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The banks’ role in the economy
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2018-10-08 | From Physics to Finance | The banks’ role in the economy © d-fine — All rights reserved | 3



Banking landscape in Germany

Fintecs

4 GroRRbanken

Deutsche Bank
Postbank

Commerzbank 907

Kreditgenossen-

UniCredit schaften

DZ BANK

393 Landesbanken und
Sparkassen Volksbanken

Sparkassen

BayernLB

Source: Bankenstatistik, Statistisches Beiheft 1 zum Monatsbericht, Deutsche Bundesbank, September 2018, S. 106, Size of circle proportional to accumulated balance sheet data from July dfine
2018
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The banks’ role — Transforming money

* N

N N

Transformation:

Capital demand: » Quantity Capital supply:
big, long term demanded capital » Term many small, rather short term
amounts » Risk supplied capital amounts

} Transformation is at the heart of banking business
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Traditional tasks of a bank

Capital / Liquidity Risk taking Information
transformation offset

Both forms of transformation hold specific risks for the
bank which need to be quantified and controlled:

Volume
transformation

» Volume transformation < Credit Risk

Term
transformation

» Term transformation « Liquidity Risk and
Interest Rate Risk

» Currency transformation «— FX Rate Risk

» Equity Prices, Stock Exchange Rates, ...

} Transformation is at the heart of banking business
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German saving behaviour

» Germans still invest the largest part of their capital in savings- / sight- / term-
deposits and cash, as well as insurances

7.000 . . . .
Geldvermdgen privater Haushalten in Deutschland in Mrd. Euro
6.000
642 626
590
5.000 556
509
4.000 2104 2177 2.199
1939 2.030
3.000 121 118
127
140 576 572
162
485 —

2.000
1.000

0

2014 2015 2016 2017 2018 Q1
m Bargeld und Einlagen Anteile an Investmentfonds
m Schuldverschreibungen Versicherungs-, Alterssicherungs- und Standardgarantie-Systeme
Aktien und sonstige Anteilsrechte m Sonstige Forderungen

} We have savings of about 5,5 trillion EUR

Data Source: Deutsche Bundesbank, September 2018 dT"ine
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Time series in finance — non-linearity and prediction of the
future
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The yield curve

interest rates (i)

yield curve

1Y 2Y 3Y 5Y 7Y 10Y 11Y 12Y 13Y 14Y
term (t)

} Term transformation, i.e., transformation in time, is a major transformation
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Interest rates and their dynamics
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The change in interest rates follows no simple statistics
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Interest rates and their dynamics

10Y

} The change in interest rates follows no simple statistics
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Interest rates and their dynamics
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Interest rates and their dynamics
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Interest rates and their dynamics
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Interest rates and their dynamics
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Interest rates and their dynamics
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Interest rates and their dynamics
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Interest rates and their dynamics
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Interest rates and their dynamics
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Interest rates and their dynamics
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Interest rates and their dynamics
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Interest rates and their dynamics
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Interest rates and their dynamics
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Interest rates and their dynamics
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Phenomenology of financial time series

Data are heteroscedastic, i.e., there are alterations of
volatile and tranquil periods
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Phenomenology of financial time series

Data are leptocurtic, i.e., the empirical distribution is more pronounced / steeper in
the middle of the distribution as the normal distribution and it has more mass in the
tails as a normal distribution (fat tails).

dTine
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How to “explain” the curves — Different approaches
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Can we see patterns?
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How to “explain” the curves — Different approaches
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See also: Source: B. B. Mandelbrot, Bérsenturbulenzen neu erklart, Spektrum der Wissenschaft, Mai 1999, 74-77
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How to “explain” the curves — Different approaches
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The stochastic approach
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How to “explain” the curves — Different approaches

Modelling the logarithmical price change
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Interest rate models
» Basic model: X, = o, Z, with

{Z.} is IID with mean O, variance 1, e.g. N(0,1)
very simple: fixed o, more advanced: {0, } is a volatility process
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Interest rate models

» GARCH model

X =0 Z;
GARCH(p,q) process (General AutoRegressive Conditional Heteroscedastic)

2 2 2 2 2
Oy =Co+C X+ +C X, +fo ++ [0, -

Special case ARCH(1)

th — (Co + Clxtz-l)ztz
= Clztzxtz-l + CoZt2
=A X2, +B,
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Interest rate models

» Stochastic volatility models

X =0y Z
0, is a second process, independent of Z,

Model for the volatility (Taylor 1986)

logo! =a, +a,logo’, +a,e,, {3~ 1IDN(O,1)
Stochastic recurrence model

X, = Xy& +n, mit{e, .}~ 11D
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Interest rate models

» Extensions to the basic GARCH model

General formula: I = 0.¢,
Bilinear (Granger / Andersen 1978): Jtz = rt—12
ARCH(1, 1) (Engle 1982):
GARCH(1, 1) (Bollerslev 1986):

EGARCH (Nelson 1990):

2 2
O, =Cy+Cliy

2 2 2
0, =C+Cl, +C,0,

Créiq re, ‘gt—l‘ _ 2

O O, T

log(o,) =c, +¢, log(o, )+

Further: ARCH-M, AARCH, NARCH, PARCH, PNP_ARCH, STARCH, SWARCH, Component-ARCH,
IARCH, multiplicative ARCH

For weather derivatives e.g. the ARFIMA-FIGARCH approach is used
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Options in finance

Suppose we have a stock that is worth 100$ today. Tomorrow we have two scenarios: the stock
can go up to 130% with empirical probability of 60% or it can go down to 70$ with empirical
probability of 40% .

} What is the fair price of such a contract today?

dTine
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Options in finance

Suppose we have a stock that is worth 100$ today. Tomorrow we have two scenarios: the stock
can go up to 130% with empirical probability of 60% or it can go down to 70$ with empirical
probability of 40% .

Now define the following contract: The holder of the contract has the right to buy the stock
tomorrow for 100$. If the price tomorrow is 130$, the holder can buy the stock for 100$ and
immediately sell it for 130$, thus making a profit of 30$. If the price tomorrow is 70$ the holder
will not use his right to buy the stock for 100$ since he can buy it in the market for 70$.

t=0 t=1 Payoff att =1
30%

0$

0%

} What is the fair price of such a contract today?

dTine
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Options in finance

Suppose we find somebody who pays us
the expected profit of (60%*30%$) 18$ for
such a contract.

} What is the fair price of such a contract today?

dTine
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Options in finance

We could then accept the 18% and do the following: we buy ¥z of the stock today for 50$ and wait until
tomorrow. If the stock goes up we have to deliver one stock for the price of 100$, so we have to buy another
Y, for 65%. Having spent a total of 115$ and received a total of 118% we make a profit of 3$. If the stock goes
down we don’t have to deliver the stock and can sell our %z stock for 35$, adding the 18$ we got for the
contract and subtracting the 50$% we paid for the ¥z stock at t = 0 again gives us a profit of 3$.

Money spent Money received Profit

130% .

» Buy Y2 stock att=0: -50% » Initial contract: 18%

» Buy Y stock att=1: -65% » Delivery of 1 stock: 100%

» Total -115% » Total 118% 3%
100

» Buy ¥ stock att=0: -50% » Initial contract: 18%
. » Sell¥% stockatt=1: 35%
70% » Total -50$ » Total 53% 3%

} We make a profit of 3%, no matter what happens tomorrow!

dTine
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Options in finance

We could then accept the 18% and do the following: we buy ¥z of the stock today for 50$ and wait until
tomorrow. If the stock goes up we have to deliver one stock for the price of 100$, so we have to buy another
Y, for 65%. Having spent a total of 115$ and received a total of 118% we make a profit of 3$. If the stock goes
down we don’t have to deliver the stock and can sell our %z stock for 35$, adding the 18$ we got for the
contract and subtracting the 50$% we paid for the ¥z stock at t = 0 again gives us a profit of 3$.

Money spent Money received Profit

130% .

» Buy Y2 stock att=0: -50% » Initial contract: 18%

» Buy Y stock att=1: -65% » Delivery of 1 stock: 100%

Total -115% Total 118% 3%

100

» Buy ¥ stock att=0: -50% » Initial contract: 18%
. » Sell¥% stockatt=1: 35%
70% » Total -50$ » Total 53% 3%

} We make a profit of 3%, no matter what happens tomorrow!
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Options in finance

We could then accept the 18% and do the following: we buy ¥z of the stock today for 50$ and wait until
tomorrow. If the stock goes up we have to deliver one stock for the price of 100$, so we have to buy another
Y, for 65%. Having spent a total of 115$ and received a total of 118% we make a profit of 3$. If the stock goes
down we don’t have to deliver the stock and can sell our %z stock for 35$, adding the 18$ we got for the
contract and subtracting the 50$% we paid for the ¥z stock at t = 0 again gives us a profit of 3$.

Money spent Money received Profit

130% .

» Buy Y2 stock att=0: -50% » Initial contract: 18%

» Buy Y stock att=1: -65% » Delivery of 1 stock: 100%

Total -115% Total 118% 3%

100$ e

» Buy ¥ stock att=0: -50% » Initial contract: 18%
. » Sell¥% stockatt=1: 35%
70$ Total '50$ Total 53$ 3$

} We make a profit of 3%, no matter what happens tomorrow!
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Options in finance

Expected values based on empirical
probabilities do not give the fair price!

} We make a profit of 3%, no matter what happens tomorrow!
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Physical models applied to financial markets

» The application of stochastic methods to questions from the world of finance is nowadays an
established standard.

» Many well understood paradigms from physics can be applied to problems arising in a financial
context. Time will tell which of them will also have practical relevance.

» Ising models, chaos theory, fractals, etc.

} The statistical physics approach

dTine
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Physical models applied to financial markets - Hamiltonians

Stock markets and quantum dynamics: a second
quantized description

F. Bagarello

i

https://www.flickr.com/photos/bankenverband/9930916773, Jochen Zick, public domain dT"ine
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Physical models applied to financial markets - Hamiltonians

Stock markets and quantum dynamics: a second
quantized description

F. Bagarello

» Toy model of a stock market based on the following assumptions:

)

)

)

Article: F. Bagarello, J. Phys. A, 6823-6840 (2006)

Our market consists of L traders exchanging a single kind of share;

The total number of shares, N, is fixed in time;

A trader can only interact with a single other trader: i.e. the traders feel only a two-body interaction;
The traders can only buy or sell one share in any single transaction;

The price of the share changes with discrete steps, multiples of a given monetary unit;

When the tendency of the market to sell a share, i.e. the market supply, increases then the price of the
share decreases;

For our convenience the supply is expressed in term of natural numbers;
To simplify the notation, we take the monetary unit equal to 1.

dTine
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Physical models applied to financial markets - Hamiltonians

» The formal Hamiltonian of the model is the following operator:
H=H,+ H;,where

L L
Hy,= Z a, a}Lal + z B c}Lcl +ofo+p'p
=1 1=1

= : t £\ te.cN' ) + ofp + pt
H = z Py aia]-(cicj) +a;a;(cjc;) |+o'p+plo
ij=
» where P =p'p and the following commutation rules are used:
» layal] =[epcl] = 81l [p,pT] =0, 0] =1
» All other commutators are zero.
» We further assume that pi;; =0
» Number, price, cash and supply operators: ai*,p¥, ¢/, o™
» The states of the market are: w{n};{k};o;M(.) = <(P{n};{k};0;M» (p{n};{k};O;M>
» Where {n} =Nnqn, .., ng, {k} = kl,kz, v kL and
N UL K1 +\ XL o M
P om = (a1)  (ap) (c1) -(e) (") .. (")
;{0 Jnln kel kO M
» @ is the vacuum of the model: @j®o = ¢;j@o = PPo = 09 =0,forj=1,2,..,L

Do
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Physical models applied to financial markets - Hamiltonians

» The time evolution for the observables, e.g., the price

s
‘!
R o

Article: F. Bagarello, J. Phys. A, 6823-6840 (2006), Foto: https://www.flickr.com/photos/bankenverband/9930916773, Jochen Zick d{i]’le
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How to “explain” the curves — different approaches

Crossing Stocks and the Positive Grassmannian |I: The Geometry behind Stock
Market

Ovidiu Racorean

Removals of crossings in the permutation associated to stock market reside in the
decomposition of the positive Grassmannian G* (2,4) labeled by the stock market
polytope in positroid cells as is depicted in the figure 11.

Image, see

O. Racorean, Geometry and
Topology of the Stock Market,
2013

} The combinatorial approach

Pictures from O. Racorean, Geometry and Topology of the Stock Market, 2013 dT"ine
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Physical models applied to financial markets - A string model in phynance

From the currency rate quotations onto strings and brane world

scenarios
D. Horvath R. Pincak

We are currently in the process of transfer of modern physical ideas into the neighboring
field called econophysics. The physical statistical view point has proved fruitful, namely, in
the description of systems where many-body effects dominate. However, standard, accepted
by physicists, bottom-up approaches are cumbersome or outright impossible to follow the
behavior of the complex economic systems, where autonomous models encounter the intrinsic

variability.

} The “cosmological” approach

Article Physica A 391 (2012) 5172-5188 d-fine

2018-10-08 | From Physics to Finance | Time series in finance — non-linearity and prediction of the future (41/48) © d-fine — All rights reserved | 51



Physical models applied to financial markets — Selected books

R. Mantegna, H. Stanley

Correlations and Complexity in
Finance

Cambridge University Press

B. Mandelbrot
Fractals and Scaling in Finance

Discontinuity, Concentration,
Risk

Springer

L. Wille

New Directions in Statistical
Physics

Econophysics, Bioinformatics,
and Pattern Recognition

Springer

O. Racorean

Geometry and Topology of the
Stock Market

Quantum Computer generation
of quants

CreateSpace

M. Small
Applied Nonlinear Time Series

Applications in Physics,
Physiology and Finance

World Scientific Series on

Nonlinear Science, Series A Vol.

52

H. Kleinert

Path Integrals in Quantum
Mechanics, Statistics, Polymer
Physics, and Financial Markets

World Scientific

F. Abergel, B. Chakrabarti, A.
Chakraborti, A.Ghosh (Ed)

Econophysics of Systemic Risk
and Network Dynamice

Systemic Risk and Network
Dynamics

Springer

B. Baaquie
Quantum Finance

Path Integrals and Hamiltonians
for Options and Interest rates

Cambridge
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Known models in different domains of science

Chapman, Hall
Computational Neuroscience
A Comprehensive Approach

CRC Mathematical Biology and
Mediscience Series
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Mathematical/physical models in finance — The “patient” financial markets

Parallels between Earthquakes, Financial crashes and epileptic seizures
Didier Sornette
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Didier Sornette
offset = 1.0mv ——
! : Reviews on Cognitive
AL ‘ M4 : Architectures, Vol. 86, Number
“3 i 11 HENA K 1, Oct. 2015

1 ; Chapman, Hall

Computational Neuroscience

A Comprehensive Approach

CRC Mathematical Biology and
Mediscience Series

......................................

See also:

|. Osorio, H. Zaveri, M. Frei,
S.Arthurs (Ed.)

Epilepsy

The Intersection of
Neurosciences, Biology,
______________________________________ Mathematics, Enginieering, and

13: : Physics

CRC Press

......................................

} Our models “fit” in different areas of research — mathematical structures can by analysed by analogies
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The “patient” financial markets

A Mame = 11
A 10 mm/mV 25 mm/® Filter 75 Hz SHzF
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} Our models “fit” in various fields of science

https://pixabay.com/de/mann-junge-m%C3%A4nnlich-schwarz-296526/
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The “patient” financial markets

g

Our models “fit” in various fields of science

https://pixabay.com/de/mann-junge-m%C3%A4nnlich-schwarz-296526/
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The “patient” financial markets
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} Our models “fit” in various fields of science — exploring mathematical structures via analogy

https://pixabay.com/de/mann-junge-m%C3%A4nnlich-schwarz-296526/ dT"ine
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Physical models applied to financial markets — Implementation

http://www.er.ethz.ch/financial-crisis-observatory.html

ETH:zurich

Department of Management, Technology and Economics

Chair of Entrepreneurial Risks

News About us Research

Description

Highlights

Bubble Risk Maps

Is there an oil bubble?
Pertinent articles
Websites and Blogs
Market Anxiety Measure

The Financial Crisis: How Much
Longer and Deeper?

udent porta

Alumni association

Education Media Real Estate Financial Crisis
Observatory Observatory

Financial Crisis Observatory

The Financial Crisis Observatory (FCO) is a scientific platform
aimed at testing and quantifying rigorously, in a systematic way
and on a large scale the hypothesis that financial markets exhibit
a degree of inefficiency and a potential for predictability, espe-
cially during regimes when bubbles develop.

2018

1st November 2018: Synthesis report (PDF, 2.8 MB) +

1st October 2018: Synthesis report (PDF, 3.9 MB) +

1st September 2018: Synthesis report (PDF, 3.4 MB) +

1st August 2018: Synthesis report (PDF, 5.4 MB)

Keyword or person

Departments

) BEntrepreneurial

e 7 Risks

dTine
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The mechanics of the balance sheet — an engineers approach

dTine
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Continuous improvements to the business model require flexible analyses
based on economic scenarios

1 :
Business model

o
8]

» Starting point is the business model of
the bank

» The scenario modelling is done working
closely to the annual report

S Reports / Analysis to support
decision making

Mio. EUR

Bilanzsumme 25.000
Zinsiberschuss 350
Provisionstiberschuss 100
Gesamtertrag 500
Gesamtaufwand 300

» Flexible evaluation and analysis

» What-If balance sheet and P&L impact
analysis

» Balance sheet and P&L: Derivation by
following the economical relevant
planning inputs

2 : :
Strategies and scenarios

» Consolidated scheme to organize all
macro economical influences

» Intuitive scenario definition by the
combined signal

3 .
Model parametrisation

» Parametrisation is done on basis of
economical relevant planning inputs

» Diverse set of integrated tools for time
series and regression analysis to
determine the parameters

dTine
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Modelling as a challenge: Mechanically modelling the product as ,hinge”
Report structure / segmentation Business elements External drivers
(mechanical level) T
Customer Margin Alternative Products
Commissions Competitors
Price Elasticity
Sales Partner
Asset Prices
" Price Elasticity
.' Competitors
. _ Campaigns
"
.~ -° GDP Growth Rate
+ breakdown by segment etc. Unemployment Rate
.
Mechanical level
» Breaking down internal mechanisms into determining factors that
can be connected to the external world

» Constructing the model on this level is a key element for Bl skills —
explanation (storyline) and scenario simulation
2018-10-08 | From Physics to Finance | The mechanics of the balance sheet — an engineers approach (2/13)
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Integrated modelling:
From a macro-economic scenario to the dynamics of the balance sheet

Consolidated P&L Macro-economic scenario

» GDP development of different

Derivation of regions (US, Europe, ...)

internal
value drivers

Net interest income

» Stock indices (Dow Jones, ...)

Commissions and fees » Government bond yields

Product
mechanics

» Interest reference rates

» Rate of unemployment

OPEX
» ..
AKPI(t, At) OKPI” oIT” AEF (t, At)
t. At) = . . t, At
’ oIT? OEF ’
EF P TP External factors EF:

Modelling result KPI: The external factors are extracted
The modelling is based on from the macro-economic
the definition of the macro- Product mechanics: scenario.
economic scenario. Resulting quantities are Derivation of internal drivers:

derived by means of The model for coupling the internal value drivers

internal value drivers. IT? of a product P to the scenario is defined via

the external factors EF.

dTine
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Delta analysis: How to identify crucial parameters

AKPI(¢, At)
OKPIP QITP
- AEF (¢, At)

X ;ZE 9ITP OEF
Lo

Exemplary delta analysis:

o
vz
°
[]
|
! S T
/
|
'I Product Internal External
! mechanics value factors
.~ Reference drivers
Scenario

Time

The model provides the sensitivity of the results w.r.t. modifications of the different external factors;

»
nonlinear effects, cut-offs etc. may be taken into account
» On this basis, the delta analysis allows for a corresponding decomposition of results into different
contributing factors:
> The influence of different external factors may be analysed separately
diine

Specific effects (e.g. separate sales activities) have to be considered in addition

The modelling framework may be enhanced step by step by considering further external factors or
© d-fine — All rights reserved | 63
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»
improved by taking additional value drivers into account
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A simple dynamical analogue to model consumer credits in a bank

see: Bestandsdynamik im
Konsumentenkreditgeschaft, Hagen
Linderstadt, Die Bank 6/97, 350 - 352

dTine
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Translation of external value drivers to internal value drivers

File Edit View Display Diagram Simulation Analysis Code Tools Help
B) Werttreiber

® Combinedjnpthgnal InBus
for the simulation
i ABC Europe - ’ ~ fIBC Immobilia “

ABC

Insurance for YOU

{1 [ O)

1]

7]

ARConsulting «“

ABC
Banking Group

AEC

Project Finance

ABC

Consumer Credits

ABC
Easy Private Banking

ABC ARC |
Building-Society Contracts 2R RRR

T ) U B ) 5 () 5

< Wertt =

o in i for

s -i. I— AComb| eds gngl 0
OutBus internal value drivers

ABC |
The Friendly Bank
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Scenario definition Germany

File Edit View Display Diagram Simulation Analysis Code Tools Help

} d) Deutschland X ¢) ABC Bank X c) ABC Bank X c) ABC Bank X

@
mBIP
Q 265e+11
& P
2.60e+11
=4
/
=] 255e+11 —
1 2 3 4
¥
M Inflationsrate
001
& -
0 P S
1 2 3 4 5
M Arbeitslosenquote
65 T
e
\\
60 N
1 2 3 4 5
W Konsumklima
10.0
a
95 — ~
— -
1 2 3 4 5
B Konsumentenkredite
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8.0e+0 e
e o
(7] e
7.0e%9
-H
1 2 3 4 5
»

GDP

Inflation

<BIP>

Unemployment

<Inflationsrate>

Consumer

confidence
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Consumer

loans

<Konsumklima>

<Konsumentenkredite>

A 4

DEU

»( DEU )

Combined signal
Germany
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Determination of internal value drivers for a mortgage bank

File Edit View Display

Diagram Simulation Analysis Code Tools Help

B UE® e
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Calculation based on simple dynamics

File Edit View Display Diagram Simulation Analysis Code Tools Help

B UE® e

B

Volume of consumerloans in
Germany

Modelling of the dynamics

InBus @1

Simple state space model:

d =A-x+b
=4 u
y=C-x+D-u

Model parameters for A include:

»

»

»

»

»

Ar- - Run-off

Ad- - Default quota
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Ai+ > New business

006

004

002

'Portfolio Dynamics
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Ar-
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Ap-
Af+ '
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300048
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Determination of parameters based on build in regression methods
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Every model parameter can be easily adjusted

File Edit View Display Diagram Simulation Analysis Code Tools Help
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Simulink / MATLAB in a banking context

System dynamics Control engineering Signal theory

N } 7

Engineering in banking
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Simulink / MATLAB in a banking context

J.W. Forrester

World Dynamics

Wright Allen Press
1971

D.H Meadows, D.L.
Meadows, J.
Randers, W.
Behrens Il

The limits of growth

Potomac
Asscosiates —
University Books

1972

D.H Meadows, D.L.
Meadows, E. Zahn,
P. Milling

Die Grenzen des
Wachstums

Bericht des Club of
Rome zur Lage der
Menschheit

dva informativ
1972

D.H Meadows, D.L.
Meadows, J.
Randers

The limits of growth
- The 30 year update

Chealsea Green
Publishing

2013
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|s the financial complexity manageable?
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High frequency trading

» HFT incorporates proprietary
trading strategies carried out
by computers

» Electronic exchanges were
first authorized by the U.S.
Securities and Exchange
Commission in 1998

Image from Handelsblatt 2012

» Execution times have fallen
from several seconds in the
year 2000 to milliseconds on
modern systems
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Volume of high frequency trading

Number of transactions in

» Portion of HFT in U.S. equity trades DAX titles
has increased from less than 10 % in »
2000 to over 70% in 2010
» About 40% of Xetra transactions are 41 billion
carried out by HFT systems v
1 billion
1993 2011

Data Source: Handelsblatt 2012

Portion of U.S.
trading firms
engaging in HFT

Portion of equity
order volume these
firms account for
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Role of high frequency trading in the crisis

» In 2010 the Dow Jones Index
experienced its largest one-
day point decline in history
>  “Flash Crash”

» The U.S. Securities and Image from Handelsblatt 2012
Exchange Commission and
the Commodity Futures
Trading Commission
concluded in a joint
investigation that the actions of
HFT firms largely contributed
to volatility during the crash.
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Role of high frequency trading in the crisis

» In 2010 the Dow Jones Index S. Patterson
experienced its largest one- Dark Pools
day point decline in history Crown Business
= “Flash Crash”

» The U.S. Securities and
Exchange Commission and
the Commodity Futures
Trading Commission
concluded in a joint
investigation that the actions of
HFT firms largely contributed
to volatility during the crash.

M. Lewis
Flash Boys
Norton & Company
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Network topologies of interbank payments

CHAPS: Clearing House Automated Payment
System

CHAPS offers same-day sterling fund transfers
Many flows are routed through settlement banks

See: Becher, Millard, and Soramaki,
The network topology of CHAPS
Sterling, Bank of England, Working
Paper 355
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Network topologies of interbank payments

CHAPS: Clearing House Automated Payment
System

CHAPS offers same-day sterling fund transfers
Many flows are routed through settlement banks

Image
» The settlement banks form a
complete network

» 4 settlement banks account for
almost 80% of the payments,
measured by value or volume!

Source: Becher, Millard, and Soramé&ki, The network topology of CHAPS Sterling, Bank of England, Working Paper 355 dT"ine
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Network topologies of interbank payments

CHAPS: Clearing House Automated Payment
System

CHAPS offers same-day sterling fund transfers
Many flows are routed through settlement banks

Becher, Millard, and Soraméki,

The network topology of
CHAPS Sterling,

» The settlement banks form a
Complete network Bank of England, Working

Paper 355
» 4 settlement banks account for
almost 80% of the payments,
measured by value or volume!

Source: Becher, Millard, and Soramé&ki, The network topology of CHAPS Sterling, Bank of England, Working Paper 355 dT"ine
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Economics and banking — a complex network of dependencies

Tr

Income

Government

Firms

Insurance companies

\

C .

e

Capital Ma\rket

Capital

Households

Commitme
nts to
policy

Assets holders

u Debt

} Insurance companies form a vital part of the macroeconomic flow chart
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Collecting and processing information

} Digital economy is founded on data

Photo source: en.wikipedia.org / de.wikipedia.org, free to use d -
rime
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Combating the crisis: When does financial instability become so widespread
that it impairs the functioning of a financial system?

» Need a robust measure for systemic financial stress, here: CISS = Composite Indicator of Systemic Stress

» CISS includes 15 individual stress indicators in five segments:

Money market Bond market Equity market Financial intermediaries FX market
3M Euribor realised vola. German 10Y Bond realised vola. CIOFI:. stock market index realised SR;}(;atI(i)srei)gd\éc;Ia. equity return of bank FX rate EUR - USD realised vola.
Iflgel\rﬂels;tréacthe_rs_griﬁsad: 3M Euribor \élc;erlltél-ss(p?r%ald: A-rated NFC vs. gov. g:ssersgi;g:;ry \(/:vLiJr:ZL(J)IV?/ted index :gfég-ﬁgrc(a%c(l): A-rated NFC vs. A- EX rate EUR - GBP realised vola.
MFI emergency lending 10Y interest rate spread Stock-bond correlation Efmeﬂzg drrgzr(lfke_ tprrri]:é(ig:ij(r)n(ZY-win d) FX rate EUR - JPY reailsed vola.

» On basis of the raw stress indicators x;, transformed stress indicators z; are calculated with the following
empirical CDF:

> (X[1], X[2), --» X)) denotes the ordered sample with x[;) < x[3) < ... < X[

.
— forxpg < xp <x , Te{l2,..,.n—1 i
y Zp = {n [r] = Fe ™ Hr+1] { } for values running from Jan. 1999 — Jan. 2002

1 forx; > X

n+T

T
— forx;q < x <x , re{l,2,.,.n—1,.,n+T—-1 . .
Y Zpar = { [r] = T4t = Fre) { } to update CISS with near real time data

1 for Xn+T > X[n+T]
» In every segment, the stress factors are aggregated by the arithmetic average, denoted s;,,i € {1, ..., 5}.

» The CISS for time t (CISS;) is computed with methods from portfolio theory:
» CISSy =X (W-s); Cij (wW-sp)j, with weights w = (0.15,0.15,0.25,0.3,0.15), and (w - s); the component wise multiplication

1fori=j Oije

i L=t
pij: else with pyje o

_ ~ o~ 2 _ 4 2 ~2 o~ _ .
o Oijt = A 031+ (A=) 5 Sjp, 0fy =A0f + (A=A 5", 8 =5 —051~093

>~ And the cor.-matrix C;; ; = {

» CISS puts relatively more weight on situations where stress prevails in several market segments.

Source: European Systemic Risk Board (ESRB) Risk Dashboard, Hollo, D., Kremer, M. and Lo Duca, M., “CISS - A composite indicator of systemic stress in the financial system”, Working Paper Series, No 1426, ECB, di
March 2012, MFI: Monetary Financial Institution, NFS: Non-Financial sector, (N)FC: (Non-)Financial corporation 'ne
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Combating the crisis: Is the financial and European debt crisis over?

» CISS = Composite Indicator of Systemic Stress

Image, see:

https://lwww.hvst.com/posts/ecb-ciss-index-there-is-no-trend-in-stress-be-happy-ogMTgn4x

Source: European Systemic Risk Board (ESRB) Risk Dashboard, Hollo, D., Kremer, M. and Lo Duca, M., “CISS - A composite indicator of systemic stress in the financial system”, Working Paper Series, No 1426, ECB, dT"ine
March 2012
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Has physics caused the crisis?

» Risk management depends heavily on
sophisticated models

» Developed models were too complex to be
understood intuitively

» Computer experts construct “financial
hydrogen bombs” as already suspected by
Felix Rohatyn in 1998
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Physical models applied to financial markets

The main problem is: Our models have in fact become extremely complex but
are still too simple to be able to incorporate the whole spectrum of variables

that drive the global economy. A model is necessarily an abstraction without
all details of the real world.
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The four “business dimensions”

Business Acumen

Global bank

management Liquidity risk

Greed Fear

Modelling Interest rate risk

Risk
duty of due care

Image source> https://pixabay.com/de/kompass-richtung-navigation-reisen-1299559/ dT"ine
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Has physics caused the crisis?

» Risk management depends heavily on
sophisticated models

» Developed models were too complex to be
understood intuitively

» Computer experts construct “financial
hydrogen bombs” as already suspected by
Felix Rohatyn in 1998

Physics has not caused the crisis

I[gnoramus et ignorabimus
versus

We have to know. We will know.

D. Hilbert

Everything which is not forbidden
IS compulsory.
M. Gell-Mann
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