions as well as possible

Simulation methods have become more and more accurate in recent years

» Markovic, Roy (1952) 

» ....

Industry

Academic

work /

publications

Advanced methods 

» Filtered historical 

simulation

» ...

» Regulation (Basel 2,...)

› Regulators acknowledge 

role of VaR

...

...

1990 2000 2010
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» Simulation approaches have the following common setup:

› The portfolio consists of several positions. The  value of each position depends on 

valuation factors (usually market data). This dependency may be complex, for 

instance for interest rate curves.

› A subset of these valuation factors are selected as risk factors, ideally all main risk 

drivers.

» Then the computational flow of a typical market risk simulation looks as 

follows:

› For each of the risk factor 𝑘 a large number of shifts 𝑟𝑘
𝑖 (𝑖 = 1,… , 𝑛) is generated 

which represent potential risk factor evolutions. The shifts should be consistent 

across risk factors (in a ‘correlation’ sense)

› Shifts are applied to current values 𝑆𝑡,𝑘 of risk factors yielding risk factor 

scenarios, i.e. 𝑆𝑡,𝑘
𝑖 = 𝑆𝑡 ⋅ exp 𝑟𝑘

𝑖 (𝑖 = 1,… , 𝑛)

› The portfolio is revaluated under each risk factor scenario resulting into a set of 

portfolio Profits/Losses 𝑃𝑛𝐿𝑡
𝑖 (𝑖 = 1,… , 𝑛) which represent the forecasted PnL-

distribution

› Usually a risk measure (e.g. Value-at-Risk) is computed out of this simulated PnL

distribution. For Value-at-Risk: This amounts essentially to sorting the PnL vector 

and pick the 1 − 𝛼 ⋅ 𝑛th worst scenario (e.g. for 1000 scenarios and 𝛼 = 99% the 

10th worst scenario)

Standard approaches – general setup for simulations

Distribution of portfolio PnLs

1-𝛼
0

Value-at-Risk 
4

Calculate risk factor 

scenarios

Market Data 

(e.g. risk factor returns)

n scenarios 

1

2

Revaluation of portfolio 

under scenarios
3

𝝈 𝝈

Generate risk factor 

shifts

This lecture is mainly about step 1 !

1

2

3

4
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Historical simulation and Monte Carlo simulation
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Methods to generate shifts - historical simulation

Advantages:

» No explicit distribution assumption or calibration

» Simple and transparent

» Few parameters (can also be a drawback …)

Drawbacks:

» Number of scenarios limited by data availability

» Needs very good data quality

» The basic algorithm to generate scenarios works as follows

1. Pick historical 1-day risk factor returns from a rolling window of size 𝑛. Return types can be chosen and often depend 

on the type of risk factor used

𝑟𝑗
𝑡,𝑙𝑜𝑔

≔ ln
𝑆𝑗
𝑡

𝑆𝑗
𝑡−1 𝑟𝑗

𝑡,𝑟𝑒𝑙 ≔
𝑆𝑗
𝑡−𝑆𝑗

𝑡−1

𝑆𝑗
𝑡−1 𝑟𝑗

𝑡,𝑎𝑏𝑠 ≔ 𝑆𝑗
𝑡 − 𝑆𝑗

𝑡−1 𝑡 = 𝑇,… , 𝑇 − 𝑛 + 1

2. Apply the returns to the current level of the risk factors to obtain risk factor scenarios (k = 1,… , 𝑛)

𝑆𝑗
𝑇,𝑘 = 𝑆𝑗

𝑇 ⋅ exp 𝑟𝑗
𝑡−𝑘+1,𝑙𝑜𝑔

= 𝑆𝑗
𝑇 ⋅

𝑆𝑗
𝑇−𝑘+1

𝑆𝑗
𝑇−𝑘

, 𝑆𝑗
𝑇,𝑘 = 𝑆𝑗

𝑇 ⋅ 1 + 𝑟𝑗
𝑇−𝑘+1,𝑟𝑒𝑙 = 𝑆𝑗

𝑡 ⋅
𝑆𝑗
𝑡−𝑘+1

𝑆𝑗
𝑡−𝑘

,

𝑆𝑗
𝑇,𝑘 = 𝑆𝑗

𝑇 + 𝑟𝑇−𝑘+1,𝑎𝑏𝑠 = 𝑆𝑗
𝑇 + 𝑆𝑗

𝑇−𝑘+1 − 𝑆𝑗
𝑡−𝑘

3. Continue as described above

» The most important parameters are:

› The number of scenarios 𝑛: should be chosen large but is usually limited by data availability

› The return type: note that for this variant of historical simulation log and relative returns are equivalent (we will usually 

be using log-returns)
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Methods to generate shifts – Monte Carlo

Drawbacks:

» More difficult to justify (distribution assumptions 

etc.) and explain

» Covariance matrix estimation can be tricky

Advantages:

» Number of scenarios unlimited

» More robust with respect to data quality

» The basic algorithm to generate scenarios works as follows

1. Pick historical 1-day risk factor returns from a rolling window of size K. 

2. Calibrate the covariance matrix 𝑪𝑡 to the return history, i.e. compute

𝐶𝑖𝑗
𝑡 =

1

𝐾
σ𝑘=0
𝐾 𝑟𝑖

𝑡−𝑘 − 𝜇𝑖
𝑡 ⋅ 𝑟𝑗

𝑡−𝑘 − 𝜇𝑗
𝑡 , 𝜇𝑖

𝑡 =
1

𝐾+1
σ𝑘=0
𝐾 𝑟𝑖

𝑡−𝑘

3. Compute the Cholesky decomposition of the covariance matrix 𝑪𝑡 = 𝑨𝑡 ⋅ (𝑨𝑡)′. (t = time, 𝑨′ = transpose of A)

4. Generate independent normal random variables 𝜉𝑖
𝑟(𝑟 = 1,… , 𝑛) and use the Cholesky decomposition to transform 

them to correlated normal random variables 𝑟𝑖
𝑇,𝑟 = σ𝑗∈𝐽𝐴𝑖𝑗

𝑇 ⋅ 𝜉𝑗
𝑟. These are the shifts.

5. Apply the shifts to the current level of the risk factors. For example for log returns

𝑆𝑖
𝑇,𝑟 = 𝑆𝑖

𝑇 ⋅ exp 𝑟𝑖
𝑇,𝑟

6. Continue as described above

» The most important parameters are:

› The number of scenarios 𝑛: Can – in principle – be chosen arbitrarily large

› The return type

› The calibration window size K for the covariance matrix. Note that often 𝑪𝑡 is not recalibrated daily
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Example portfolios – result overview

Risk over time relative to asset price for a 1-day, 99% Value-at-

Risk, computed by Historical Simulation using 1000 scenarios 

The used methodology (and its parameterisation) has a strong impact on the estimation of market risk

Date 31.01.2018

Market Value [TEUR] Hist. Sim. Monte Carlo Hist. Sim. Monte Carlo

Portfolio 1 (BTC) 8.15 0.91 1.04 11.1% 12.8%

Portfolio 2 (DTE) 7.06 0.27 0.12 3.9% 1.7%

Portfolio 3 (DBK) 2.96 0.18 0.10 6.2% 3.3%

Portfolio 4 (XAU) 5.40 0.10 0.05 1.8% 1.0%

Portfolio 5 23.57 0.99 1.04 4.2% 4.4%

Value - at - Risk [TEUR] Value-at-Risk / Market Value

Risk of the example portfolios (1-day, 99% Value-at-Risk) for one valuation day 

» Using the explained standard methodologies the risk 

for the example portfolio is computed using
» Historical simulation with 1000 scenarios

» Monte Carlo simulation with 5000 scenarios 

(assuming a Gaussian distribution)

» The risk of the different assets relative to each other is 

roughly in line with what one would intuitively expect 

(bit coin riskier than stock, stock riskier than gold)

» However, results depend strongly on chosen 

methodology
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Weaknesses of standard approaches

» Although markets have calmed down the large returns still 

dominate in  the moving time window so risk figures remain 

on a high level

» Large returns start dropping out of the moving time window 

and risk figures decrease

3

4

» Market volatility increases (Lehman-crisis). Large return enter 

the moving time window but the Value-at-Risk does not ‘see’ 

them yet

» Sufficiently many large returns have entered the moving time 

window so that the risk figures start rising

1

2

» Setup: 
› Historical simulation with 1000 scenarios 

(=4 years moving window)

› Monte Carlo with 2000 scenarios and 4 

years calibration window

› Confidence Level = 99%

» Jan 2008 – Aug 2009: Both backtests

fail due to too many outliers.

» Sep - 2009 to June 2011 Kupiec test 

fails because model is too conservative

2

1

3

4

Models too conservative

Kupiec test fails

Traffic light red

Kupiec test fails

» Example portfolio 3 (DBK) from 2008 to 2011:

Standard historical simulation and Monte Carlo suffer from low reactivity to changing market conditions

Window Size #outlier result Basel result Kupiec

Hist. Sim. 31 red failed

Monte Carlo 41 red failed

pf3: Jan 2008 - Aug 2009

Window Size #outlier result Basel result Kupiec

Hist. Sim. 0 green failed

Monte Carlo 0 green failed

pf3: Sep 2009 - Jun 2011
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Advanced simulation methods 
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Improving standard methods - overview

In order to fix these problems we need to take a look at the structure of the underlying time series

» Fixing these deficiencies will lead to more sophisticated approaches, which are however even more 

dependent on the quantity and quality of available data

Historical simulation – main problems

» Lack of reactivity

› Model does not react to new market 

conditions

› Simple remedies like shortening the time 

window ( = fewer scenarios) lead to 

problems with statistical accuracy

› Therefore: structural improvement 

needed

Monte Carlo simulation – main problems

» Lack of reactivity

› Model does not react to new market 

conditions

› Estimation technique for covariance 

matrix needs to be improved

» Lack of fat tails

› Assumption of Gaussian distribution is 

wrong

› Different distribution assumption needed

» There are different reasons for the problems encountered above. The main issues are the following:
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Advanced variants of historical simulation
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Filtered historical simulation – motivation

» In underlying assumption of standard historical simulation is that scenarios are stationary, i.e. each scenario 

“has the same probability”. 

» Visual inspection already shows that this assumption is violated, especially if there is a major crisis in the 

considered time window

» Filtered historical simulation(1) tries to heal this by introducing a suitable model for the historical volatility 𝜎𝑗
𝑡

(could be EWMA, GARCH … more on this later) and possibly the drift 𝜇𝑗
𝑡 which are then used to normalise 

the returns(2) 𝑟𝑗
𝑡 before they are further processed.

(1) Barone-Adesi, G., Bourgoin, F. and K. Giannopoulos, 1998, Don’t Look Back, Risk, 11, August

Hull, J. and A. White, 1998, Incorporating Volatility Updating into the Historical Simulation Method for VaR, Journal of Risk 1 
(2) from now on “returns” will always mean “log-returns” unless stated otherwise, that is 𝑟𝑗

𝑡 = 𝑟𝑗
𝑡,𝑙𝑜𝑔

DTE (portfolio 2): Returns from 2008-01-01 to 2009 – 12- 31 DBK (portfolio 3): Returns from 2008-01-01 to 2009 – 12- 31
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Filtered historical simulation – general idea

» Simplest version: (Univariate) filtered historical simulation with EWMA – volatilities:

1. Compute historical (EWMA-) volatility for each risk factor over time (this can be done recursively). There is one 

additional parameter 𝜆 ∈ [0,1) (per risk factor), a typical value is 𝜆 = 0.97

𝜇𝑗
𝑡 = 1 − 𝜆 ⋅

𝑖=0

∞

𝜆𝑖 ⋅ 𝑟𝑗
𝑡−𝑖 𝜎𝑗

𝑡 = 1 − 𝜆 ⋅
𝑖=0

∞

𝜆𝑖 ⋅ 𝑟𝑗
𝑡−𝑖 − 𝜇𝑗

𝑡−𝑖 2

2. Compute residuals by dividing each return by its volatility at the same point in time

𝜉𝑗
𝑡 =

𝑟𝑗
𝑡

𝜎𝑗
𝑡

3. At the valuation date 𝑇, compute shifts 𝑅𝑗
𝑇,𝑘

by upscaling all residuals with the volatility at time 𝑇

𝑅𝑗
𝑇,𝑘 = 𝜎𝑗

𝑇 ⋅ 𝜉𝑗
𝑇−𝑘 (𝑘 = 1, … , 𝑛)

4. Use these shifts instead of the original returns in the historical simulation algorithm

» Many different volatility models are available ⇒ more on this later

DTE (portfolio 2): Residuals from 2008-01-01 to 2009 – 12- 31 DBK (portfolio 3): Residuals from 2008-01-01 to 2009 – 12- 31
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returns

residuals

2008 - 2009

𝑝 = 99.99%
𝑘 = 10

𝑄 = 44.99
𝜒10
2 𝑝 = 35.56

2010 - 2011

𝑝 = 99.99%
𝑘 = 10

𝑄 = 7.78
𝜒10
2 𝑝 = 35.56

Stationarity: Ljung – Box test

𝑝 = 99.99%
𝑘 = 10

𝑄 = 16.64
𝜒10
2 𝑝 = 35.56

𝑝 = 99.99%
𝑘 = 10

𝑄 = 10.37
𝜒10
2 𝑝 = 35.56

» Stationarity can be assessed with the Ljung-Box test(1)

» The test statistic is given by 𝑄 = 𝑛(𝑛 + 2)σ𝑘=1
ℎ 𝜌𝑘

2

𝑛−𝑘
, where 𝑛 is the sample size, 𝜌𝑘

2 the standard 

autocorrelation estimator with lag 𝑘 and ℎ the number of lags being tested. 

» Null hypothesis is that the sample is independently distributed. It can be rejected with conf. 𝑝 if 𝑄 > 𝜒ℎ
2 𝑝

where 𝜒ℎ
2(𝑝) denotes the p-quantile of a 𝜒2 distribution with ℎ degrees of freedom. 

» Example: Returns and residuals of DTE share (portfolio 2) in 2008-2009 and 2013-2014

Residuals are stationary also in times of crisis, returns only in calm periods

(1) G. M. Ljung, G.E.P. Box (1978), On a Measure of a Lack of Fit in Time Series Models, Biometrika 65 (2), 297 - 303
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Model #outlier result Basel result Kupiec

HS 31 red failed

FHS 9 yellow failed

pf3: Jan 2008 - Aug 2009

Filtered historical simulation - backtesting

2

1

3

» Market volatility increases (Lehman-crisis). The EWMA – volatility in the 

FHS picks up, shifts in the simulation become larger and VaR increases

» Market volatility decreases. Due to the lower upscaling factor shifts in the 

FHS become smaller and VaR decreases

» The Euro-crisis leads again to increasing volatility in the market to which 

the FHS reacts swiftly again.

» Setup: 
› Historical simulation with 1000 

Szenarios (=4 years moving window)

› Filtered historical simulation with 1000 

Szenarios and decay factor 𝜆 = 0.97
› Confidence Level = 99%

» Jan 2008 – Aug 2009: Number of 

outliers significantly reduced for FHS

» Sep 2009 - June 2011:

» Example portfolio 3 from 2008 to 2011:

Reactivity and statistics of filtered historical simulation are significantly superior to 

standard historical simulation

2

3

1

Model #outlier result Basel result Kupiec

HS 0 green failed

FHS 2 green passed

pf3: Sep 2009 - Jun 2011
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Filtered historical simulation – modelling the historical volatility (1/2)

» The new element of Filtered Historical Simulation is that a (sufficiently reactive or forward-looking) model for 

the historical volatility is needed. 

› On the one hand, this introduces additional complexity, model risk and calibration efforts.

› On the other hand it opens the door for new risk modelling aspects and ways to improve the model. 

» Example: Volatility of DBK (portfolio 3) from 2008 to 2011:

𝜇𝑗
𝑡 𝐾 = 𝜇𝑗

𝑡 =
1

𝐾


𝑖=0

𝐾−1

𝑟𝑗
𝑡−𝑖

(𝜎𝑗
𝑡)2 𝐾 = (𝜎𝑗

𝑡)2 =
1

K − 1


𝑖=0

𝐾−1

(𝑟𝑗
𝑡−𝑖 − 𝜇𝑗

𝑡−𝑖)2

𝐾 = Window size, j = risk factor 

Reactivity is purely determined by window size of the 

estimator:

» Small window ⇒ more reactive 

» Large window ⇒ less reactive

1. Standard volatility estimator with varying window size

» Advantages:
› Significantly enhanced statistical properties, 

especially in times of crisis

› New modelling possibilities via link with historical 

volatility models.

» Disadvantages:
› Increased complexity, less transparent

› Calibration and model risk

› Even longer and better quality time series needed
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𝜇𝑗
𝑡 = (1 − 𝜆)

𝑖=0

∞

𝜆𝑖𝑟𝑗
𝑡−𝑖

(𝜎𝑗
𝑡)2 = (1 − 𝜆 )

𝑖=0

∞

𝜆𝑖(𝑟𝑗
𝑡−𝑖 − 𝜇𝑗

𝑡−𝑖)2

𝜆 ∈ [0,1) “decay factor” determines the reactivity, can 

also be computed recursively

𝜇𝑗
𝑡 = 𝜆𝜇𝑗

𝑡−1 + 1 − 𝜆 𝑟𝑗
𝑡

(𝜎𝑗
𝑡)2 = 𝜆 𝜎𝑗

𝑡−1 2
+ (1 − 𝜆)(𝑟𝑗

𝑡 − 𝜇𝑗
𝑡)2

Filtered historical simulation – modelling the historical volatility (2/2)

2. EWMA – volatility with varying decay factor

Recursive computation (assumption 𝜇𝑗
𝑡 = 0) 

(𝜎𝑗
𝑡)2= 𝜔 + 𝛼 𝜎𝑗

𝑡−1 2
+ 𝛽(𝑟𝑗

𝑡)2

parameters:  ω, α, β. Contains EWMA as special 

case 

Different representation with 𝜎𝑗
2 = 𝐸[ 𝜎𝑗

𝑡 2
] (long-

term variance) 

𝜎𝑗
𝑡 2

= 𝜎𝑗
2 + 𝛼 𝜎𝑗

𝑡−1 2
− 𝜎𝑗

2 + 𝛽 𝑟𝑗
𝑡 2

− 𝜎𝑗
2

𝜔 = 0 𝛽 = (1 − 𝜆)𝛼 = 𝜆

3. GARCH (1,1)-volatility  with varying parameters

(1) Robert F. Engle: Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of UK. Inflation, Econometrica (50), 1982.

T. Bollerslev: Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics (31), 1986
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» Sep 2009 - June 2011:

» No significant 

improvement by using 

Garch(1,1) instead of 

EWMA

Decay Factor #outlier result Basel result Kupiec

λ = 0.99 0 green failed

ω = 1E-6, α = 

0.97, β = 0.01
2 green passed

ω = 3E-5, α = 

0.01, β = 0.01
3 green passed

pf3: Sep 2009 - Jun 2011

» Jan 2008 – Aug 2009:

» Garch(1,1) model not better 

than EWMA model 

» Wrong parameterisation can 

lead to very bad results

Filtered historical simulation – further examples

Portfolio 3: FHS with EWMA volatility for different decay factors

Portfolio 3: FHS with GARCH(1,1) volatility for different parameters and with EWMA volatility with decay factor 0.97

» Jan 2008 – Aug 2009:

» filtering yields improvement 

but test still yellow / failed

» For very small decay factors 

performance gets worse

» Sep 2009 - June 2011:

» filtering yields sufficient 

improvement

Decay Factor #outlier result Basel result Kupiec

λ = 0.99 11 yellow failed

ω = 1E-6, α = 

0.97, β = 0.01
12 yellow failed

ω = 3E-5, α = 

0.01, β = 0.01
44 red failed

pf3: Jan 2008 - Aug 2009

Decay Factor #outlier result Basel result Kupiec

1 31 red failed

0.99 11 yellow failed

0.97 9 yellow failed

0.90 15 red failed

pf3: Jan 2008 - Aug 2009

Decay Factor #outlier result Basel result Kupiec

1 0 green failed

0.99 0 green failed

0.97 2 green passed

0.90 7 green passed

pf3: Sep 2009 - Jun 2011
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Risk figures change more dynamically under a filtered historical simulation

Example portfolios – result overview (1/2)

Risk over time relative to asset price for a 1-day, 99% Value-at-Risk, computed by Filtered Historical Simulation 

using 1000 scenarios  (decay factor = 0.97). Figures for Standard Historical Simulation are shown as dotted lines

Historical Simulation with

and without volatility

filtering for the example

portfolios

» Risk figures with and

without volatility filter can

be significantly different

» Deviations from ‘filtered’

to ‘unfiltered’ risk figures

occur in both directions

» Filtered historical

simulation reveals trends

over time much better
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Example portfolios – result overview (2/2)

Risk figures change more dynamically under a filtered historical simulation

» Using the more sophisticated methodology confirms the order of magnitude of market 

risk found earlier

» Nevertheless the actual risk figures differ sometimes quite significantly

» Some additional information is revealed:
› The (relative) market risk of BitCoins shows a clear upward trend, the risk of DBK a downward 

trend

› The concept of gold being less risky than stock becomes less clear (at some point in time it 

seems riskier than DTE)

Date 31.01.2018

Market Value [TEUR] Hist. Sim. Monte Carlo Filtered Hist. Sim. Hist. Sim. Monte Carlo Filtered Hist. Sim.

Portfolio 1 (BTC) 8.15 0.91 1.04 1.39 11.1% 12.8% 17.1%

Portfolio 2 (DTE) 7.06 0.27 0.12 0.14 3.9% 1.7% 2.0%

Portfolio 3 (DBK) 2.96 0.18 0.10 0.13 6.2% 3.3% 4.5%

Portfolio 4 (XAU) 5.40 0.10 0.05 0.05 1.8% 1.0% 1.0%

Portfolio 5 23.57 0.99 1.04 1.45 4.2% 4.4% 6.2%

Value-at-Risk / Market ValueValue - at - Risk [TEUR]
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Historical simulation: comparison of approaches

Standard Historical 

Simulation

Filtered Historical 

Simulation

Reactivity / 

Accuracy

Complexity

Transparency

Dependency on 

data quality

Calibration

Methodological 

soundness
Strong improvement ...

... but comes at a cost

Filtered historical simulation offers a significant improvement of statistical properties but is significantly 

more complex

longer & better time series needed !

additional data for 

computation of 

historical volatility

rolling window 

for scenarios

one ‘bad’ data point
(fat finger trade,
technical error, ...)
can destroy the
whole distribution !
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Improving Monte Carlo
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Monte Carlo – Gaussian distribution (1/2)

» At the core of a Monte Carlo simulation is the generation of risk factors shifts according to a specific 

distribution. The simplest case is to assume a (multivariate) Gaussian distribution (density):

𝑓𝑁 𝒙 =
1

2𝜋 𝑑/2 ⋅ 𝐂
1
2

⋅ 𝑒𝑥𝑝 −
1

2
⋅ 𝒙 − 𝝁 𝑡 ⋅ 𝐂−1 ⋅ 𝒙 − 𝝁

› d: number of risk factors

› 𝒙: vector of risk factor shifts (d x 1)

› 𝝁: drift vector (d x 1)

› 𝑪: Covariance matrix (d x d)

› | 𝐂 | : determinant of 𝑪

» Calibration:
» Drift vector 𝝁 is typically assumed to be zero

» Covariance 𝑪 matrix needs to be calibrated to historical data (see next slide)

» Generation of Risk Factor Shifts:
» Decompose covariance matrix such that 𝑪 = 𝑨 ⋅ 𝑨𝒕 ( for example Cholesky decomposition(1) )

» Generate independent, identically normally distributed shift vectors 𝒚

» Correlated shift vectors given by 𝒙 ≔ 𝑨 ⋅ 𝒚, as 𝐶𝑜𝑣 𝑥𝑗 , 𝑥𝑘′ = 𝐸 σ𝑟 𝐴𝑗𝑟𝑦𝑟 ⋅ σ𝑠𝐴𝑘𝑠𝑦𝑠 = σ𝑟,𝑠𝐴𝑗𝑟 ⋅ 𝐴𝑘𝑠 𝐸 𝑦𝑟𝑦𝑠 = 𝐶𝑟𝑘

» Advantages: 
› Simple and easy to explain 

› Covariance matrix (and drift) fully determines 

distribution. 

› Estimation of parameters (relatively) simply

» Drawbacks: 
› Gaussian distribution has no fat tails, i.e. tends to 

underestimate risk

(1) H. Press et. al. , Numerical recipes, Cambridge University Press = 𝛿𝑟𝑠
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Monte Carlo – Gaussian distribution (2/2)

» Estimation of the covariance matrix: Most common approach is to use the maximum likelihood estimator. 

Given a time series of (historical) returns 𝒙𝒊 (𝑖 = 1,… , 𝑛), one attempts to find the matrix 𝑪 which maximises 

the likelihood function

𝐿 = 2𝜋 −
𝑛𝑑
2 𝑪 −

1
2 ෑ

𝑖

𝑒𝑥𝑝 −
1

2
𝒙𝑖 − 𝝁 𝑡 ⋅ 𝑪−1 ⋅ (𝒙𝑖 − 𝝁)

» This leads to the well-known estimator (assuming 𝝁 = 0)

𝐶𝑗𝑘 =
1

𝑛
σ𝑖 𝑥𝑖

𝑗
⋅ 𝑥𝑖

(𝑘)

» For a large number of risk factors (i.e. 𝑑 > 𝑛) the standard estimator can become numerically troublesome. So-

called shrinkage estimators try to provide more robust estimations in such cases(1). 

» Direct sampling from time series: Assuming the ML estimator is good enough and using the time series 

𝒙𝑖 (𝑖 = 1,… , 𝑛) to define the 𝑑 𝑥 𝑛 matrix

𝑿 =
1

𝑛
𝒙1 … 𝒙𝑛

on can rewrite the covariance estimator  as 

𝑪 = 𝑿 ⋅ 𝑿′

(1) See for example: O. Ledoit, M. Wolf,  Honey, I Shrunk the Sample Covariance Matrix, 2003 

» This allows us to generate correlated normal random variables without explicitly computing the Cholesky

decomposition
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Monte Carlo – improve reactivity

» Improving the reactivity of a Monte Carlo simulation can follow similar lines as for Historical Simulation:

1. Reduce window size for the calibration of the covariance matrix . This is simple but has the 

disadvantage of increasing the statistical error

2. Use a weighted estimator for the covariance matrix, i.e. modify the estimator above as follows

𝐶𝑗𝑘 = 1 − 𝜆 ⋅ σ𝑖 𝜆
𝑖 𝑥𝑖

(𝑗)
⋅ 𝑥𝑖

(𝑘)

assuming the historical returns 𝑥𝑖 𝑖 = 0,… are ordered along the time axis (𝑥0 being the most recent one)

3. Proceed similarly as for filtered historical simulation, i.e. introduce a model for the historical volatility and 

simulate residuals rather than returns

𝑟𝑡

historical 

returns

𝜉𝑡 =
𝑟𝑡
𝜎𝑡

time 

series of 

residuals

historical 

volatility 

model

𝜎𝑡

calibrate 

cov.

matrix

𝐶𝑜𝑣(𝜉𝑡)

simulate 

residuals

𝜉𝑖
(𝑖 = 1,… , 𝑛)

scale up 

residuals 

with 

current 

volatility

𝜎𝑇 ⋅ 𝜉𝑖
(𝑖 = 1,… , 𝑛)

most common approach
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Monte Carlo – weighted calibration examples (1/2)

A relatively easy way to increase the reactivity of a Monte Carlo simulation is the use of a weighted 

calibration of the covariance matrix 

» Backtesting results Jan 2008 –

August 2009

» Backtesting results Sep 2009 – June 

2011

» Popular method in the market, which for instance vendor risk systems have often implemented

» Method improves the backtesting results but not sufficiently to pass the backtests

» Example Portfolio 3 (DBK) from 2008 to 2011:

Weighting Factor #outlier result Basel result Kupiec

1 46 red failed

0.99 13 yellow failed

0.97 13 yellow failed

0.90 12 yellow failed

pf2: Jan 2008 - Aug 2009

Weighting Factor #outlier result Basel result Kupiec

1 1 green failed

0.99 1 green passed

0.97 4 green passed

0.90 7 green passed

pf2: Sep 2009 - Jun 2011

2018-10-03  |  The evolution of simulation methods in market risk  |  Advanced simulation methods   (17/29)



© d-fine — All rights reserved© d-fine — All rights reserved  |  40

Monte Carlo – weighted calibration examples (2/2)

For Monte Carlo Simulation lack of reactivity is not the only issue but also the distributional assumption can 

lead to underestimation of risk

» Example Portfolio 1 (BTC)  in 2017:

» Increasing the reactivity

eliminates some outliers but

remaining number of outliers still

unacceptably high

» Comparison with standard

historical simulation shows that

the Monte Carlo simulation is

generally on the wrong level

Weighting Factor #outlier Basel Kupiec

Monte Carlo (MC) 18 red failed

MC & WF = 0.97 15 red failed

pf1: Jan 2017 - Dec 2017
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Fat Tails – A common phenomenon in the financial world

Many ‘extreme’ events in finance occur more often than implied by the Gaussian distribution. Probability 

distributions are typically ‘fat-tailed’.

» The effect just encountered is a manifestation of a more general phenomenon encountered for many return 

time series in finance: the existence of ‘fat tails’

» This poses challenges in (market) risk management, as a risk manager is particularly interested in the ‘rare’ 

events (usually the bad ones ...)

Q-Q-plot: Quantiles of two distributions are plotted as x-y diagram Probability densities: Fat tails mean rare events are 

more likely

» Consider the example of BTC in Portfolio 1 compared to a normal distribution

High quantiles grow 

faster for BTC !

Probability of 

extreme events is 

higher for BTC

‘Flanks’ of the 

distribution is 

leaner for  BTC
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Monte Carlo – Student-t-distribution

» Major drawback of using the (multivariate) Gaussian distribution is the lack of fat tails 

» The probably simplest fat-tailed distribution available is the d-dimensional student-t-distribution, which can 

be defined by the probability density

𝑓𝑠𝑡
Σ,𝑘 𝒙 =

Γ
1
2
𝑘 + 𝑑

Γ
1
2
𝑘 ⋅ 𝜋 𝑘

𝑑
2 𝚺

1
2

⋅ 1 +
𝒙 − 𝝁 𝑡 ⋅ Σ−1⋅ 𝒙 − 𝝁

𝑘

−(𝑘+𝑑)/2

» Important properties :

› The covariance 𝑪matrix of t-distributed random variable and 𝚺 are related by 𝑪 =
𝑘

𝑘−2
⋅ 𝚺

› The expected value of a t-distributed random variable is equal to 𝝁
› For 𝑘 → ∞ a t-distribution converges to a Gaussian distribution

› For large x the distribution decreases as 𝑓 𝑥 ~ |𝑥|−(𝑘+𝑑)

› Excess kurtosis 𝜅𝑖 of the i-th variable (i.e. the standardised forth moment minus 3: 𝜅𝑖 = 𝐸
𝑋−𝜇

𝜎

4
- 3 ) is given by 

𝜅𝑖 =
6

𝑘−4
(for k > 4)

› d: number of risk factors

› k: “degrees of freedom”

› Γ(⋅): Gamma function

› 𝒙: vector of risk factor shifts (d x 1)

› 𝝁: drift vector (d x 1)

› 𝜮: positive definite matrix (d x d)

› | 𝚺 | : determinant of 𝚺

» Advantages: 
› Includes fat tails 

› Only one additional parameter needed

» Drawbacks: 
› More difficult to calibrate

› Still ‘isotropic’ – one parameter k for all risk factors
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Student-t Distribution – dependency on the degrees of freedom

The Student-t distribution is the simplest modification of a Gaussian distribution to have fat tails

» The smaller the degree of 

freedom k the more tat-tailed the 

distribution becomes

» For larger k the distributions 

become more an more similar. 

Example: 99% quantile for 

different k 

» The second moment exists only 

for k > 2

» The forth moment exists only for 

k > 4

k 99% - Quantile

1 31.82051595

2 6.964556734

3 4.540702859

4 3.746947388

5 3.364929999

10 2.763769458

20 2.527977003

Gauss 2.326347874
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Calibration

» The likelihood function does not allow for an explicit solution any more, due to its involved dependency on 𝚺
and k.

𝐿 𝚺, 𝑘; 𝒙1, … , 𝒙𝑛 = ς𝑖 𝑓𝑠𝑡
Σ,𝑘(𝒙𝑖)

» Full solution: Optimise the maximum likelihood function numerically. Typically so-called EM – algorithms 

(Expectation-Maximisation) are used which attempt to iteratively find an optimal calibration(1,2).
› Approach is quite generic (also works for other distributions) but relatively complex

› Statistical packages often have this implemented. See for example package “ghyp” in R(3).

» Pragmatic approaches: Calibrate degrees of freedom and covariance matrix independently

» Degrees of freedom: Possible approaches
› Determine the “tail index” (i.e. look at the asymptotic behaviour for large 𝑥) using a known algorithm like the Hill estimator:

› Compute excess kurtosis’ 𝜅𝑖 for different the different variables via the ‘standard’ estimator and infer degrees of freedom via 

the relation 𝑘 =
6

1

𝑛
⋅σ𝑖 𝜅𝑖

+ 4 (”moment matching”)

» Compute covariance matrix using the ‘standard’ estimator 𝐶𝑘𝑗 =
1

𝑛
σ𝑖 𝑥𝑖

(𝑘)
⋅ 𝑥𝑖

(𝑗)
and the relation 𝑪 =

𝑘

𝑘−2
⋅ 𝚺

» All approaches typically have in common that the degree of freedom fluctuates quite strongly over time (and 

across risk factors) – see next slide

(1) C. Liu, D.B. Rubin, ML Estimation of the t Distribution using EM and its Extensions, ECM and ECME, Statistica Sinica 5 (1995), 19-39
(2) X. Meng, D. van Dyk, The EM Algorithm – an Old Folk-song Sung to a Fast New Tune, J.R. Statist. Soc. B (1997), 59 (3), 511-567
(3) W. Breymann, D. Lüthi, ghyp: A package on generalized hyperbolic distributions, (2013)
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Calibration example for multivariate Student – t- distribution

» Example calibration for 2 return times series of DTE and DBK, using a 2 year rolling time window

» Comparison of 2 methods (i) EM – algorithm (ii) Moment matching

Practical experience: Calibrating the “degrees of freedom” of a Student-t distribution can be a challenge

» The agreement between both approaches is fair at best, especially the degrees of freedom show strong 

deviations in certain periods

» Also note that the moment-matching method assumes that the forth moment exists
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Simulation

» A random variable 𝑿 following a multivariate Student-t distribution with dispersion matrix 𝚺 and k degrees of 

freedom can be represented as: 

𝑿~
𝒁

𝑌/𝑘

where 𝐙 is multivariate normally distributed with covariance matrix 𝚺 and Y is a univariate 𝜒2 𝑘 distributed

random variable independent of Z. 

» This relation can serve as basis for simulation:
1. After calibration, simulate a multivariate normal distribution as explained before

2. Independently, simulate a univariate 𝜒2(𝑘) distributed random variable (for example using the fact that a 𝜒2 𝑘
distributed random variable is the sum of k squared normal random variables)

3. Use the relation above to generate multivariate Student-t distributed random variables 
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Use of fat-tailed distributions - example

Using a fat-tailed distribution can make the model significantly more conservative

» Example Portfolio 1 (BTC)  in 2017:

» Using a Student – t distribution

with 5 degrees of freedom (DoF)

improves the model sufficiently

to pass the backtests

» This comes at the cost of

making the model generally

more conservative

Weighting Factor #outlier Basel Kupiec

Monte Carlo (MC) 18 red failed

MC , WF = 0.97 15 red failed

MC, DoF = 5, WF = 0.97 5 green passed

pf1: Jan 2017 - Dec 2017
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Results for different degrees of freedom

» As expected the different degrees of freedom reflect roughly the 

differences between the 99% quantiles of the Student-t distribution 

» Decreasing degrees of freedom generally makes the risk figures 

more conservative, irrespective of market phase

Using a Student-t distribution can incorporate fat tails but can also easily become very conservative

» Jan 2008 – August 2009: Fewer outliers 

for decreasing number of degrees of 

freedom

» Sep 2009 – June 2011: Model very 

conservative

Weighting Factor #outlier result Basel result Kupiec

Gauss 45 red failed

k = 10 33 red failed

k = 5 24 red failed

k = 3 12 yellow failed

k = 2 4 green passed

pf2: Jan 2008 - Aug 2009

Weighting Factor #outlier result Basel result Kupiec

Gauss 1 green passed

k = 10 0 green failed

k = 5 0 green failed

k = 3 0 green failed

k = 2 0 green failed

pf2: Sep 2009 - Jun 2011

» Example Portfolio 3 (DBK) from 2008 to 2011:
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Example portfolios – result overview (1/2)
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Example portfolios – result overview (2/2)

Date 31.01.2018

Market Value [TEUR] Hist. Sim.
Monte Carlo

(Gauss)

Filtered 

Hist. Sim.

Monte Carlo 

(St.-5, 

WF = 0.97)

Hist. Sim.
Monte Carlo

(Gauss)

Filtered 

Hist. Sim.

Monte Carlo 

(St.-5, 

WF = 0.97)

Portfolio 1 (BTC) 8.15 0.91 1.04 1.39 1.71 11.1% 12.8% 17.1% 21.0%

Portfolio 2 (DTE) 7.06 0.27 0.12 0.14 0.20 3.9% 1.7% 2.0% 2.8%

Portfolio 3 (DBK) 2.96 0.18 0.10 0.13 0.15 6.2% 3.3% 4.5% 5.1%

Portfolio 4 (XAU) 5.40 0.10 0.05 0.05 0.07 1.8% 1.0% 1.0% 1.2%

Portfolio 5 23.57 0.99 1.04 1.45 1.81 4.2% 4.4% 6.2% 7.7%

Value-at-Risk / Market ValueValue - at - Risk [TEUR]

Combining weighted calibration and with a more realistic distributional assumption yields results similar to 

those obtained by filtered historical simulation

» The standard Monte Carlo simulation has been improved by: 
» Using a Student distribution with 5 degrees of freedom instead of a Gaussian distribution 

» Calibrating the covariance matrix using a weighting factor of 0.97

» Results are similar – but slightly more conservative - to those obtained by the filtered 

historical simulation with decay factor 0.97 and confirm the observations made earlier

» Additional observations:
› For BTC the deviation between the Monte Carlo simulation and the filtered historical simulation is 

relatively small – this confirms again that BTC has a relatively fat-tailed return distribution
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Filtered historical simulation & Monte Carlo simulation: 

comparison of approaches

Monte Carlo Simulation can be improved to reach a similar quality (and complexity) as filtered historical 

simulation

Filtered Historical 

Simulation

Reactivity / 

Accuracy

Complexity

Transparency

Dependency on 

data quality

Calibration

Methodological 

soundness

(Improved) Monte Carlo 

Simulation
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Summary and outlook
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State – of – the art market risk models

» We have looked at the two main modelling approaches for statistical market risk models as 

they have developed over the last years: Filtered historical simulation and Monte Carlo 

simulation
› General tendency: Methods become more accurate but also more demanding on input data (both 

quality and quantity)

› These models give a fairly good picture on the (market) risk of assets or portfolio of assets – but only 

if the input data is of sufficient quality

The past years have seen the development of sophisticated simulation approaches which bring along new 

challenges to be addressed in the future

» This is one of the drivers why certain topics

become more and more important, also

driven by regulators:
› Model risk: Risk introduced by wrong

specification of model parameters

› Data quality: How to deal with missing data,

outliers caused for example by technical

problems, or stale data

› Alternative (“non-statistical”) approaches:

Techniques like stress testing increasingly

supplement statistical models

Date Price 1 Price 2

2016-01-01 20.185 50.746

2016-01-02 20.080 50.348

2016-01-03 20.164 50.550

2016-01-04 NA 50.931

2016-01-05 NA 50.724

2016-01-06 20.150 50.235

2016-01-07 20.308 50.534

2016-01-08 20.389 50.440

2016-01-09 20.085 NA

2016-01-10 20.354 50.509

2016-01-11 20.049 50.419

2016-01-12 20.328 50.425

missing data stale data
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New data sources, new models ?

» New techniques (like the often - quoted “Machine Learning” - techniques ) to extract 

information from all kinds of ‘alternative’ data sources have been developing in the last years

» This may offer new approaches to explore in market risk measurement - some ideas: 
› Intraday risk: Measure market sentiment using sources like Twitter

› Data quality: Use new techniques to fill in missing or stale data (based for instance on news feeds or 

similar data sources) for which no price data is available

Thank you for your attention !

independent.co.uk, 16/12/2016
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