dfine

Data Science @ d-fine:
 Machine Learning, Text Analytics and Networks

XXXIX Heidelberg Physics Graduate Days

Ferdinand Graf

" Manager (since 2011-11 working for d-fine)
" PhD in finance, diploma in mathematical finance (both @UNKN), and GARP financial risk manager
" Expert in rating model development and data-science
" Establishing 'text analytics' in d-fine's project portfolio

Ulf Menzler

" Senior Consultant (since 2015-05 working for d-fine)
" PhD in theoretical astrophysics @ Ruhr-University Bochum
" Project experience in Credit Risk and Machine Learning
" Currently part-time student in mathematical finance at Oxford University

Agenda

" Initial setup 3
» The toolbox 7
, Data science in a nutshell 8
, Machine learning in a nutshell 16
, 15 minutes break 38
) Text analytics in a nutshell 39
, Network analysis in a nutshell 52
" Business cases 57
, Business news in credit risk management 58
, Single rulebook in banking 69
» Concluding remark 74

Initial setup

Digitalization becomes more important for financial corporations

d íine

The progressing digitalization in the financial industry increased the demand for data-driven solutions

Customer management

" Acquisition of new customers
, Improvement of customer satisfaction and loyalty
" Segmentation of customers e.g. for personalized advertising
" Strategy development for cross- and upselling

Process optimization

Process analysis and -optimization via prioritization and scoring
" Visualization and support of processes with user friendly dashboards
" Agile project management via Kanban and Scrum
" Development of data driven digital operation methods and communication strategies

Product management

" Optimization of the product portfolio
" Product engineering
" Derivation of sophisticated product recommendation and marketing strategies
" Dynamic and customer specific pricing
" Management and analysis of product reviews
" Prediction of demand and supply

Network analysis

" Identification and analysis of relationships between corporations (e.g. supplier / customer, creditor / debtor, etc.)
" Analysis of competitors and peergroup benchmarking
" Derivation and analysis of customer network based on social media

Risk/Asset management

" Analysis, modelling and management of all kinds of (financial) risks
" Sentiment analysis und topic clustering of news or other documents
" Fraud identification
" Scenario-simulations and impact analyses
" Automated and high-frequency trading
Infrastructure
" Analysis and optimization of the (IT-)
infrastructure w.r.t Data-Science
aspects

\quad| Competitive data collection and |
| :--- |
| management |

$>\quad$ Efficient information retrieval
Fast prototyping according to "fail fast,
fail cheap" and "learn and adjust"

Data becomes more and more important in the everyday life.

The structure of data depends on its recording and determines adequate methods for the data-analysis

The toolbox

Data science in a nutshell

Data science combines methods, techniques and knowhow from other (scientific) areas to gain insights from data

Data Science

Mathematics

Methods, processes and systems to extract knowledge or insights from data in various forms to create data products and data centric applications.

Data Mining / KDD

Explorative data analysis to create descriptive and predictive power.

Operations Research*

Application of advanced analytical methods to help make better decisions to arrives at optimal or near-optimal solutions to complex decision-making problems.

Business Intelligence

Strategies, processes, applications, data, technologies and technical architectures which are used by enterprises to support the collection, data analysis, presentation and dissemination of business information.

Collection, analysis, interpretation, presentation, and organization of data. Support or rejection of hypothesis derived from theoretical models based on data.

Computer Science

The study of the theory, engineering, and experimentation that form the basis for design and use of computers.

AI / Machine Learning
Machine mimics "cognitive" functions and solves tasks by 'drawing conclusions' from observed examples.
The study of topics such as quantity (numbers), structure, space, and change; and search for patterns and derivation of new conjectures.

Statistics

Data science may be described by three collectively exhaustive thematic blocks, where our focus lies on the understanding of data

1 Construct	Understand	3 Adopt
" Conception of (non-)relational databases models for , structured data , unstructured data (e.g. text, pictures, audio- or video files) " Implementation " Data collecting , Online-Crawler , interface to data provider , manual classification (questionnaires etc.) , Metadata (e.g. IP-addresses)	Derivation of data-driven decision rules Phase I: Acquire the necessary data or information. Phase II: Analyse and manipulate the data to gain actionable and impactful insights. This phase is closely related to machine learning. and may be further divided into: , Describe , Discover , Predict , Advise Phase III: Evaluate your insights and refine, evaluate again, select a different methods, techniques or data in phase I and II, until your quality standards are met. Phase IV: Inspire actions according to your insights.	" Converting insights into action " Defining or adjusting processes or strategies " Support processes with user-friendly and interactive visualizations , Dynamic dashboards to support manual processes , Graphical user interfaces " Comprehensive reports to control processes

Data science, especially the task 'analyse', operates many techniques, that will be discussed next.

The first step in the data analysis focuses on data preparation, which already can give important insights on data organization and management

The second stage focuses on understanding interactions between observations and formulating first hypotheses

In the third stage the focus shifts from historical observations to the dependencies between future outcomes on todays decisions

* Not exhaustive

Given an understanding of the data and the drivers of past and future outcome, measures should be defined and analysed

For more on data science (e.g. data architecture, tools and libraries, visualization) see

Data Science

Big Data Analytics
Discovering Analyzin
and Presenting Data
EMC Education Servioes

WILEY

Machine learning in a nutshell

Statistical methods in data science are closely related to machine learning, which is not a new hype
" Machine learning is not new. Early inventions were driven by the military.
» The Internet age: IBM, Google, Amazon and Facebook are leading to a renaissance of machine learning.

d fíne

ML is no longer limited to artificial-intelligence researchers and born-digital companies like Amazon, Google, and Facebook

Machine learning includes a large variety of methods and becomes valuable when problems and/or solutions are highly complex

díne

A basic statistical model: Logistic regression

A classification problem in finance is the estimation of the default probability of a debtor

" Objective: For e.g. the calculation of the regulatory capital requirements, bank have models to estimate the default probability of a single debtor. However this probability is not observable, an individual debtor can only be "alive" or "default". Thus linear regression fails in this scenario.
" Target variable: The binary default variable $y(y=1:$ default, $y=0:$ no default $)$
" Training set: Historic creditor data e.g.:

Name	Age	Income	Default
A	32	$46.000 €$	0
B	26	$31.000 €$	1
C	54	$60.000 €$	0

" Predictor ansatz:
$p(y=1 \mid \boldsymbol{x})=f_{L}\left(b_{0}+b_{1} x_{1}+\cdots\right)=f_{L}(\boldsymbol{b} \boldsymbol{x})$,
where $f_{L}(s)=\frac{1}{1+\exp (-s)}$.
This ansatz ensures that the probability is confined in the interval $[0,1]$.
" Estimation method: Maximum Likelihood

Estimation (MLE) and gradient ascent.

> A linear model can not predict a probability confined to the interval 0 to 1 . Using a sigmoid "transfer" function the regression method can be adapted to meet this requirement.

Maximum likelihood estimation (1/2)

The general setup

" Assuming we have n independent observations $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ with an identical underlying distribution dependent describes by the parameter vector \boldsymbol{b}.
" Then, the joined density function of all observations is the product of the individual density functions, i.e.

$$
f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} ; \boldsymbol{b}\right)=\prod_{i=1}^{n} f_{X_{i}}\left(\boldsymbol{x}_{i} ; \boldsymbol{b}\right) \stackrel{\text { def }}{=} L\left(\boldsymbol{b} ; \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)
$$

" Since the n observations are given, the joint density function may be seen solely as a function of b. This is called the likelihood function $L\left(\boldsymbol{b} ; \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$.
" The parameter vector \widehat{b} that maximizes the likelihood function implies the best fit of the underlying distribution w.r.t to the observations.
" However, it is often useful to maximize the logarithmic likelihood $l(\boldsymbol{b})=\log L\left(\boldsymbol{b} ; \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$
" To illustrate that let us at first assume that feature and target variables are connected by

$$
y_{i}=\boldsymbol{b} \boldsymbol{x}_{i}+\varepsilon_{i}
$$

where ε is a random noise distributed according to a Gaussian distribution $f_{\varepsilon}(z)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(z)^{2}}{2 \sigma^{2}}\right)$ which implies $f_{X_{i}}\left(\boldsymbol{x}_{i} ; \boldsymbol{b}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{i}-\boldsymbol{b} x_{i}\right)^{2}}{2 \sigma^{2}}\right)$.

The maximum likelihood estimation assumes an inherent density function of the observed parameters.

Maximum likelihood estimation (2/2)

Maximization of the likelihood leads to the "gradient ascent/descent rule"

" The likelihood function is hence given by:

$$
l(\boldsymbol{b})=\log \prod_{i=1}^{n} \frac{\exp \left(-\frac{\left(y_{i}-\boldsymbol{b} \boldsymbol{x}_{i}\right)^{2}}{2 \sigma^{2}}\right)}{\sqrt{2 \pi \sigma^{2}}}=\sum_{i=1}^{n} \log \frac{\exp \left(-\frac{\left(y_{i}-\boldsymbol{b} \boldsymbol{x}_{i}\right)^{2}}{2 \sigma^{2}}\right)}{\sqrt{2 \pi \sigma^{2}}}=n \log \frac{1}{\sqrt{2 \pi \sigma^{2}}}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{b} \boldsymbol{x}_{i}\right)^{2}
$$

" $l(\boldsymbol{b})$ is maximized if $\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{b} \boldsymbol{x}_{i}\right)^{2}$ is minimizes, implying the least mean squares estimator for \boldsymbol{b}.
" Coming back to our logistic regression problem, knowing that

$$
P(Y=1 \mid \boldsymbol{x})=f_{L}(\boldsymbol{b} \boldsymbol{x}) \text { and } P(Y=0 \mid \boldsymbol{x})=1-f_{L}(\boldsymbol{b} \boldsymbol{x})
$$

we can construct an individual density function as

$$
P(Y=y \mid \boldsymbol{x})=\left(f_{L}(\boldsymbol{b} \boldsymbol{x})\right)^{y}\left(1-f_{L}(\boldsymbol{b} \boldsymbol{x})\right)^{1-y}
$$

" Then, the log likelihood is:

$$
l(\boldsymbol{b})=\log L(\boldsymbol{b})=\sum_{i=1}^{n} y_{i} \log f_{L}\left(\boldsymbol{b} \boldsymbol{x}_{i}\right)+\left(1-y_{i}\right) \log \left(1-f_{L}\left(\boldsymbol{b} \boldsymbol{x}_{i}\right)\right) .
$$

" To maximize the log likelihood we now use the gradient ascent rule

$$
b_{j}:=b_{j}+\alpha \frac{\partial}{\partial b_{j}} l(\boldsymbol{b})
$$

" Using the differentiation rule of the logistic function $f_{L}{ }^{\prime}(s)=f_{L}(s)\left(1-f_{L}(s)\right)$ the contained derivative can be evaluated as $\frac{\partial}{\partial b_{j}} l(\boldsymbol{b})=\left(y-f_{L}(\boldsymbol{b} \boldsymbol{x})\right) x_{j}$

The perceptron as a logical building block

From logistic regression to logical operations

» We end again with a stochastic gradient ascent rule

$$
b_{j}:=b_{j}+\alpha\left(y-f_{L}(\boldsymbol{b} \boldsymbol{x})\right) x_{j}
$$

where $f_{L}(s)$ is a non-linear function.
" Changing the logistic function $f_{L}(s)$ in to a step function $H(s)$, i.e.

$$
H(s)=\left\{\begin{array}{l}
1, s \geq 0 \\
0, s<0
\end{array}\right.
$$

brings us to the so-called perceptron and the perceptron learning rule, i.e.

$$
b_{j}:=b_{j}+\alpha(y-H(\boldsymbol{b x})) x_{j} .
$$

" Historically it was thought that a perceptron resembles the way a human neuron works, as it transfers a signal (feature variable) to a non-zero output ($y=1$) only when it overcomes a certain threshold.
" A single perceptron connected to two input variables can realize the logic OR-function.
" In Machine Learning we are not so much concerned about the inherent statistical distributions as in statistics

Interchanging the transfer function of logistic regression with a step-function lets us view regression as
"a concept for logical decision making" based on the input parameters.

(Deep) neural networks

" Neural networks can be understood as a mathematical model of neurons in a brain ${ }^{1}$. Of course, this model is too simplistic to account for the processes in a real brain.

" Neurons "fire" electrical impulses along so-called axons to other neurons, thereby producing a dense and complicated web of interacting units.
" In the mathematical model of a neuron the signal x from another neuron undergoes first an affine transformation (the parameters of those are called weights), which is the input to a non-linear function called an activation function.
" By building a network of such mathematical neurons one obtains a so-called neural network.

General overview of neural networks

" Typical ${ }^{1}$ neural networks models come with various so-called layers.
" There are various activation functions used in the literature and in practice.

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z)= \begin{cases}0, & z<0, \\ 0.5 & z=0, \\ 1, & z>0,\end{cases}$	Perceptron variant	$\stackrel{\square}{\square}$
Sign (Signum)	$\phi(z)= \begin{cases}-1, & z<0, \\ 0, & z=0, \\ 1, & z>0,\end{cases}$	Perceptron variant	
Linear	$\phi(z)=z$	Adaline, linear regression	
Piece-wise linear	$\phi(z)= \begin{cases}1, & z \geq \frac{1}{2}, \\ z+\frac{1}{2}, & -\frac{1}{2}<z<\frac{1}{2}, \\ 0, & z \leq-\frac{1}{2},\end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z)=\frac{1}{1+e^{-2}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}$	Multi-layer NN	

Nowadays neural networks are build with 100s of layers leading to a high capacity ${ }^{2}$.

There are several deep neural architectures for (un-) supervised learning tasks

Mainly used for static data such as images

Convolutional (CNN)

" The static length input features are "convoluted"
" Each layer learns a more abstract representation of the data
" Equivalent to renormalization group flow in physics

Boltzmann machines (and variants)

Mainly used for static data
" The neural net consists of a visible and hidden part
" The hidden part can learn arbitrary complex representations of the inputs
" Comparable to HMMs

Image credit: http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

Recurrent (RNN)

Image credit: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
Mainly used for hierarchical and tree-like
data such as language
" The "input features" are sequential and of different length
" The neural net is recurring
Mainly used for sequential data such as language and time series

" The neural net is recurring long term dependencies (c.f. LSTM, GRUs)

Image credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Deep learning networks

" Artificial neurons can have an arbitrary transfer function $\varphi\left(\boldsymbol{\omega}_{i j} \boldsymbol{x}_{\boldsymbol{j}}\right)$ and unlimited inputs.
" A layered network of connected neurons is a powerful tool to predict complex non-linear dependencies in data.
But how can a neural network be trained?
» One-layer network training: perceptron learning rule

" A training method for multi-layer networks is backpropagation:

1. Propagation of input features to output variables o
2. Estimation of the mean square error $E=\frac{1}{2}(t-o)^{2}$, where t is the training target variable
3. Back-propagation of the error through the network with weight adjustment corresponding to gradient descent
In detail: The weight $\omega_{i j}$ between the i-th and j-th neuron has to be updated via: $\omega_{i j}:=\omega_{i j}-\alpha \frac{\partial E}{\partial \omega_{i j}}=\omega_{i j}+\alpha \delta_{j} o_{i}$, where

$$
\delta_{j}=\left\{\begin{array}{c}
\varphi^{\prime}\left(\boldsymbol{\omega}_{i j} \boldsymbol{x}_{j}\right)\left(t_{j}-o_{j}\right), \text { if } j \text { is output neuron } \\
\varphi^{\prime}\left(\boldsymbol{\omega}_{i j} \boldsymbol{x}_{j}\right) \sum_{k} \delta_{k} \omega_{j k}, \text { if } j \text { is hidden/input neuron }
\end{array}\right.
$$

How can neural networks be trained?

" A neural network is parametrized by its topology, its activation functions and its weights.
" In a real world application one chooses a topology and types of activation functions.
» The weights w are then derived from training data by optimizing an objective function $J(w)$.
" Example: Supervised learning task:
Given a set of N observations x_{i} with labels y_{i} the weights \bar{w} are fixed by:

$$
\bar{w}=\operatorname{argmin}_{w} \sum_{i} J\left(w, x_{i}, y_{i}\right)=\operatorname{argmin}_{w} \sum_{i} J\left(N N\left(w, x_{i}\right) ; y_{i}\right)
$$

where $N N$ denotes the output of the Neural Network (or almost any other ML algorithm).
" Therefore the learning problem is mapped to an optimization problem of an in general non-convex objective function.
" The optimization problem for neural networks is in almost all cases tried to be solved by the 17th century technique of gradient descent with some modern twists ${ }^{1}$.

Bias-variance trade-off

" Fitting with high order polynomials $b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{5} x^{5}$ leads to a lower total error compared to simple linear model.
" The bias is error from erroneous assumptions in the learning algorithm. High bias can cause an algorithm to miss the relevant relations between features and target outputs \rightarrow underfitting.
" The variance is error from sensitivity to small fluctuations in the training set. High variance can cause overfitting: modelling the random noise in the training data, rather than the intended outputs.
" With more and more complex models and more parameters we tend to over-fit the Noise and mask the true signal.
" Model selection: We want to choose the best trade between bias and variance.

Model selection - basics

Goal: Pick the "best" Model

" First Idea: Find the Model with smallest training error
" Does not work: Will always prefer high variance models with maximum parameter number
" New Idea: simple cross validation
» Split the data into a training set with ca. 70% of the data and a validation set with 30% of data.
" Fit models to training set and measure error on validation set.
" Problem: We loose 30\% of our data.
" Problem 2: Depending on the Split our MSE can differ in level.

4 Our Example

Image credit: An introduction to Statistical Learning. Springer.
For our polynomial problem we plot the validation MSE.
" In accordance with our intuition we see that 2 seems to be a good choice with not much more to gain with higher orders.

Separating the whole data set into training and validation set is a useful concept to quantify the model error on "unseen" data.

Model selection - k-fold cross validation

Goal: Pick the "best" Model

How can we recycle more of our data?

1. Split the data into k-subsets
2. Fit the models using $k-1$ subsets and measure the MSE on the remaining subset
3. Average the results over all possible choices for the k -1 subsets

All data

4 71 Our Example

Image credit: An introduction to Statistical Learning. Springer.
" We typically See a U-shape
" Shown here: Three curves for different problems (The black line is the problem we presented before)

Methods such as k-fold cross validation can effectively reduce the generalization error and recycle as much of the data as possible.

Deep neural networks in their naïve form have various problems

" Vanishing gradient problem ${ }^{1}$
, Neural networks are usually trained by various incarnations of gradient descent, e.g.

$$
w_{i+1}=w_{i}-\left.\gamma \cdot \frac{\partial J(w)}{\partial w}\right|_{w_{i}}
$$

) By the chain rule this leads to products of derivatives of activation functions
, As most activation functions take values in $[-1,1]$ these products become very small for deep networks
" Overfitting
, Deep neural networks typically have millions of free parameters
) Without care this can typically lead to the overfitting phenomenon
" Slow training

, To optimize a non-convex function with millions of terms and millions of variables is computationally very expensive
, Without special hardware the training of deep neural nets is not feasible
" Lots of (labelled) data is needed for training
, Without expert knowledge, which could either be built into the topology of the net or into constraints on the weights and/or the objective function, lots of labelled data is needed to bring deep neural nets into a regime of good behaviour with respect to generalization

Why should neural networks be deep after all? (1/2)

Example: natural language

" Studying the empirical mutual information (kind of a two-point function) between symbols in natural written language unveils a power-law behaviour!
" These long range interactions can even theoretically not be modelled by simple shallow models like Hidden Markov Models (HMMs).

Why should neural networks be deep after all? (2/2)

Example: natural language

" Hallucinating Wikipedia entries with a deep recurrent neural architecture captures the long range interactions present in natural language.
" This is not an accident, as it was argued that Deep Neural architectures are related to a wellknown set of ideas in physics, namely the Renormalization Group (RG).
" This would explain two empirically observed properties of Deep Neural Networks:

, These types of models are able to extract high level features from microscopic data (e.g. raw pixels to categories of objects) as they flow to fixed points under the RG-flow (universality).
, The "two-point functions" of Deep Neural Networks in general exhibit a power law decay near their critical points.
" Nonetheless can deep models sometimes be approximated by simpler shallow models!

Deep Learning can be mapped onto the Renormalization Group known from physics.

What rescues deep learning?

" Deep neural nets are hard to train due to what is known the "vanishing/exploding gradient problem"
» In the 90s this (among other things) led to a period called the AI-winter and almost to an abandonment of the idea of neural nets ${ }^{1}$. Progress during the last 10 years has made it possible to train very deep nets with hundreds of layers
" Responsible for this progress are mainly:

Growth of available computing power: Clusters of (C,G,T)PUs

Availability of large amounts of (labelled)
 Methodological breakthroughs (pre-training, dropout, LSTMs/GRUs, ReLUs, stochastic depth training, convnets, ...)
" With these techniques Deep Neural Nets have reached super-human abilities in many areas, including image recognition, geolocating by images, game playing, sentiment analysis, ...
" There are several software frameworks available for the training of deep neural nets

Framework	FTensorFlow	theano		CNTK	Caffe (2)	$d m / c$ mxnet	$\mathrm{H}_{2} \mathrm{O}$	deeplearningal	neon
Developer	Google	U. Montreal	Collobert, et al.	Microsoft	U. Berkeley	DMLC	H2O.ai	Skymind	Nervana
Language(s)	C++, Python	Python	C, Lua	C++	C++, Python	C++, Python, R, Julia, ..	Java, Scala, Python, R	Java, Scala, C	Python

For more on machine learning (deep learning, boosting, dynamic programming) see


```
```

Squmper lamsiofinhlow

```
```

```
```

Squmper lamsiofinhlow

```
```

Gareth dames
Daniela Witten
Trevor Hastie
Robert Ibshirani
An Introduction
to Statistical
Learning
with Applications in R

15 minutes break

Text analytics in a nutshell

The analysis of unstructured text can be structured in different phases, which make use of individual concepts

(1) Connect to an online archive, download relevant articles and do quality assurance (e.g. download succeeded, delete advertisements)

2 Store the news in a local DB in an efficient and comprehensive way (e.g. elasticsearch)

3 Use e.g. the Levenshtein distance to find the best match for spelling errors

4 Linguistic rules to map words modified by conjugations or declensions on its stem, see e.g. Porter or Snowball stemmer.

5 Identify references (e.g. with regular expressions), build a network and measure the popularity

6 Apply the vector space model, i.e. represents document as vectors and compare them by making use of the corresponding angles

7 Use word lists (e.g. General Inquirer) or toolkits (SentiWordnet, SentimentAnalyzer, VADER)

8 Use e.g. the Gunning Fog index (i.e. estimated years of education needed to understand the text) based on the number of syllables, words and sentences

Regular Expressions - extremely useful to pre-process raw data and for search queries

Remarks on regular expressions

A regular expression is a pattern describing a certain amount of text. It defines a search pattern by a sequence of characters.
" The use of regular expressions enables to get results with just one operations instead of many.
" Established in the 1950s by Stephen Cole Kleene to formalize the description of a regular language in theoretical computer science.
" Embedded in many programming languages and software packages.

Examples of regular expressions

Character classes:		any character except newline
	\w \d \s	word, digit, whitespace
	$\backslash \mathrm{W} \backslash \mathrm{D}$ \S	not word, digit, whitespace
	[abc]	any of a, b or c
	[^abc]	not a, b or c
	[a-g]	character between a and g
Anchors:	\wedge abc ${ }^{\text {a }}$	start / end of the string
	$\backslash \mathrm{b} \backslash \mathrm{B}$	word, not-word boundary
Escaped characters:	\. *	
	escaped special characters	
	$\backslash \mathrm{t} \backslash \mathrm{n} \backslash \mathrm{r}$	tab linefeed carriage-return
Groups:	(abc)	capture group
	\1	backreference to group \#1
	(?: abc)	non-capturing group
Lookaround:	$(?=\mathrm{abc}) \quad(?!\mathrm{abc})$	positive negative lookahead
	($?<=\mathrm{abc}$) ($?$ < ! abc)	negative positive lookbehind
Quantifiers:	a* a+ a? Greedy	0 or more, 1 or more, 0 or 1
	$\begin{aligned} & a^{*} ? ~ a+? ~ a ? ? ~ L a z y ~ \\ & a\{5\} \text { a\{2,\} } \end{aligned}$	0 or more, 1 or more, 0 or 1 exactly five, two or more
	a $\{1,3\}$	between one and five
	$a+$? $a\{2$,	matches as few as possible
Alternation:	ablcd	matches ab or cd
	$(?(?=a b) c d \mid e f)$	if-then condition
Examples:		
Grabbing HTML Tags:	< ($[$ A -]][A-zo-9]*) \b [^>] *> (.*?) </八1>
Identify duplicate lines in a csv:		(^) ([^,]*) (, \1) + (? =, \|\$)

Large text-based datasets require new (NoSQL-based) storage techniques

E.g. news are weakly structured but possess (usually) an URL, publication date, headline and content

Boeing boosts share buyback to $\$ 14$ billion, hikes dividend Mon Dec 14, 2015 5:11pm EST

Boeing Co (BA.N) raised its share repurchase authorization to $\$ 14$ billion from $\$ 12$ billion and also increased its quarterly dividend, a sign of confidence in its cash outlook despite plans to cut production. The planemaker, which had $\$ 5.25$ billion remaining under the previous buyback plan, said it raised its dividend to $\$ 1.09$ per share from 91 cents. Boeing's shares rose 1.2 percent to $\$ 144.75$ in after market trade on Monday, more than recovering their losses in regular trading. The company had said in October it could cut production by as much as 15 percent on its 777 long-range, widebody jetliner, one of its most profitable planes and a key source of cash. The talk of a possible slowdown came as Boeing posted narrower losses on its 787 Dreamliner and voiced confidence in that plane's ability to generate cash and fill the gap. Boeing is banking on the 787, its newest jet in production, to begin generating cash flow in the current quarter. The company had previously raised its share repurchase authorization and increased its dividend in December last year. Boeing said on Monday that it had finished its stock repurchases for 2015, having spent $\$ 6.75$ billion. It expects to start buying back shares in January.
(Reporting by Radhika Rukmangadhan in Bengaluru; Editing by Savio D'Souza)
http://www.reuters.com/article/us-boeing-buyback-
idUSKBNOTX2I520151214

Document	Date	Headline	Content	URL
$\mathbf{1}$	Dec 14, 2015, $5: 11$ pm EST	Boeing boosts share [...]	Boeing Co (BA.N) raised its share [...]	http://www.reuters.co m/article/us-boeing- $[\ldots]$
\ldots	\ldots	\ldots	\ldots	\ldots

Document	Boeing	Co	raised	its	share	repurchase	authorization	\ldots
$\mathbf{1}$	4	1	3	11	3	2	2	\ldots
\ldots	\ldots		\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

The Term-Document-Matrix approach allows efficient searching \& scoring (e.g. via term frequency and inverse document frequency), but does not always preserve the structure of the text.

How can we compare text? The Levenshtein (or minimum-edit) distance as a measures of similarity between words (or strings)

The minimum number of single-character edits* to change one word into the other measures similarity
" Let w_{k} denote a word with $\left|w_{1}\right| \in \mathbb{N}$ letters. Let $w_{k}(i)$ denote the $i^{\text {th }}$ letter. Then, the Levenshtein distance between two words w_{1} and w_{2} is given by Edit $t_{w_{1}, w_{2}}\left(\left|w_{1}\right|,\left|w_{2}\right|\right)$, where $E d i t_{w_{1}, w_{2}}(;)$ is recursively defined by:

$$
\operatorname{Edit}_{w_{1}, w_{2}}(i, j)=\left\{\begin{array}{ll}
\max (i, j), & \text { if } \min (i, j)=0 \\
\min \left\{\begin{array}{l}
\operatorname{dit}_{w_{1}, w_{2}}(i-1, j)+1 \\
\operatorname{Edit}_{w_{1}, w_{2}}(i, j-1)+1 \\
\operatorname{Edit}_{w_{1}, w_{2}}(i-1, j-1)+\mathbb{1}\left(w_{1}(i) \neq w_{2}(j)\right)
\end{array}\right. & \text { otherwise } .
\end{array} .\right.
$$

" The Levenshtein distances can also be computed by a bottom-up dynamic programming algorithm.
" As an example, consider the words-pairs:.
, 'pear' and 'peach'
, 'bottom' and 'tom'
" Using individual penalties for insertions, deletions and substitutions allows to fine-tune the algorithms.

		\mathbf{P}	\mathbf{E}	\mathbf{A}	\mathbf{C}	\mathbf{H}
	0	1	2	3	4	5
\mathbf{P}	1	0	1	2	3	5
\mathbf{E}	2	1	0	1	2	4
\mathbf{A}	3	2	1	0	1	3
\mathbf{R}	4	3	2	1	1	2

		\mathbf{B}	\mathbf{O}	\mathbf{T}	\mathbf{T}	\mathbf{O}	\mathbf{M}
	0	1	2	3	4	5	6
\mathbf{T}	1	1	2	2	3	4	5
\mathbf{O}	2	2	1	2	3	3	4
\mathbf{M}	3	3	2	3	4	4	3

Simple spell checking may be based on the Levenshtein distances for words that do not appear in a given dictionary, but the approach is not feasible to compare documents.

* i.e. insertions, deletions or substitutions

The vector space model for documents is closely related to the Term-Document-Matrix and allows simple algebraic operations

Documents can be seen as vectors and the Euclidean norm allows to measure similarities

3

$$
\cos (\mathrm{x}, \mathrm{y})=\frac{\langle x, y\rangle}{\|x\| \cdot\|y\|}=\frac{3.2552}{9.66}=0.3370
$$

" n-grams (i.e. sequence of n words) may be considered to recognize combined phrases e.g. "machine learning", "big data", ...
" Discard Stop-words*
" More sophisticated weights
, Term Frequency, i.e. the number of times a term occurs in a document relative to the length of documents
, Inverse Document Frequency, i.e. diminishes the weight of terms that occur very frequently in document
" Reduce the dimensionality by , linguistic stemming algorithms , statistical methods for word embedding
" Given classified documents, this approach may be applied to find for unclassified document the best matching classified document(s) (e.g. k-nearest-neighbor)

Natural languages contain 10.000+ distinct words per language (and still counting), which implies an infeasible dimensionality.

The dimensionality of the vector space may be reduced with the Porter Stemmer algorithm

Remarks on the Porter Stemmer

" Every word can be represented as C?(VC)\{m\}V? where
, C is a sequence of consonant
, V is a sequence of vowels
> (.) $\{\mathrm{m}\}$ denotes an m-times repetition of the expression in the brackets
, ? denotes optionality for the preceding expression
, * denotes wildcard
" With this notation, there are five steps to take to cut a word to its stem (see right for an extraction of the rules)
" However, word stems are not always real words and stemming rules might fail for some words (e.g. European / Europe or matrices / matrix)
" Clever stemming reduces the dimension by factor 10!

Examples for stemming rules

```
Step 1a* SSES -> SS caresses -> caress
    IES -> I ponies -> poni
    S -> '' cats -> cat
Step 1b* (m>0) EED -> EE agreed -> agree BUT feed -> feed
    (*V*) ED -> '' plastered -> plaster BUT bled -> bled
    (*V*) ING -> '' motoring -> motor BUT sing -> sing
Step 1c* (*v*) Y -> I happy -> happi BUT sky -> sky
Step 2* (m>0) ATIONAL -> ATE relational -> relate
    (m>0) TIONAL -> TION conditional -> condition
    BUT rational -> rational
Step 3* (m>0) ICATE -> IC triplicate -> triplic
    (m>0) ATIVE -> '' formative -> form
    (m>0) ALIZE -> AL formalize -> formal
Step 4* (m>1) AL -> '' revival -> reviv
    (m>1) ANCE -> '' allowance -> allow
    (m>1) ENCE -> '' inference -> infer
Step 5a* (m>1) E -> '' probate -> probat BUT rate -> rate
Step 5b* (m > 1 and *d and *L) -> single letter
    controll -> control
```

There is need for more robust and more sophisticated (e.g. language-independent) methods.

Statistical approaches may also be used to reduce the dimensionality (1/2)

"You shall know a word by the company it keeps" (J. R. Firth 1957)

" The discrete word representation implies for some tasks an unfeasible dimensionality, i.e. natural languages contain 10.000+ distinct words per language (and still counting)
" However, the dimensionality may be reduces by adding structure to text since
, some completely distinct words may have (exactly/almost) the same meaning (synonyms), and
, some word groups have the same word stem (conjugation, declension) (-> see also Porter stemmer)
" Instead of capturing co-occurrence counts directly predict surrounding words of every word
" Example for a co-occurrence matrix with window 1 :
$\left\{\begin{array}{l}\text { I like deep learning } \\ \text { I like NLP } \\ \text { I enjoy flying } \\ \text { I enjoy NLP, too }\end{array}\right\}$

Counts	\mathbf{I}	like	enjoy	deep	learning	NLP	flying	too
I	0	2	2	0	0	0	0	0
Like	2	0	0	1	0	1	0	0
Enjoy	2	0	0	0	0	1	1	0
Deep	0	1	0	0	1	0	0	0
Learning	0	0	0	1	0	0	0	0
NLP	0	1	1	0	0	0	0	1
flying	0	0	1	0	0	0	0	0
too	0	0	0	0	0	1	0	0

" Some terms consists of more than one word (e.g. machine learning, banking crisis) so that larger windows may be more appropriate.

Statistical approaches may also be used to reduce the dimensionality (2/2)

Gender analogies

Degrees of adjectives

Irrelevant dimensions may be removed.

More structure can be added to text by statistical Part-Of-Speech tagging

Hidden-Markov-Model for Part-Of-Speech tagging

" The meaning of a word may depend on its function in the sentence (e.g. court, will, fine, sound, record)
" Consider a hidden stochastic process for word tags (e.g. the Brown corpus). Each tag emissions an observable word if the process arrives.
" Based on a tagged trainings corpus, the transition and emission probabilities can be estimated.
" Given a word sequence, the most likely path of the hidden process is used for tagging the words.

Popular sentiment dictionaries are a good starting point but might be to general / not specific enough for some purposes

| 1 |
| :--- | | General Inquirer |
| :---: |
| " General purpose, 182 categories |
| (e.g. Positive, Negative, Hostile, |
| |
| Strong, Power, Weak, Active, |
| Passive) |
| the dictionary also contains part-of- |
| speech tags for each word (e.g. |
| Noun, CONJ, DET, PREP) |
| " Available fee of charge via |
| http://www.wjh.harvard.edu/~inquirer/ |

4

Diction 5 / 7

» Contains 33 word-categories (e.g. Accomplishment, Aggression, Centrality) and 6 variables based on count ratios in the word categories
" the software is proprietary, see http://www.dictionsoftware.com/

2

Sentiment Word Lists

" Financial / economic background, i.e. constructed in 2009 with 10-K fillings
" 6 categories (Litigious, Negative, Positive, Strong, Uncertainty and Weak)
" Available free of charge via http://www3.nd.edu/~mcdonald/Word _Lists.html

5 Linguistic Inquiry \& Word Counts
" Social and psychological background, 64 hierarchical word lists and summary statistics
" the software is proprietary, see http://liwc.wpengine.com/

3 Subjectivity Lexicon
" General purpose, contains 3 categories (positive, neutral and negative)
" Available free of charge via http://mpqa.cs.pitt.edu/lexicons/subj_l exicon/

6
 Build your own

" Based on
, expert knowledge
, trainings-set, e.g. find the words with the strongest discriminant power
" Use non-dictionary based classification methods like
> K-nearest-neighbour
) Support vector machines
, Naïve Bayes
, Maximum entropy

For more on text analysis (e.g. machine translation, information retrieval, natural language generation) see

Christopher D. Manning and
Hinrich Schütze

The Handbook of Computational Linguistics and Natural Language Processing

Edited by
Alexander Clark, Chris Fox and Shalom Lappin
(4)WILEY-BLACKWELL

Network analysis in a nutshell

Some general remarks on graph theory and network analysis

d íine

Basic structures and properties of graphs

1

Complete Graph

» The complete graph is a graph where all possible edges are present.
" All vertexes are equivalent and have , the highest possible degree and closeness centrality
, but also the highest possible clustering.

4

Tree and Forest

» A connected graph that that has no cycle. \Leftrightarrow its number of edge is smaller that its number of vertexes.
" There is a unique path between any two vertexes
" A graph consisting of more that one tree is called forest.

2 Circle

" Each vertex Is connected to exactly two other vertexes
" All vertexes are equivalent having
, low centrality and
, low clustering

5

Planar

" The graph can be drawn on a piece of paper without having any two edges cross each other (edges only intersect at one of their involved nodes)
" Related to the "four colour theorem"

3 Star

" There exists a vertex (the center) such that every edge in the network involves the vertex
" The center has the highest possible centrality but lowest clustering

6

Bipartite Graph

» There exists a partition of all vertexes into two groups so that vertexes within a group are not connected
" Related to matching problems (e.g. ímarriage market)

Each graph can be represented by an quadratic (so called) adjacency matrix

Non-directed \& discrete

Directed \& discrete

	1	2	3	4	5
1	0	1	1	1	1
2	0	0	0	1	0
3	0	1	0	1	0
4	0	0	0	0	1
5	0	0	0	1	0

Binomial

Directed \& weighted

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	0,9	1,1	2,1	4,3	1,9
$\mathbf{2}$	0	0	0	0,9	0
$\mathbf{3}$	0	3,2	0	0,8	0
$\mathbf{4}$	0	0	0	0	1,2
$\mathbf{5}$	0	0	0	1,2	0

Real valued

Networks may be modelled stochastically (vertexes or edges may be added or removed), simulated and analysed e.g. w.r.t. stability or association.

For more on graph theory (e.g. Hamiltonicity, network models, random graphs and simulation) see

Graph Theory and Complex Networks
An introduction

Maarten van Steen

Business cases

Business news in credit risk management

Rating models are intended to measure the probability of default and can divided into three major groups

Default rating
" This rating-type measures the probability of default (usually within the next 12 months after the rating) based on (internal) default observations.
" The rating model is usually set-up as logistic regression or decision tree.
" This kind of rating model is often applied to retail and SME portfolios with many observations (incl. defaults).

Shadow rating

" The shadow rating tries to replicate the rating grades of external rating agencies (Moody's, S\&P, Fitch) in order to measure the credit worthiness of obligors without external rating.
" The rating is usually applied to (large) corporations, financial institutions and sovereigns portfolios with little observations and infrequent defaults.

Cash-flow-rating

" The rating model is based on MonteCarlo simulations, which describe the evolution of the relevant economic derivers for the obligor.
" The probability of default is derived from the number of paths where the credit cannot be repaid and the obligor defaults.
" The rating is applied to project-like obligors (e.g. wind or solar power station, cargo carrier).

Usage of ratings

" Ratings and, hence, the estimated probability of default (PD) are crucial
, to calculate the interest rate and other credit conditions (e.g. collateral) for the obligor at contract agreement;
) for the calculation of the regulatory capital requirements (esp. IRBA) and
, for (regulatory) reporting.
" Other aspects regarding the loss-given-default (LGD), exposure-at-default (EAD), credit-conversion-factor (CCF) or risk mitigation techniques are not covered here.

State-of-the-art platforms for (corporate) ratings are usually modular and cover different areas of information

Risk factors are statistically aggregated to a rating grade

The rapidly increasing amount of information is a challenge in banking and forces financial institutions to redefine processes and concepts

On a regular business day 5,000+ news articles were published by the major agencies
" The 7 news provider produced 13,000,000 news articles with about 400 words each. Local news and social media is excluded.
» Printed out and stacked, the news articles would form a $1,3 \mathrm{~km}$ high pillar (that is about the same as the worlds highest building (Burj Khalifa) on top of the second highest building (Shanghai Tower)).
" The news articles need 20 gigabyte disk space and each is analysed w.r.t. the corporations listed in a major stock marked index (e.g. S\&P500).

The evaluation of a representative set of business news for a portfolio is computationally demanding.

For each business news and each corporation five independent indicators are considered aggregated over time to one news signal per company

Each indicator controls for a specific semantic dimension which may be considered by the market

" Information: Comparison of news with news published before in order to recognize recurring news.
" Relevance: Measures to which degree the news is focused on the considered company.
" Sentiment: Measures the degree of the content's positivity / negativity for the considered company.
" Commitment: Measure if the article contains final and/or certain information vs. guessing.
" Readability: Measures the complexity of the language.

Business news allow to derive a network for corporations, identify groups and to assign an importance measure to each corporation (1/2)

The news-based network may be an easy approximation for the economy
" Corporations that are mentioned together in business news frequently are likely to be related in the business world
" We can establish connections between corporations based on their co-occurrence in business news (see e.g. 1).
" Connections may be of individual strength (see e.g. (2)).
" Based on the connection strength, corporation-groups can be identified (see).
" Each corporation may have an individual importance for the economy, which corresponds to its connections and its position in the network.
" Furthermore, a connection may be interpreted with respect to
, direction and impact (positive / negative)
) the node (e.g. financial institution, sovereign or person)

Business news allow to derive a network for corporations, identify groups and to assign an importance measure to each corporation (2/2)

Based on the words in the business news, the connection may be classified

Corporations are interpreted a part of the economy and analyst can easily follow-up on the near neighbors of a corporation.

The network analysis and the news signal can directly be integrated in ratingand early-warning-system

» We consider a shadow rating model based on external ratings from the 3 major rating agencies.
" The rating grades were numbered in sequence from good to bad. After this a Box-Cox transformation was applied to account for the riskincreasing nature of most rating scales.
" We test the relationship between the creditworthiness of a company and its
) network properties, quantified by 4 centrality measures and the clustering, and
) medial situation, measured by the news signal and attention (i.e. log of number of news).
» Control variables cover all traditional financial indicators (e.g. RoE, Debt to Equity) and market indicators (stock return, stock return volatility).
" The results indicate that both kind of information add significant explanatory power.

	Factor	Coef. (P-val)	Coef. (P-val)	Coef. (P-val)	Coef. (P-val)	Coef. (P-val)	Coef. (P-val)
$\begin{aligned} & \frac{y}{\vdots} \\ & \frac{1}{3} \\ & \frac{1}{Z} \end{aligned}$	Degreeness	--	--	$\begin{gathered} 1,7789 \\ (0,0000) \end{gathered}$	--	--	--
	Closeness	--	--	--	$\begin{gathered} 1,9010 \\ (0,0003) \end{gathered}$	--	--
	Betweenness	--	--	--	--	$\begin{gathered} 1,9428 \\ (0,0000) \end{gathered}$	--
	Page-Rank	--	--	--	--	--	$\begin{gathered} 1,9253 \\ (0,0000) \end{gathered}$
$\frac{\infty}{3}$	Clustering	--	--	$\begin{aligned} & -1,4441 \\ & (0,0000) \end{aligned}$	$\begin{aligned} & -2,2675 \\ & (0,0000) \end{aligned}$	$\begin{aligned} & -1,0238 \\ & (0,0013) \end{aligned}$	$\begin{gathered} -1,5405 \\ (0,0000) \end{gathered}$
	News Signal	--	$\begin{gathered} 0,7074 \\ (0,0333) \end{gathered}$	$\begin{gathered} 0,9968 \\ (0,0028) \end{gathered}$	$\begin{gathered} 0,9627 \\ (0,0030) \end{gathered}$	$\begin{gathered} 0,9194 \\ (0,0042) \end{gathered}$	$\begin{gathered} 1,0054 \\ (0,0025) \end{gathered}$
	Attention	--	$\begin{gathered} 1,3173 \\ (0,0000) \end{gathered}$	$\begin{gathered} 0,4186 \\ (0,1071) \end{gathered}$	$\begin{gathered} 0,9363 \\ (0,0004) \end{gathered}$	$\begin{gathered} 0,8554 \\ (0,0005) \end{gathered}$	$\begin{gathered} 0,4066 \\ (0,1195) \end{gathered}$
$\frac{0}{0}$$\vdots$000	Stock return	$\begin{gathered} 0,0737 \\ (0,7503) \end{gathered}$	$\begin{gathered} 0,0789 \\ (0,7281) \end{gathered}$	$\begin{gathered} 0,1388 \\ (0,5202) \end{gathered}$	$\begin{gathered} 0,0818 \\ (0,7115) \end{gathered}$	$\begin{gathered} 0,2116 \\ (0,3318) \end{gathered}$	$\begin{gathered} 0,1361 \\ (0,5262) \end{gathered}$
	Stock return volatility	$\begin{aligned} & -0,3806 \\ & (0,0000) \end{aligned}$	$\begin{aligned} & -0,4005 \\ & (0,0000) \end{aligned}$	$\begin{aligned} & -0,3715 \\ & (0,0001) \end{aligned}$	$\begin{aligned} & -0,3746 \\ & (0,0001) \end{aligned}$	$\begin{aligned} & -0,3475 \\ & (0,0001) \end{aligned}$	$\begin{aligned} & -0,3690 \\ & (0,0001) \end{aligned}$
	Return on equity	$\begin{gathered} 0,0213 \\ (0,0000) \end{gathered}$	$\begin{gathered} 0,0189 \\ (0,0000) \end{gathered}$	$\begin{gathered} 0,0179 \\ (0,0000) \end{gathered}$	$\begin{gathered} 0,0176 \\ (0,0000) \end{gathered}$	$\begin{gathered} 0,0183 \\ (0,0000) \end{gathered}$	$\begin{gathered} 0,0181 \\ (0,0000) \end{gathered}$
	Free cash flow to sales	$\begin{gathered} 0,0287 \\ (0,0000) \end{gathered}$	$\begin{gathered} 0,0232 \\ (0,0000) \end{gathered}$	$\begin{gathered} 0,0233 \\ (0,0000) \end{gathered}$	$\begin{gathered} 0,0249 \\ (0,0000) \end{gathered}$	$\begin{gathered} 0,0246 \\ (0,0000) \end{gathered}$	$\begin{gathered} 0,0239 \\ (0,0000) \end{gathered}$
	Debt to equity	$\begin{gathered} -0,5410 \\ (0,0000) \end{gathered}$	$\begin{aligned} & -0,5163 \\ & (0,0000) \end{aligned}$	$\begin{gathered} -0,4834 \\ (0,0000) \end{gathered}$	$\begin{gathered} -0,4870 \\ (0,0000) \end{gathered}$	$\begin{gathered} -0,5090 \\ (0,0000) \end{gathered}$	$\begin{array}{r} -0,4881 \\ (0,0000) \end{array}$
	Short term to total debt	$\begin{gathered} 0,0527 \\ (0,0076) \end{gathered}$	$\begin{gathered} 0,0441 \\ (0,0186) \end{gathered}$	$\begin{gathered} 0,0426 \\ (0,0154) \end{gathered}$	$\begin{gathered} 0,0440 \\ (0,0133) \end{gathered}$	$\begin{gathered} 0,0462 \\ (0,0058) \end{gathered}$	$\begin{gathered} 0,0429 \\ (0,0144) \end{gathered}$
	3 year revenue growth	$\begin{gathered} 0,0199 \\ (0,0031) \end{gathered}$	$\begin{gathered} 0,0174 \\ (0,0061) \\ \hline \end{gathered}$	$\begin{gathered} 0,0175 \\ (0,0043) \end{gathered}$	$\begin{gathered} 0,0162 \\ (0,0099) \\ \hline \end{gathered}$	$\begin{gathered} 0,0161 \\ (0,0076) \\ \hline \end{gathered}$	$\begin{gathered} 0,0173 \\ (0,0047) \\ \hline \end{gathered}$
	Adj. R2	0,3184	0,3612	0,3958	0,3851	0,4156	0,3970

Traditional rating systems can be improved significantly by news and network information.

User-friendly and interactive visualizations allow an efficient monitoring of many communication channels


```
CPWR (2)
CRM (4)
    DOV (4), TYC (4)
    CELG (4), INTU (3
    PRU (2)
    BSX (6), FFIV (2), HD (2), MET (3)
    CMCSA'(2)
    BMY (3), MMI (9), MSI (9)
    KRFT (2), MMM (6)
AMGN (2), DELL (2)
BMC (2), FSLR (2), JWN (2)
```

NLSN (5)
level of detail
high

Overview

The graph shows all corporations, and all connections between them. corporations with strong connections build groups which are coloured identically. A connection between two entities is established if both entities appear together in a significant number of news. Subgraphs can be selected.

Analysis
All corporations are listed and compared based on aggregated text-analytics results for the business news.

Content

Given a corporation, the content of all corresponding news is shown e.g. with a word-cloud or word highlighting. It enables the analyst to understand and validate the text-analytics result, and to give feedback on it (supervised learning). The feedback is automatically incorporated by subsequent text-evaluations.

Ergonomic visualization of news give a comprehensive overview and allow to zoom in if needed

News are presented so that analysts can review then, understand the method and adjust it if necessary

Analysts can actively train the methods so that confidence arises and more processes can be automated.
d íne

For more on credit risk modelling (e.g. portfolio models, securitization, coherent risk measures) see

Single rulebook in banking

The complexity of bank regulation increased over the past years giving challenges to familiarize and stay up-to-date

" "The Single Rulebook aims to provide a single set of harmonised prudential rules which [financial] institutions throughout the EU must respect. [...] This will ensure uniform application of Basel III in all Member States. [...]" (see http://www.eba.europa.eu)
" The European Banking Authority (EBA) plays a key role in building up of the Single Rulebook in banking.
" The key elements of the Single Rulebook are:
, The Capital Requirements Regulation (CRR) and the Capital Requirements Directive IV (CRD IV)
, The Bank Recovery and Resolution Directive (BRRD) and Deposit Guarantee Schemes Directive (DGSD)
> 90+ supporting documents (and still counting), e.g. Regulatory Technical Standards (RTS), Implementing Technical Standards (ITS) and Guidelines (GL)
" Articles and documents are strongly interlinked and are frequently updated, making it hard to get a general idea on some topic within reasonable time.
" Moreover, there is no possibility for advanced search options since all documents are separately published as pdf or html.

There is definitely need for supporting the work with regulatory text

Banking regulation is governed by a manifold of regulatory texts

» Which of these 10 references contains the information I need?
" How can I jump quickly to a certain Article?
" Are there any relevant Articles referencing to this Article?
" Or is there a RTS/Q\&A/... related to this Article?
» Which Articles are the most important ones from a regulatory framework?
" Can I search within a certain scope this regulation?

How can text analytics help us with these issues when reading legal texts?

Building a single rulebook for banking regulation

For more on banking supervision and regulation see

Concluding remark

Data-centric project are one of d-fine's core competencies and will gain importance in the near future

D-FINE CONSULTANT

marman tha vematiatraly

Fraud detection and prevention*
By using big-data solutions, typical customer behaviour patterns can be identified and evaluated. In this way suspicious account activities can be detected and prevented early on.

Compliance and reporting*

The regulatory requirements for banks and insurance companies are higher than ever before. "Big Data" allows the recording and control of trading activities and helps banks meet their reporting requirements.

Customer segmentation*
Big Data helps companies to segment their customer base more accurately. By analysing existing sales and marketing activities, these can be made more targeted and effective.

Personalized products*

Financial service providers can benefit from the increasing digitalization of their business. In this way, product offers can be personalized and intelligently priced through the real-time analysis of clickstream and geo-location data.

Fine-grained risk management* and trading

Banks and other financial service providers are exposed to a multitude of risks that must be mastered. The inclusion of large amounts of data improves the results of scenario simulations and thus facilitates companies to recognize risks and react quickly to market developments.
Dr Ferdinand Graf d-fine
Manager
Mobile +49 1622630080
Frankfur
E-Mail Ferdinand.Graf@d-fine.de
Munich

Dr Ulf Menzler

Vienna
Senior Consultant
Mobile +49 15257975056
E-Mail ulf.menzler@d-fine.de

```
Headquarters
d-fine GmbH
An der Hauptwache 7
6 0 3 1 3 \text { Frankfurt/Main}
Germany
Tel +4969 90737-0
Fax +4969 90737-200
www.d-fine.com
```

dfine

