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1 Introduction

Our everyday experience is determined by classical mechanics and statistical physics. The
physical processes, which we are witnessing consciously or unconsciously involve a huge
number of interacting atoms and molecules. The air of the earth’s atmosphere, for exam-
ple, is comprised of simple gas molecules which can display complex patterns, turbulence,
and chaotic behavior with severe consequences on our lives. Similarly, biological processes
such as DNA replication, cell division, and the transport of blood through our body is
determined by a multitude of particles and interactions. The understanding of the di-
versity of phenomena over the broad spectrum of length and time scales calls for specific
description—statistical physics.
The well-known basic dynamical equations of classical mechanics are Newton’s equations
of motion

m
d2r

dt2
= F ,

which relate the acceleration of a point particle of mass m to the forces F it is exposed to.
The solution of these equations provides the complete information of the time evolution
of the particle’s position and velocity for a given initial condition, i.e., its dynamics is
deterministic. Thus, a Newtonian system is more in the spirit of Laplace than a quantum
mechanical system described by the Schrödinger equation, where position and momen-
tum cannot be determined exactly at the same time. A numerical solution of Newton’s
equations of motion is obtained in molecular dynamics simulations (MD) [1,2]. The nec-
essary discretization of the time derivatives for such an integration algorithm, however,
destroys Laplace’s dream. As it turns out, the trajectories of systems through phase space
depend sensitively on the initial conditions.1 This means that two trajectories, which are
initially close, will diverge exponentially as time progresses. The integration error caused
by the algorithm can be considered as the source of the initial small difference between
the ’true’ trajectory of the system and the trajectory generated in a simulation. Any
small integration error, no matter how small, will always cause the simulated trajectory
to diverge exponentially from the true trajectory compatible with the initial conditions.
The system then exhibits deterministic chaos. This so-called Lyapunov instability does
not render molecular dynamics simulations useless. First of all, the aim of a molecular
dynamics simulation is not to predict precisely a particular trajectory, rather the statis-
tical properties are of interest. We wish to determine the average behavior of a system,
which is achieved when the trajectory covers an appropriate fraction of the energy surface
in phase space. Still, this would not justify the use of inaccurate trajectories unless the
trajectories obtained numerically, in some sense, are close to true trajectories.
The microscopic insight provided by molecular dynamics simulations is very helpful in
understanding the system behavior on that length scale: A picture is worth a thousand
words. However, the macroscopic world, in which we are living in, requires the translation
of the microscopic information (positions and velocities) into macroscopic quantities like
pressure, energy, etc.; quantities which are accessible by experiments. The link is pro-
vided by statistical mechanics. In statistical mechanics, no longer an individual system

1The number of degrees of freedom has to exceed the number of conserved quantities for a conservative
system.
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is considered, but rather an ensemble of identical systems possessing the same macro-
scopic properties, like the same number of particles, volume, and mean energy. Then a
probability (or probability density) can be given that the system is in a particular state
Γ = (ri, . . . , rN ,pi, . . . ,pN)T – where pi is the momentum of particle i – in phase space
with energy H(Γ), namely the Boltzmann distribution

P (Γ) =
1

Z
exp (−H/kBT ) ,

where kB is the Boltzmann factor and Z the partition function, which ensures normaliza-
tion.
Objects such as polymers or colloids in solution can be considered as stochastic systems.
Their size is typically much larger than that of the surrounding fluid particles, i.e., there
is a significant length- and time-scales difference between such objects and the fluid par-
ticles. The interaction of the solute with the solvent can then be described in an effective
way. In its simplest form, the solvent is a frictional background and exerts a random force
(thermal noise) on the solute particles. A more advanced description of the solute-solvent
interactions takes into account solute-induced fluid motion and its influence on the solute
itself. This type of interactions are denoted as hydrodynamic interactions. They govern
the dynamical behavior of polymers in a dilute solution.

In this lecture, mainly dynamical aspects of stochastic systems are discussed, exploit-
ing both, stochastic differential equations (Langevin equation) and partial differential
equations for probability densities (Fokker-Planck equation).
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2 Statistical Mechanics: Basics

Newtons’ equations of a system of N (identical) particles

mi
d2ri
dt2

= Fi,

provide the trajectories of all particles in a system. Hence, we know everything possible
of such as system. However, these information cannot be handled in general for a system
of 1023 particles. For the (macroscopic) characterization of a system, typically only a few
variables are necessary, such as particle number, temperature, volume or pressure, or for
the time dependence some correlations functions. Statistical physics provides a relation
between the microscopic dynamics and the macroscopic equation of state of a system.

2.1 Phase Space

In statistical physics, the dynamics of a system is described in phase space of generalized
coordinates and momenta. A system of f degrees of freedom, with the generalized coordi-
nates q1, . . . , qf and adjoined momenta p1, . . . , pf , phase space is 2f dimensional. A point
in this Γ-space characterizes the total system. In statistics, many ”points” in Γ-space are
considered, where the various systems differ in their microscopic states, but have the same
macroscopic state characterized by a few variables only, e.g., energy, volume, or particle
number. This assembly of points is denoted as ensemble. A point in phase space can be
expressed by the 2f -dimensional vector

Γ(t) = (q1, q2, . . . , qf , p1, p2, . . . , pf )
T . (1)

The velocity follows as time derivative of Γ.

2.2 Distribution Function, Liouville’s Theorem

The distribution of points in phase space can be described by the distribution function
ρ(Γ). More precisely, ρ is the phase-space density , i.e., ρ(Γ)dfqdfp = ρ({q}, {p})dfqdfp is
the probability to find a system of N particles with f degrees of freedom in the volume
{qi, qi + dqi}, {pi, pi + dpi}. Since the system is certainly somewhere in the whole phase
space (normalization) ∫

ρ({q}, {p}, t) dfqdfp = 1 . (2)

Individual points move independently in phase space, because different systems don’t
interact. Hence, ρ changes in time. Conservation of the total number of systems implies
(Liouville’s theorem)

∂ρ

∂t
+

f∑

i=1

(
∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi

)
= 0 . (3)

H is Hamilton’s function. Often, this equation is written as

∂ρ

∂t
= −[ρ,H] = −iLρ (4)
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with the Liouville operator
Lρ = i[H, ρ] (5)

and the Poisson bracket of two quantities A({q}, {p}), B({q}, {p})

[A,B] =

f∑

i=1

(
∂A

∂qi

∂B

∂pi
− ∂B

∂qi

∂A

∂pi

)
. (6)

The equation of motion (3) is equivalent to the derivative

dρ

dt
= 0 , (7)

i.e., the total change of ρ with time is zero. The formal solution of equation (3) is

ρ({q}, {p}, t) = exp (−iLt) ρ({q}, {p}, 0) . (8)

The equation of motion of a function A(Γ) = A({q}, {p}), which does not explicitly
depend on time, is of conjugated form

Ȧ(Γ(t)) =
dA

dt
= iLA(Γ(t)) , (9)

or
A(Γ(t)) = exp (iLt)A(Γ(0)) . (10)

In particular, these equations apply for Γ itself and are identical with Hamilton’s equa-
tions.
In the stationary state, the condition applies [H, ρ] = 0. Hence, equilibrium distribution
functions which depend on H only, i.e., ρ = ρ(H) are solutions of the stationary state
equation. This is the basis for the various distribution function of equilibrium statistical
mechanics.

2.3 Maximum Entropy Principle

The maximum entropy principle offers a systematic way to derive distribution and parti-
tion functions in statistical physics [3–5].

The entropy of a system of f degrees of freedom is defined as [3–5]

S = − kB
∫

Ψ ln Ψ dfq dfp , (11)

where Ψ = Ψ(q,p) is the distribution function of the generalized coordinates and momenta
q, p. Since entropy assumes an extremum at equilibrium, the distribution function can
be obtained by a variational calculation [3]. Usually, the extremum has to be calculated
under macroscopic constraints. One of the constraints is the normalization condition

∫
Ψ dfq dfp = 1. (12)
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Furthermore, we assume that the system of interest is constrained by expectation values
ak of certain quantities hk(q,p), k = 1, . . . ,M (f �M)

∫
hk(q,p) Ψ(q,p) dfq dfp = 〈hk〉 = ak. (13)

The constraints (12) and (13) are taken into account in the calculate the extremum of S
by Lagrangian multipliers λk, i.e., the extremum is sought after of the expression

S ′ = −kB
∫

Ψ ln Ψ dfq dfp− kB
M∑

k=1

λk

{∫
hk(q,p) Ψ(q,p) dfq dfp− ak

}

− kBλ0

{∫
Ψ dfq dfp− 1

}
.

For δS ′ = 0 follows with arbitrary δΨ

ln Ψ + 1 + λ0 +
M∑

k=1

λkhk = 0,

and the distribution function is given by

Ψ =
1

Z
exp

(
−

M∑

k=1

λkhk

)
, (14)

with the partition function

Z = eλ0+1 =

∫
exp

(
−

M∑

k=1

λkhk

)
dfq dfp. (15)

The constraints (13) lead to the equations

ak = −∂ lnZ

∂λk
(16)

to determine the Lagrangian multipliers. The extremum of the entropy is given by

S = kB

(
lnZ +

M∑

k=1

λkak

)
. (17)

Example: Canonical distribution

Constraint: Mean of Hamiltonian is given, 〈H〉 = E

⇒ Ψ =
1

Z
exp (−λH) .

Equipartition of kinetic energy: 〈Ekin〉 = fkBT/2 ⇒ β = λ = 1/(kBT ).

Entropy: S = kB (lnZ + βE) ⇒ F = −kBT lnZ = E − TS.
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3 Langevin Equation

3.1 Classical Mechanics

In classical mechanics, the dynamics of a system ofN mass points is described by Newton’s
equations of motion

mir̈i = Fi , i = 1, . . . , N , (18)

where mi is the mass of particle i, ri its position and Fi the total force on the particle.
The force follows from the potential energy U({r}) via

Fi = −∂U
∂ri

. (19)

{r} = r1, . . . , rN refers to all particle positions. Together with the initial conditions, the
solution of the equations of motion provides the full information on the time dependence
of the system.

3.2 Stochastic System

Often, only a subset of degrees of freedom is of interest, e.g., the dynamics of a colloid,
a polymer, or a bacterium in a solvent (water). Then the surrounding of the particle
and its interaction with the considered system of interest can be described in a stochastic
manner. An (simple) example is the Langevin equation

mr̈ +mγṙ = F +mΓ , or (20)

v̇ + γv =
1

m
F + Γ . (21)

Here, the frictional force mγṙ and the stochastic force mΓ describe the influence of
the surrounding on the dynamics of the particle at r and velocity v. γ is the friction
coefficient.
The time dependence of Γ is unknown. Rather, Γ is considered a stochastic quantity
with a certain (plausible) distribution. For a complete characterization of the stochastic
process, all correlations of the stochastic force are necessary. Typically, a Gaussian-
Markovian process is assumed, i.e., the correlation functions are δ correlated in time and
all higher correlations follow from that of the first and second moment. Explicitly (1D),

〈Γ (t)〉 = 0, (22)

〈Γ (t)Γ (t′)〉 = qδ(t− t′), (23)

〈Γ (t1)Γ (t2) . . .Γ (t2n−1)〉 = 0; odd, (24)

〈Γ (t1)Γ (t2) . . .Γ (t2n)〉 = qn
∑

P

δ(ti1 − ti2) . . . δ(ti2n−1 − ti2n); even, (25)

where
∑

P indicates summation over all permutations of the indices. For N = 2, the
correlation reads

〈Γ (t1)Γ (t2)Γ (t3)Γ (t4)〉 (26)

= q2 [δ(t1 − t2)δ(t3 − t4) + δ(t1 − t3)δ(t2 − t4) + δ(t1 − t4)δ(t2 − t3)] .

Note, Γ itself is not a function, because it is not differentiable, it is denoted as distribution.
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3.3 Solution of Langevin Equation

Here, a system is considered without external force and in one dimension only, then

v̇(t) = −γv(t) + Γ (t), (27)

which is a lineare differential equation. Solution of the equation:

• Velocity

v(t) = v(t0)e−γ(t−t0) +

∫ t

t0

e−γ(t−t′)Γ (t′)dt′, (28)

or, for t0 → −∞

v(t) =

∫ t

−∞
e−γ(t−t′)Γ (t′)dt′. (29)

• Position, for t0 = 0, v(0) = v0

x(t) = x(0) +

∫ t

0

v(t′)dt′ (30)

= x(0) +
v0

γ

(
1− e−γt

)
+

1

γ

∫ t

0

(
1− e−γ(t−t′)

)
Γ (t′)dt′. (31)

3.3.1 Averages

Velocity correlation function

〈v(t1)v(t2)〉 = v2
0e
−γ(t1+t2)

+ v0e
−γt1

∫ t2

0

e−γ(t2−t′) 〈Γ (t′)〉︸ ︷︷ ︸
=0

dt′

+ v0e
−γt2

∫ t1

0

e−γ(t1−t′) 〈Γ (t′)〉︸ ︷︷ ︸
=0

dt′

+

∫ t1

0

∫ t2

0

e−γ(t1+t2−t′1−t′2) 〈Γ (t′1)Γ (t′2)〉︸ ︷︷ ︸
qδ(t′1−t′2)

dt′1dt
′
2 (32)

= v2
0e
−γ(t1+t2) +

q

2γ

(
e−γ|t1−t2| − e−γ(t1+t2)

)
. (33)

Asymptotic behavior: γt1, γt2 � 1

〈v(t1)v(t2)〉 =
q

2γ
e−γ|t1−t2|, (34)

i.e., the correlation function decays exponentially.
Stationary state

〈v(t)v(t)〉 =
〈
v(t)2

〉
= v2

0e
−2γt +

q

2γ

(
1− e−2γt

) t→∞−→ q

2γ
. (35)
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Equipartition theorem: kinetic energy E of particle

〈E〉 =
1

2
m
〈
v2
〉

=
1

2
m
q

2γ
=

1

2
kBT, (36)

kB Boltzmann constant, T temperature

⇒ q =
2γkBT

m
,

⇒ 〈Γ (t1)Γ (t2)〉 =
2γkBT
m δ(t1 − t2) .

Mean square displacement

1. Moment: Average position

〈x〉 = x0 +
v0

γ

(
1− e−γt

)
. (37)

For x0 = 0, v0 = 0 ⇒ 〈x〉 = 0.

2. Moment: Mean square displacement

〈
(x(t)− x0)2〉 =

∫ t

0

∫ t

0

〈v(t1)v(t2)〉 dt1dt2

=
1

γ2

(
v2

0 −
q

2γ

)(
1− e−γt

)2
+

q

γ2
t− q

γ3

(
1− e−γt

)
. (38)

The average 〈. . .〉 means that (infinitely) many realizations of the stochastic force are
considered, i.e., an ensemble is considered or infinitely many (different) realizations of the
same system. Since v0 is not a stochastic variable, this realizations could all start out with
the same velocity v0. Alternatively, and this approach is adopted here, an ensemble can
be considered, where the initial velocity is taken from the stationary state distribution,
i.e., every realization starts from a stationary (equilibrium) state. Then

v2
0 −→

〈
v2

0

〉
=

q

2γ
=
kBT

m
(39)

and

〈
(x(t)− x(0))2〉 =

q

γ2
t− q

γ3

(
1− e−γt

)
. (40)

Asymptotic behavior:

• Ballistic motion: γt� 1

〈
(x(t)− x(0))2〉 =

q

γ2
t− q

γ3

(
1− 1 + γt− γ3

2
t2 ± . . .

)
=

q

2γ
t2 =

〈
v2

0

〉
t2. (41)

• Diffusive motion: γt� 1

〈
(x(t)− x(0))2〉 =

q

γ2
t =

2kBT

γm
t = 2Dt, (42)

with the diffusion coefficient D = kBT/(γm) .
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3.3.2 Diffusion coefficient

Definition of diffusion coefficient via

• Einstein relation: mean square displacement

〈
(x(t)− x(0))2〉 = 2Dt, D =

kBT

mγ
; t→∞. (43)

• Green-Kubo relation: velocity correlation function

D =

∫ ∞

0

〈v(t)v(0)〉 dt =
q

2γ

∫ ∞

0

e−γtdt =
q

2γ2
=
kBT

mγ
,

with stationary state correlation function 〈v(t)v(0)〉 = qe−γt/(2γ).

3.3.3 Over-damped motion

Over-damped motion refers to the limit, where mv̇ � mγv. Then,

v = ẋ =
1

γ
Γ . (44)

Solution of the equation

x(t) = x(0) +
1

γ

∫ t

0

Γ (t′)dt′. (45)

• Velocity correlation function

〈v(t1)v(t2)〉 =
1

γ2
〈Γ (t1)Γ (t2)〉 =

q

γ2
δ(t1 − t2) = 2Dδ(t1 − t2), (46)

i.e., velocities are uncorrelated. The distribution of velocities is decoupled from the
distribution of positions. The velocities are always in thermal equilibrium (canonical
ensemble).

• Mean square displacement

〈
(x(t− x(0))2〉 =

∫ t

0

∫ t

0

〈v(t1)v(t2)〉 dt1dt2 =
qt

γ2
= 2Dt. (47)

3.4 Solution of Langevin Equation: Three Dimensions

Equations of motion

v̇α = −γvα + Γα; α ∈ {x, y, z}. (48)

Stochastic force

〈Γ (t)〉 = 0,

〈Γα(t)Γβ(t′)〉 = qδαβδ(t− t′). (49)

Mean square displacement

〈
(r(t)− r(0))2〉 =

3∑

α=1

〈
(xα(t)− xα(0))2〉 t→∞−→ 6kBT

mγ
t. (50)
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3.5 Many Variables: Ornstein-Uhlenbeck Process

Consider the set of Langevin equations for N stochastic variables xi

ẋi +
N∑

j=1

γijxj = Γi(t). (51)

γij are time independent coefficients. Hence, Eq. (51) is the most general linear equation
with constant coefficients. The variables can be positions or velocities, i.e., some of the
stochastic forces Γi can be zero.
The stochastic forces read

〈Γi〉 = 0,

〈Γi(t)Γj(t
′)〉 = qijδ(t− t′); qij = qji. (52)

Again, a Gaussian and Markovian process is assumed (white noise).

Solution of the equations of motion

• Homogeneous equation: ẋhi = −∑N
j=1 γijx

h
j

or, with the vector x = (x1, . . . , xN)T and the matrix

γ =




γ11 . . . γ1N

...
...

...

γN1 . . . γNN


 ,

ẋh = −γxh. (53)

Solution

xh(t) = exp (−γt)x(0) = G(t)x(0), (54)

withe the initial condition Gij(0) = δij. Evidently, the Green’s function Gij satisfies
the differential equation

Ġij(t) +
N∑

k=1

γikGkj = 0. (55)

• Inhomogeneous equation (variation of constant): x(t) = xh(t) + xih(t)

x(t) = G(t)x(0) +

∫ t

0

G(t)G(t′)−1Γ (t′)dt′

= G(t)x(0) +

∫ t

0

G(t− t′)Γ (t′)dt′. (56)

In components

xi(t) =
N∑

j

Gijxj(t) +
N∑

j=1

∫ t

0

Gij(t− t′)Γj(t
′)dt′. (57)
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3.5.1 Calculation of Moments

With Eq. (52), the first moment and the variance are obtained as

Mi = 〈xi(t)〉 =
N∑

j=1

Gijxj(0) (58)

σij = σji = 〈(xi(t)− 〈xi(t)〉)(xj(t)− 〈xj(t)〉)〉 (59)

=

∫ t

0

∫ t

0

N∑

k=1

N∑

k′=1

Gik(t
′
1)Gjk′(t

′
2)qkk′δ(t

′
1 − t′2)dt′1dt

′
2

=
N∑

k=1

N∑

k′=1

∫ t

0

Gik(t
′)Gjk′(t

′)dt′qkk′ .

The σij obey the differential equation

σ̇ij = −
N∑

k=1

γikσkj −
N∑

k=1

γjkσki + qij , (60)

which follows from differentation of Eq. (59) and the equation for Gij (55):

σ̇ij =
N∑

k=1

N∑

k′=1

Gik(t)Gjk′(t)qkk′ , (61)

σ̈ij =
N∑

k=1

N∑

k′=1

Ġik(t)Gjk′(t)qkk′ +
N∑

k=1

N∑

k′=1

Gik(t)Ġjk′(t)qkk′ (62)

= −
N∑

k=1

N∑

k′=1

N∑

k′′=1

γik′′Gk′′k(t)Gjk′(t)qkk′ −
N∑

k=1

N∑

k′=1

N∑

k′′=1

Gik(t)γjk′′Gk′′k′(t)qkk′ , (63)

or

σ̈ij = −
N∑

k=1

γikσ̇kj −
N∑

k=1

γjkσ̇ki . (64)

With σ̇ij(0) = qij and σij(0) = 0 follows Eq. (60).

If the real parts of the eigenvalues of γij are larger than zero, the Green’s function vanishes
in the asymptotic limit t→∞, i.e.,

σij =
N∑

k=1

N∑

k′=1

∫ ∞

0

Gik(t)Gjk′ dt qkk′ . (65)

At short times, Taylor expansion yields (t ≥ 0)

G = I− γt+
1

2
γ2t2 + . . . (66)

M = x(0)− γx(0)t+O(t2) (67)

σ(t) = qt− 1

2
(γq + (γq)T )t2 + . . . (68)

Hence, the matrix γ determines the first moment, whereas the matrix q (noise) determines
the variance.
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3.6 Nonlinear Langevin Equation

Only the one-variable case will be considered. Equation of motion

ẋ(t) = h(x, t) + g(x, t)Γ (t). (69)

Stochastic force

〈Γ (t)〉 = 0; 〈Γ (t)Γ (t′)〉 = 2δ(t− t′). (70)

The factor q is set to unity, because g(x, t) appears in the equation of motion. For
g = const., the noise is denoted as additive noise, whereas for g = g(x), the noise is called
multiplicative noise.
For a single variable, the transformation ẏ = ẋ/g(x), g(x) 6= 0, leads to

ẏ(t) =
h(x, t)

g(x)
+ Γ (t),

y = f(x) =

∫ x dx′

g(x′)
, ⇒ x = f(y)−1 = x(y),

i.e., multiplicative noise turns into additive noise.
The problem of multiplicative noise is the appearance of correlations 〈g(x, t)Γ (t)〉, x =
x(Γ ). Which posses the question, which x value should be chosen for g(x, t)? Here, further
assumptions are necessary. One solution is to use the representation of the δ function

δε =

{
1
ε , − ε2 < t < ε

2

0, elsewhere
. (71)

As a consequence 〈g(x, t)Γ (t)〉 6= 0, if g = g(x) and a noise-induced drift appears.

Example

ẋ = axΓ (t). (72)

(Formal) solution of equation of motion

x(t) = x(0) exp

(
a

∫ t

0

Γ (t′)dt′
)
.

Average (Gaussian process)

〈x(t)〉 = x(0)

〈
exp

(
a

∫ t

0

Γ (t′)dt′
)〉

= x(0) exp

(
1

2
a2

∫ t

0

∫ t

0

〈Γ (t1)Γ (t2)〉 dt1dt2
)

= x(0) exp(a2t).

Note,

d

dt
〈x(t)〉 = 〈ẋ(t)〉 = a2 〈x(t)〉 (72)

= a 〈xΓ (t)〉 .
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3.6.1 Ito and Stratonovich Definitions

Solution of Eq. (69)

x(t+ ∆t) = x(t) +

∫ t+∆t

t

h(x(t′), t′)dt′ +

∫ t+∆t

t

g(x(t′), t′)Γ (t′)dt′

= x(t) +

∫ t+∆t

t

h(x(t′), t′)dt′ +

∫ t+∆t

t

g(x(t′), t′)dW (t′), (73)

with dW (t) = Γ (t)dt (siehe Öttinger). Assumption: ∆W = W (t + ∆t) − W (t) =∫ t+∆t

t
Γ (t′)dt′ exists.

Consider integral I =

∫ t

0

g(x(t′), t′)dW (t′) =

∫ t

0

g(W (t′), t′)dW (t′).

Definition of integrals

• Riemann integration

∫ t

0

f(t′)dt = lim
N→∞

N∑

j=1

f(τj)(tj+1 − tj),

tj+1 = tj + ∆t, τj ∈ [tj, tj+1] .

• Riemann-Stieltjes integration:

∫ t

0

f(t′)dg(t′) = lim
N→∞

N∑

j=1

f(τj)[g(tj+1)− g(tj)].

For any smooth function (continuous and infinitely often differentiable), there is conver-
gence for arbitrary τj ∈ [tj, tj+1]. However, W (t) is not smooth, i.e., asymptotic value
depends on choice of τj.

Definitions for stochastic quantities:

• Ito: τj = tj, W (τj) = W (tj) ,

• Stratonovich: τj = (tj + tj+1)/2, W (τj) = (W (tj) +W (tj+1))/2 .

That implies

∫ t

0

g(W (t′), t′)dW (t′) =





lim
N→∞

N∑

j=1

g(W (tj), tj)[W (tj+1)−W (tj)], Ito

lim
N→∞

N∑

j=1

g([W (tj) +W (tj+1)]/2, [tj+1 + tj]/2)[W (tj+1)−W (tj)], Str.

.

(74)

Example:

I =

〈∫ t

0

W (t′)dW (t′)

〉
,

with 〈W (ti)W (tk)〉 =

〈∫ ti

0

Γ (t′)dt′
∫ tk

0

Γ (t′′)dt′′
〉

= 2

∫ ti

0

dt′ = 2ti, for tk ≥ ti.
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• Ito

I = lim
N→∞

N∑

j=1

〈W (tj)[W (tj+1)−W (tj)]〉 = lim
N→∞

N∑

j=1

(2ti − 2ti) = 0.

• Stratonovich

I =
1

2
lim
N→∞

N∑

j=1

〈[W (tj) +W (tj+1)] [W (tj+1)−W (tj)]〉

=
1

2
lim
N→∞

N∑

j=1

〈[W (tj)W (tj+1) +W (tj+1)W (tj+1)−W (tj)W (tj+1)−W (tj)W (tj)]〉

=
1

2
lim
N→∞

N∑

j=1

[2tj + 2tj+1 − 2tj − 2tj]

=
1

2
lim
N→∞

N∑

j=1

2[tj+1 − tj] = N∆t = t.

⇒
〈∫ t

0

W (t′)dW (t′)

〉
=

1

2

[〈
W (t)2

〉
−
〈
W (0)2

〉]
= t

This is consistent with normal calculus! Ito formalism requires new rules for calculus.

3.7 Integration of Langevin Equation

Based on the integration scheme proposed in Ref. [6], the Langevin equation can be
simulated by the following algorithm, which reduces to the velocity Verlet algorithm in
the limit γ → 0:

r(t+ h) = r(t) + ∆r(t, h), (75)

∆r(t, h) =
1

γ

[
1− e−γh

]
v(t) +

1

γ2m

[
γh− 1 + e−γh

]
F (t) + ∆Γ (t, h), (76)

v(t+ h) =
γ

eγh − 1

{
∆r(t, h) +

1

γ2m

[
eγh − γh− 1

]
F (t+ h) + ∆Γ (t+ h,−h)

}
, (77)

∆Γ (t, h) =
1

γm

∫ t+h

t

[
1− e−γ(t+h−t′)

]
Γ (t′)dt′. (78)

Γ (t) is Gaussian, hence ∆Γ (t, h) is Gaussian.

Calculation of stochastic forces:

• Take ∆Γ from Gaussian distribution of width σ1

W (∆Γα) =
1√

2πσ2
1

exp

(
−∆Γ 2

α

2σ2
1

)
(79)

∆Γ (t + h,−h), ∆Γ (t, h) are integrals over the same time interval of Γ (t), hence
they are dependent.
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• Take ∆Γ (t+ h,−h) from conditional probability distribution

W (∆Γα(t, h)∆Γβ(t+ h,−h)) =
1√

4π2σ2
1σ

2
2(1− η2)

(80)

× exp

(
−
σ2

2∆Γ 2
α(t, h)− 2σ1σ2η∆Γα(t, h)∆Γ 2

β (t+ h,−h) + σ2
1∆Γ 2

β (t+ h,−h)

2σ2
1σ

2
2(1− η2)

)

In practice, ∆Γ (t, h) and ∆Γ (t+ h,−h) are calculated according as:

• Calculate Gaussian distributed random vectors g1 = (g1x, g1y, g1z)
T and g2 of unit

width.

• Stochastic forces

∆Γ (t, h) = g1

√
kBT

mγ2
C(γh), (81)

∆Γ (t+ h,−h) = g2

√
kBT

mγ2

E(γh)

C(γh)
+
G(γh)

C(γh)
∆Γ (t, h), (82)

with

C(x) = 2x− 3 + 4e−x − e−2x, (83)

G(x) = ex − 2x− e−x, (84)

E(x) = −C(x)C(−x)−G(x)2. (85)

Algorithm

(i) Calculate ∆Γ (t, h), ∆Γ (t+ h,−h)

(ii) Calculate ∆r(t, h)

(iii) Calculate r(t+ h) and v′(t+ h) = γ[∆r(t, h) + ∆Γ (t+ h,−h)]/(eγh − 1)

(iv) Calculate force F (t+ h)

(v) Calculate v(t+ h) = v′(t+ h) + (eγh − 1− γh)F (t+ h)/[mγ(eγh − 1)]
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4 Probability Theory

4.1 Random Variable and Probability Density

A random variable or stochastic variable ξ is a variable whose value results from a mea-
surement on some random process. A random variable is a function, which maps events
or outcomes. Examples are

• tossing a coin and collecting the outcome (head or tail),

• measuring the length of a rod.

ξ can assume discrete or continuous values. By repeating the experiment N times, a
set of values ξ1, . . . , ξN is obtained. Alternatively, N identical systems can be considered
(ensemble). By the obtained values, an average can be calculated according to

〈ξ〉 = lim
N→∞

1

N
(ξ1 + . . .+ ξN) . (86)

A general average is

〈f(ξ)〉 = lim
N→∞

1

N
(f(ξ1) + . . .+ f(ξN)) . (87)

Probability density

The probability P (x) to find the value ξ of a continuous stochastic variable in the interval
x ≤ ξ ≤ x+ dx is defined as

dP = P (x+ dx)− P (x) = Ψ(x)dx. (88)

Ψ(x) is denoted as probability density. The average of a function f(ξ) is the defined as

〈f(ξ)〉 =

∫
f(x)Ψ(x)dx. (89)

With f(ξ) =
∫
f(x)δ(x− ξ)dx, the average can be written as

〈f(ξ)〉 =

〈∫
f(x)δ(x− ξ)dx

〉
=

∫
f(x) 〈δ(x− ξ)〉 dx, (90)

which implies

Ψ(x) = 〈δ(x− ξ)〉 . (91)

Normalization:
∫

Ψ(x)dx = 1 =
〈∫

δ(x− ξ)dx
〉
.

For a discrete variable, the probability density is given by Ψ(x) =
∑

n pnδ(x− xn).
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Several variables

Consider r variables ξ1, ξ2, . . . , ξr. The average of a function f(ξ1, . . . , ξr) is defined as

〈f(ξ1, . . . , ξr)〉 = lim
N→∞

1

N
[f(ξ11 , . . . , ξr1) + . . .+ f(ξ1N , . . . , ξrN )] . (92)

Similar to Eq. (91), an r-dimensional distribution function can be defined via

Ψr(x1, . . . , xr) = 〈δ(x1 − ξ1) . . . δ(xr − ξr)〉 . (93)

Then, the average of 〈f(ξ1, . . . , ξr)〉 is given by

〈f(ξ1, . . . , ξr)〉 =

∫
. . .

∫
f(x1, . . . , xr)Ψr(x1, . . . , xr)dx1 . . . dxr. (94)

As an additional quantity, the probability density can be calculated of the first n < r
random variables by integration over the other variables

Ψn(x1, . . . , xn) =

∫
Ψr(x1, . . . , xr)dxn+1 . . . dxr. (95)

4.2 Conditional Probability Density

We now consider realizations of the r random variables, where the last r − 1 assume
fixed values ξ2 = x2, . . . , ξr = xr. This probability density is called conditional probability
density P (x1|x2, . . . , xr). Then, Ψr(x1, . . . , xr) is given by

Ψr(x1, . . . , xr) = P (x1|x2, . . . , xr)Ψr−1(x2, . . . , xr), (96)

or

P (x1|x2, . . . , xr) =
Ψr(x1, . . . , xr)

Ψr−1(x2, . . . , xr)
=

Ψr(x1, . . . , xr)∫
Ψr(x1, x2, . . . , xr)dx1

. (97)

For two variables

P (x1|x2) =
Ψ2(x1, x2)∫

Ψ2(x1, x2)dx1

. (98)

4.3 Time-dependent Random Variables

Now, a random variable is considered, which depends on time, i.e., ξ = ξ(t). Assuming
that the ensemble average exists and can be calculated, one obtains the probability density

Ψ(x1, t1) = 〈δ(x1 − ξ(t1))〉 . (99)

For n different times t1, . . . , tn, the probability density is given by

Ψn(x1, t1;x2, t2; . . . ;xn, tn) = 〈δ(x1 − ξ(t1)) . . . δ(xn − ξ(tn))〉 . (100)
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If the infinite hierarchy of probability densities

Ψ1(x1, t1), (101)

Ψ2(x1, t1;x2, t2),

Ψ3(x1, t1;x2, t2;x3, t3)

is known for every ti in the interval t0 ≤ ti ≤ t0 +T , the complete time dependence of the
random process ξ(t) is known in the interval [t0, t0 + T ]. As an example, the correlation
function 〈ξ(t)ξ(t′)〉 is given by

〈ξ(t1)ξ(t2)〉 =

∫
x1x2Ψ2(x1, t1;x2, t2)dx1dx2. (102)

Stationary process

If the probabilities (101) do not change by replacing ti by ti + τ , τ arbitrary, the process
is denoted as a stationary process. As a consequence, Ψ1 is independent of time and Ψ2

depends on the time difference t2 − t1 only.

4.4 Classification of Stochastic Processes

As for a single random variable, we can introduce a conditional probability density for
the time dependent variable ξ at the time tn under the condition that random variable at
the time tn−1 < tn assumes the sharp value xn−1, at the time tn−2 < tn−1 the sharp value
xn−2, etc, and at the time t1 < t2 the sharp value x1

P (xn, tn|xn−1, tn−1; . . . ;x1, t1) = 〈δ(xn − ξ(tn))〉 |ξ(tn−1)=xn−1,...,ξ(t1)=x1 , (103)

with tn > tn−1 > . . . > t1. In analogy to Eq. (97) follows

P (xn, tn|xn−1, tn−1; . . . ;x1, t1) =
Ψn(xn, tn;xn−1, tn−1; . . . ;x1, t1)

Ψn−1(xn−1, tn−1; . . . ;x1, t1)

=
Ψn(xn, tn;xn−1, tn−1; . . . ;x1, t1)∫

Ψn(xn, tn;xn−1, tn−1; . . . ;x1, t1)dxn
.

4.4.1 Purely Random Process

A process is called a purely random process, when the conditional probability density Pn
(n ≥ 2 arbitrary) does not depend on the values xi = ξ(ti) (i < n) of the random variable
at earlier times (ti < tn), i.e.,

P (xn, tn|xn−1, tn−1; . . . ;x1, t1) = P (xn, tn).

This implies

Ψn(xn, tn; . . . ;x1, t1) = P (xn, tn)Ψn−1(xn−1, tn−1; . . . ;x1, t1) = P (xn, tn) . . . P (x1, t1)

Hence, the complete information of the process is captured in P (x1, t1) = Ψ1(x1, t1).
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4.4.2 Markov Process

For a Markov process, the conditional probability density depends on the value ξ(tn−1) =
xn−1 at the next earlier time only, i.e.,

P (xn, tn|xn−1, tn−1; . . . ;x1, t1) = P (xn, tn|xn−1, tn−1).

Then,

Ψn(xn, tn; . . . ;x1, t1) = P (xn, tn|xn−1, tn−1)Ψn−1(xn−1, tn−1; . . . ;x1, t1)

= P (xn, tn|xn−1, tn−1)P (xn−1, tn−1|xn−2, tn−2) . . . P (x2, t2|x1, t1)Ψ1(x1, t1).

For n = 2, the conditional probability density (transition probability) reads

P (x2, t2|x1, t1) =
Ψ2(x2, t2;x1, t1)

Ψ1(x1, t1)
=

Ψ2(x2, t2;x1, t1)∫
Ψ2(x2, t2;x1, t1)dx2

.

Thus, for a Markovian process the complete information about the process is captured in
Ψ2(x2, t2;x1, t1). In the limit t2 → t1, the conditional probability density reduces to

lim
t2→t1

P (x2, t2;x1, t1) = δ(x1 − x2).

4.4.3 Chapman-Kolmogorov Equation

For a Markov process, the general relation

Ψ2(x3, t3;x1, t1) =

∫
Ψ3(x3, t3;x2, t2;x1, t1)dx2

implies (t3 ≥ t2 ≥ t1)

P (x3, t3|x1, t1)Ψ1(x1, t1) =

∫
P (x3, t3|x2, t2)P (x2, t2|x1, t1)Ψ1(x1, t1)dx2,

which leads the the Chapman-Kolmogorov equation

P (x3, t3|x1, t1) =

∫
P (x3, t3|x2, t2)P (x2, t2|x1, t1)dx2, (104)

because Ψ1(x1, t1) is arbitrary.

4.5 Several Time-dependent Random Variables

For r time-dependent random variables ξ1(t), . . . , ξr(t) the probability density at the n
times tn, . . . , t1 is defined as

Ψn(xn1 , . . . , x
n
r , tn; . . . , x1

1, . . . , x
1
r, t1)

=
〈
δ(xn1 − ξ1(tn)) . . . δ(xnr − ξr(tn)) . . . δ(x1

1 − ξ1(t1)) . . . δ(x1
r − ξr(t1))

〉
.

For a Markov process, the complete information is contained in Ψ2(x1, . . . , xr, t|x′1, . . . , x′r, t′).
Example: Combining the random variables in a vector ξ(t)

Ψn(rn, tn; . . . ; r1, t1) = 〈δ(rn − ξn(tn)) . . . δ(r1 − ξ1(t1))〉 .
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5 Fokker-Planck Equation

For stochastic systems, expectation values have to be calculated. In the Langevin ap-
proach, this involves averaging over different realizations of the stochastic force Γ (t).
Alternatively, averages can be calculated with the help of a distribution function, which
follows as solution of a partial differential equation—the Fokker-Planck equation. The
equation itself can be obtained by the Kramers-Moyal (forward) expansion (cf. Risken).

5.1 Smoluchowski Equation: Single Variable

Starting point is the relation

Ψ(x, t+ ∆t) =

∫
P (x, t+ ∆t|x′, t)Ψ(x′, t)dx′, (105)

with

P (x, t|x′, t′) = 〈δ(x− ξ(t))〉|ξ(t′)=x′ .

Hence,

Ψ(x, t+ ∆t) =

∫
〈δ(x− ξ(t+ ∆t))〉|ξ(t)=x′ Ψ(x′, t)dx′. (106)

The replacement ξ(t + ∆t) = x′(t) + ∆ξ(t) = x′(t) + ∆ξ(x′(t)) and Taylor expansion of
the δ-function for ∆ξ � 1, i.e., ∆t→ 0,

δ(x− x′ −∆ξ) = δ(x− x′)− dδ(x− x′)
d(x− x′) ∆ξ +

1

2

d2δ(x− x′)
d(x− x′)2

∆ξ2 + . . .

= δ(x− x′) +
dδ(x− x′)

dx′
∆ξ +

1

2

d2δ(x− x′)
dx′2

∆ξ2 + . . . ,

leads to

Ψ(x, t+ ∆t) = Ψ(x, t) (107)

+

∫ [(
dδ(x− x′)

dx′

)
〈∆ξ〉+

1

2

(
d2δ(x− x′)

dx′2

)〈
∆ξ2

〉]
Ψ(x′, t)dx′

PI
= Ψ(x, t)

−
∫

∂

∂x′
[〈∆ξ〉Ψ(x′, t)] δ(x− x′)dx′ + 1

2

∫
∂2

∂x′2
[〈

∆ξ2
〉

Ψ(x′, t)
]
δ(x− x′)dx′.

The averages over ξ can be obtained from the Langevin equation.

5.1.1 Linear Langevin Equation

γξ̇ =
1

m
F (ξ) + Γ (t).
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〈Γ(t)〉 = 0,

〈Γ(t)Γ(t′)〉 =
2γkBT

m
δ(t− t′).

Integration yields

ξ(t+ ∆t) = ξ(t) +
1

γ

∫ t+∆t

t

[
1

m
F (t′) + Γ (t′)

]
dt′ = ξ(t) +

∆t

γm
F +

1

γ
∆Γ +O(∆t2),

(108)

where ∆Γ =
∫ t+∆t

t
Γ (t′)dt′. Averaging yields

〈∆ξ〉 =
∆t

γm
F +

1

γ
〈∆Γ 〉 =

∆t

γm
F (t) +O(∆t2),

〈
∆ξ2

〉
=

〈(
∆t

γm
F (t) +

1

γ
∆Γ

)2
〉

=
1

γ2

∫ t+∆t

t

∫ t+∆t

t

〈Γ (t′)Γ (t′′)〉 dt′dt′′ +O(∆t2)

=
2kBT

mγ
∆t+O(∆t2).

Hence,

Ψ(x, t+ ∆t) = Ψ(x, t)− ∂

∂x

(
F

γm
Ψ(x, t)

)
∆t+

kBT

γm

∂2

∂x2
Ψ(x, t)∆t+O(∆t2),

or, with F = −∂U/∂x and

∂Ψ(x, t)

∂t
= lim

∆t→0

Ψ(x, t+ ∆t)−Ψ(x, t)

∆t
,

∂Ψ(x, t)

∂t
=

1

γm

∂

∂x

(
∂U

∂x
Ψ(x, t)

)
+D

∂2Ψ(x, t)

∂x2
(109)

Fokker-Planck or Smoluchowski equation
with D = kBT/(γm)

Stationary solution

The stationary solution follows for ∂Ψ/∂t = 0, i.e.,

1

γ

∂

∂x

[
∂U

∂x
Ψ(x) + kBT

∂Ψ(x)

∂x

]
= 0

The boundary condition of a vanishing probability flux at infinity implies (cf. Sec. 6.4)

∂Ψ(x)

∂x
= − 1

kBT

∂U

∂x
Ψ(x),

or

Ψ(x) =
1

Z
exp (−βU) , (110)

with β = 1/(kBT ) and the normalization constant (partition function) Z =
∫

Ψ(x)dx.
This is the Boltzmann distribution. The momentum part Ψ(p) ∼ exp(−βp2/(2m)) (ki-
netic energy) is missing, since the over-damped dynamics is considered. The momenta
are in thermal equilibrium.
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5.1.2 Non-linear Langevin Equation

ξ̇ = h(ξ, t) + g(ξ, t)Γ (t). (111)

〈Γ(t)〉 = 0,

〈Γ(t)Γ(t′)〉 = 2δ(t− t′).
The correlation functions of the stochastic force are given in Eq. (70). Solution

∆ξ = ξ(t+ ∆t)− x =

∫ t+∆t

t

[h(ξ(t′), t′) + g(ξ(t′), t′)Γ (t′)] dt′

With the Taylor expansion of h(ξ, t) and g(ξ, t) around x

h(ξ, t) = h(x, t) + h′(x, t) [ξ(t)− x] + . . . ,

g(ξ, t) = g(x, t) + g′(x, t) [ξ(t)− x] + . . .

(h′ = ∂h(x, t)/∂x, g′ = ∂g(x, t)/∂x) follows

∆ξ =

∫ t+∆t

t

h(x, t′)dt′ +

∫ t+∆t

t

h′(x, t′)[ξ(t′)− x]dt′ (112)

+

∫ t+∆t

t

g(x, t′)Γ (t′)dt′ +

∫ t+∆t

t

g′(x, t′)[ξ(t′)− x]Γ (t′)dt′ + . . . , .

The expression ξ(t′)−x can be eliminated iteratively by repeated application of Eq. (112).
Note, only terms up to linear order in ∆t are relevant. One more iteration yields

∆ξ = h(x, t)∆t+

∫ t+∆t

t

h′(x, t′)

∫ t′

t

h(x, t′′)dt′′dt′ +

∫ t+∆t

t

h′(x, t′)

∫ t′

t

g(x, t′′)Γ (t′′)dt′′dt′

+

∫ t+∆t

t

g(x, t′)Γ (t′)dt′ +

∫ t+∆t

t

g′(x, t′)Γ (t′)

∫ t′

t

h(x, t′′)dt′′dt′

+

∫ t+∆t

t

g′(x, t′)

∫ t′

t

g(x, t′′)Γ (t′)Γ (t′′)dt′′dt′ + . . .

Averaging yields (
∫ t
t0
δ(t− t′)dt′ = 1/2)

〈∆ξ(t)〉 =h(x, t)∆t+
∆t2

2
h′(x, t)h(x, t) +

∫ t+∆t

t

g′(x, t′)

∫ t′

t

g(x, t′′)2δ(t′ − t′′)dt′′dt′

=h(x, t)∆t+ g(x, t)g′(x, t)∆t+O(∆t2) = D(1)(x, t)∆t+O(∆t2)

Similarly, for 〈∆ξ2〉 follows

(ξ(t+ ∆t)− x)2 =

(∫ t+∆t

t

h(x, t′)dt′
)2

+

(∫ t+∆t

t

g(x, t′)Γ (t′)dt′
)2

+O(∆t3/2)

=

∫ t+∆t

t

∫ t+∆t

t

g(x, t′)g(x, t′′)Γ (t′)Γ (t′′)dt′dt′′ +O(∆t3/2),

〈
(ξ(t+ ∆t)− x)2〉 =

∫ t+∆t

t

∫ t+∆t

t

g(x, t′)g(x, t′′)2δ(t′ − t′′)dt′dt′′ +O(∆t2)

= 2g(x, t)2∆t+O(∆t2) = 2D(2)(x, t)∆t+O(∆t2).
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Hence,

∂Ψ(x, t)

∂t
= − ∂

∂x

[
D(1)(x, t)Ψ(x, t)

]
+

∂2

∂x2

[
D(2)(x, t)Ψ(x, t)

]
= LFPΨ(x, t) , (113)

with the Fokker-Planck operator

LFP = − ∂

∂x
D(1)(x, t) +

∂2

∂x2
D(2)(x, t). (114)

As can be shown, all higher order correlations 〈∆ξn〉, n ≥ 3, vanish. Hence,

D(1)(x, t) = h(x, t) + g(x, t)
∂g(x, t)

∂x
drift coefficient, (115)

D(2)(x, t) = g(x, t)2 diffusion coefficient, (116)

D(n)(x, t) = 0 n ≥ 3. (117)

D(1) includes aside from the deterministic drift h(x, t) the so called spurious drift or
noise-induced drift

D
(1)
nois = g(x, t)

∂g(x, t)

∂x
=

1

2

∂

∂x
D(2)(x, t).

Probability Current

Equation (113) can be written as

∂Ψ

∂t
+
∂S

∂x
= 0, (118)

with

S(x, t) =

[
D(1)(x, t)− ∂

∂x
D(2)(x, t)

]
Ψ(x, t) . (119)

Since (118) is a continuity equation for a probability distribution, S can be interpreted
as a probability current. When this current vanishes at the boundaries x = xmin and
x = xmax, the normalization is preserved, i.e.,

∫ xmax

xmin

Ψ(x, t)dx = const. = 1

The considered case D(1) = −γv, D(2) = γkBT/m of the previous section is a special case.

Equation (111) is a first order differential equation and its solution is uniquely determined
by the initial value x0. Hence, the process described by the Langevin equations is a Markov
process. This implies that the Fokker-Planck equation also describes a Markov process.
Since for such a system the relation

Ψ(x, t) =

∫
P (x, t|x′, t′)Ψ(x′, t′)dx′ (120)

applies, the conditional probability density P (x, t|x′, t′) obeys the same Fokker-Planck
equation as Ψ(x, t).
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5.1.3 Path Integral Solution

The solution of the Fokker-Planck equation can be represented in path integral form.
Such a representation is obtained by a repeated application of the Chapman-Kolmogorov
equation (104). With

Ψ(x, t) =

∫
P (x, t|x0, t0)Ψ(x0, t0)dx0, (121)

the division of the time interval t− t0 in N small intervals of length τ = (t− t0)/N leads
to

Ψ(x, t) =

∫
P (x, t|xN−1, tN−1)P (xN−1, tN−1|xN−2, tN−2) (122)

. . . P (x1, t1|x0, t0)Ψ(x0, t0)dxN−1 . . . dx0.

In the limit N →∞, or τ → 0, an expression for the conditional probability P (x, t+τ |x′, t)
follows from the Fokker-Planck equation.

Conditional probability density for small times

Taylor expansion of P (x, t+ τ |x′, t) yields

P (x, t+ τ |x′, t) =P (x, t|x′, t) +
∂

∂t
P (x, t|x′, t)τ +O(τ 2)

=

[
1 + τ

(
− ∂

∂x
D(1)(x, t) +

∂2

∂x2
D(2)(x, t)

)]
P (x, t|x′, t) +O(τ 2), (123)

with P (x, t|x′, t) = δ(x−x′). To evaluate the expression, we use the Fourier representation
of the δ-function

δ(x− x′) =
1

2π

∫ ∞

−∞
eik(x−x′)dk. (124)

Moreover, we are allowed to replace x by x′ in Eq. (123) due to the δ-function. Hence,
we obtain

P (x, t+ τ |x′, t) =
1

2π

∫ (
1− τ

[
ikD(1)(x′, t) + k2D(2)(x′, t)

])
eik(x−x′)dk

=
1

2π

∫
exp

(
−ikτD(1)(x′, t)− k2τD(2)(x′, t) + ik(x− x′)

)
dk. (125)

Thus,

P (x, t+ τ |x′, t) =
1

2
√
πD(2)(x′, t)τ

exp

(
−(x− x′ −D(1)(x′, t)τ)2

4D(2)(x′, t)τ

)
. (126)

With this expression Eq. (122) becomes

Ψ(x, t) = lim
N→∞

∫ N−1∏

i=0

(
4πD(2)(xi, t)τ

)−1/2

× exp

(
−

N−1∑

i=0

(xi+1 − xi −D(1)(xi, ti)τ)2

4D(2)(xi, ti)τ

)
Ψ(x0, t0)dx0 . . . dxN−1, (127)
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or, with xi+1 − xi = ẋ(ti)τ

Ψ(x, t) = lim
N→∞

∫ N=1∏

i=0

(
4πD(2)(xi, t)τ

)−1/2
dxi (128)

× exp

(
−
∫ t

t0

[ẋ(t′)−D(1)(x(t′), t′)]2

4D(2)(x(t′), t′)
dt′
)

Ψ(x0, t0). (129)

Evidently, for small D(2), only paths close to the deterministic solution of ẋ = D(1)

contribute to Ψ.

5.2 General Case

5.2.1 Non-linear Langevin Equation

For the general case, the non-linear Langevin equation is considered for N variables and
white noise

ξ̇i = hi(ξ, t) +
N∑

j=1

gij(ξ(t), t)Γj(t), (130)

〈Γi(t)〉 = 0, (131)

〈Γi(t)Γj(t
′)〉 = 2δijδ(t− t′). (132)

Solution for ∆t� 1

ξi(t+ ∆t)− xi =

∫ t+∆t

t

[
hi(ξ, t

′) +
∑

j

gij(ξ, t
′)Γj(t

′)

]
dt′

=

∫ t+∆t

t

[
hi(x, t

′) +
∑

k

∂

∂xk
hi(x, t

′)[ξk(t
′)− xk]

+
∑

j

gij(x, t
′)Γj(t

′) +
∑

k

∑

j

∂

∂xk
gij(x, t

′)[ξk(t
′)− xk]Γj(t′) + . . .

]
dt′

Iteration yields

〈ξi(t+ ∆t)− xi〉 = hi(ξ, t)∆t+
∑

k

∑

j

∑

l

∫ t+∆t

t

∫ t′

t

∂gij
∂xk

gkl 〈Γj(t′)Γl(t
′′)〉︸ ︷︷ ︸

2δjlδ(t′−t′′)

dt′dt′′

= hi(ξ, t)∆t+
∑

k

∑

j

gkj
∂gij
∂xk

∆t = D
(1)
i (x, t)∆t. (133)

Similar

〈(ξi(t+ ∆t)− xi)(ξj(t+ ∆t)− xj)〉 = 2D
(2)
ij (x, t)∆t. (134)
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Where

D
(1)
i (x, t) = hi(x, t) +

∑

k

∑

j

gkj(x, t)
∂gij(x, t)

∂xk
drift coefficient, (135)

D
(2)
ij (x, t) =

∑

k

gjk(x, t)gik(x, t) diffusion coefficient, (136)

D
(n)
i,j,...(x, t) = 0 n ≥ 3. (137)

5.2.2 N Variable Fokker-Planck Equation

Ψ(x, t+ ∆t) =

∫ 〈 N∏

i=1

δ(xi − ξi(t+ ∆t))

〉
|ξi(t)=x′ Ψ(x′, t)dNx′ (138)

=

∫
〈δ(x− ξ(t+ ∆t))〉|ξ(t)=x′ Ψ(x′, t)dNx′ (139)

Taylor expansion of δ-function (ξi(t+ ∆t) = x′i(t) + ∆ξi(t)) yields

δ(x− ξ(t+ ∆t)) =δ(x− x′ −∆ξ(t))

=δ(x− x′) +
∑

k

∂

∂x′k
δ(x− x′)∆ξk +

1

2

∑

k

∑

l

∂

∂x′k

∂

∂x′l
δ(x− x′)∆ξk∆ξl

and

Ψ(x, t+ ∆t) =Ψ(x, t) +
∑

k

∫
∂

∂x′k
δ(x− x′) 〈∆ξk〉Ψ(x′, t)dNx′ (140)

+
1

2

∑

k

∑

l

∫
∂

∂x′k

∂

∂x′l
δ(x− x′) 〈∆ξk∆ξl〉Ψ(x′, t)dNx′

PI
=Ψ(x, t)−

∑

k

∂

∂xk
[〈∆ξk〉Ψ(x, t)] +

1

2

∑

k

∑

l

∂

∂xk

∂

∂xl
[〈∆ξk∆ξl〉Ψ(x, t)] .

Hence, in the limit ∆t→ 0 and with Eqs. (133), (134)

∂

∂t
Ψ(x, t) = −

N∑

k=1

∂

∂xk

[
D

(1)
k Ψ(x, t)

]
+

N∑

k=1

N∑

l=1

∂2

∂xk∂xl

[
D

(2)
kl Ψ(x, t)

]
= LFPΨ(x, t)

LFP = −
N∑

k=1

∂

∂xk
D

(1)
k +

N∑

k=1

N∑

l=1

∂2

∂xk∂xl
D

(2)
kl

.

(141)

5.2.3 Klein-Kramers Equation

As a example, the Klein-Kramers or Kramers equation can be derived, which is the
Fokker-Planck equation for a particle with inertia.
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Equations of motion in 1 dimension

ẋ = v,

mv̇ = −γ′v + Γ (t) + F (x),

〈Γ (t)〉 = 0,

〈Γ (t)Γ (t′)〉 = 2γ′kBTδ(t− t′) , white noise.

Notice the change in notation for the friction coefficient: γ′ = mγ!
Setting x1 = x, x2 = v implies h1 = v, g11 = g12 = g21 = 0, h2 = −γ′v/m + F (x), and
g22 =

√
γ′kBT/m, or D1 = v, D11 = D12 = D21 = 0, D2 = −γ′v/m + F (x)/m, and

D22 = γ′kBT/m
2. Hence,

∂

∂t
Ψ(x, v, t) =

[
−v ∂

∂x
+

∂

∂v

(
γ′

m
v − F (x)

m

)
+
γ′kBT

m2

∂2

∂v2

]
Ψ(x, v, t) . (142)

Stationary Solution

The stationary solution follows from ∂Ψ/∂t = 0 and reads

Ψ(x, v) =
1

Z
exp

(
−β 1

2
mv2 − βU(x)

)
=

1

Z
exp (−βH) ,

where F (x) = −dU(x)/dx and H = mv2/2 + U(x). I.e, the Maxwell-Boltzmann distri-
bution is obtained, which can easily be demonstrated by inserting Ψ(x, v) in Eq. (142),
with the partition function Z =

∫
exp

(
−β 1

2
mv2 − βU(x)

)
dxdv.

In contrast to Eq. (110), the distribution function also comprises the kinetic energy part.

5.3 Markov Property

As pointed out before, Eq. (130) are a set of N non-linear first order differential equations
and their solution is uniquely determined by the N initial values. Hence, the process
described by the Langevin equations is a Markov process. This implies that the Fokker-
Planck equation also describes a Markov process. Since for such as system the relation

Ψ(x, t) =

∫
P (x, t|x′, t′)Ψ(x′, t′)dNx′ (143)

applies, the conditional probability density P (x, t|x′, t′) obeys the same Fokker-Planck
equation as Ψ(x, t).
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6 Solution of Fokker-Planck Equation:

Single Variable

In the following, solutions are discussed of the one-variable Fokker-Planck equation with
time-independent drift and diffusion coefficients and the assumption D(2)(x) > 0, i.e,

∂

∂t
Ψ(x, t) = LFPΨ(x, t) = − ∂

∂x
S(x, t), (144)

LFP = − ∂

∂x
D(1)(x) +

∂2

∂x2
D(2)(x). (145)

6.1 Stationary Solution

For the stationary state solution, the equation S = const applies. We will here consider
boundary conditions with a vanishing probability current, i.e., S = 0. Hence,

D(1)(x)Ψ(x) =
∂

∂x
D(2)(x)Ψ(x),

or

D(1)(x)D(2)(x)

D(2)(x)
Ψ(x) =

∂

∂x
D(2)(x)Ψ(x). (146)

Integration for the variable D(2)(x)Ψ(x) yields

Ψ(x) =
N

D(2)
exp

(∫ x D(1)(x′)

D(2)(x′)
dx′
)

= Ne−Φ(x) (147)

with

Φ(x) = lnD(2)(x)−
∫ x D(1)(x′)

D(2)(x′)
dx′. (148)

The constant N follows from the normalization condition
∫

Ψ(x)dx = 1.

6.2 Wiener Process

Without an external force (dU/dx = 0) the Smoluchowski equation (109) for the condi-
tional probability distribution P (x, t|x′, t′) reads (cf. Sec. 5.3)

∂

∂t
P (x, t|x′, t′) = D

∂2

∂x2
P (x, t|x′, t′), (149)

i.e., the diffusion equation is obtained with D = kBT/(γm). A solution is obtained, with
the initial condition P (x, t′|x′, t′) = δ(x− x′) and the boundary condition
limx→±∞ P (x, t|x′, t′) = 0, by Fourier transformation of the partial differential equation
(149).
Fourier transformation gives

P (x, t|x′, t′) =
1

2π

∫
P (k, t|x′, t′)eikxdk,

28



with the initial condition

P (k, t′|x′, t′) =

∫
P (x, t′|x′, t′)e−ikxdx =

∫
δ(x− x′)e−ikxdx = e−ikx

′
. (150)

Equation (149) yields then

d

dt
P (k, t|x′, t′) = −Dk2P (k, t|x′, t′),

with the solution

P (k, t|x′, t′) = e−Dk
2(t−t′)P (k, t′|x′t′) = e−Dk

2(t−t′)e−ikx
′
.

Fourier transformation gives

P (x, t|x′, t′) =
1

2π

√
π

D(t− t′) exp

(
− (x− x′)2)

4D(t− t′)

)
. (151)

Probability density

Ψ(x, t) =

∫
P (x, t|x′t′)Ψ(x′, t′)dx′.

P is Green’s function of diffusion equation

∂

∂
P (x, t|x′, t′)−D ∂2

∂x2
P (x, t|x′, t′) = δ(x− x′)δ(t− t′).

6.3 Ornstein-Uhlenbeck Process

For the Ornstein-Uhlenbeck process, the drift coefficients depend linearly on the coordi-
nates and the diffusion coefficients are constant, i.e.,

Di = −γijxj; γij, Dij = Dji = const. . (152)

Naturally, the above Wiener process is also an Ornstein-Uhlenbeck process.

6.3.1 Harmonic Oscillator

Langevin equation: overdamped motion

mγẋ = −mω2x+
√
γkBTmΓ (t),

ẋ = −ω
2

γ
x+
√
DΓ (t) = −ζx+

√
DΓ (t),

with ζ = ω2/γ.
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Fokker-Planck equation

D(1) = h = −ζx, D(2) = D = kBT/(γm)

∂

∂t
P (x, t|x′, t′) = ζ

∂

∂x
[xP (x, t|x′t′)] +D

∂2

∂x2
P (x, t|x′, t′). (153)

Fourier transformation

∂

∂t
P (k, t|x′, t′) = −ζk ∂

∂k
P (k, t|x′, t′)−Dk2P (k, t|x′, t′). (154)

Solution: P (k, t|x′, t′) is Gaussian, because stochastic force is Gaussian.
Ansatz

P (k, t|x′, t′) = exp

(
−ikM(t− t′)− 1

2
k2σ(t− t′)

)

With the initial condition (150) follows M(t′, t′) = x′ and σ(t′, t′) = 0. Hence,

∂

∂t
P (k, t|x′, t′) =

(
−ikṀ(t, t′)− 1

2
k2σ̇

)
P (k, t|k′, t′),

∂

∂k
P (k, t|x′, t′) = (−iM − kσ)P (k, t|x′, t′).

In Eq. (154)
[
−ikṀ − 1

2
k2σ̇ − ikζM − k2ζσ +Dk2

]
P (k, t|x′, t′) = 0

or

Ṁ + ζM = 0 ∧ −1

2
σ̇ − ζσ +D = 0.

Solution

M(t, t′) = x′ exp (−ζ(t− t′)) ,

σ(t) =
D

ζ
[1− exp (−2ζ(t− t′))] ,

i.e.,

P (k, t|x′, t′) = exp

(
−ikx′e−ζ(t−t′) − Dk2

2ζ

[
1− e−2ζ(t−t′)

])
.

Fourier transformation

P (x, t|x′, t′) =

√
ζ

2πD [1− e−2ζ(t−t′)]
exp

(
−ζ
[
x− x′e−ζ(t−t′)

]2

2D [1− e−2ζ(t−t′)]

)
. (155)

Limes ζ → 0, i.e, 1− e−2ζ(t−t′) = 2ζ(t− t′) yields

P (x, t|x′, t′) =

√
1

4πD(t− t′) exp

(
− (x− x′)2

4D(t− t′)

)
,
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i.e., the result of the Wiener process. The stationary state solution follows for t→∞:

Ψ0(x) =

√
ζ

2πD
exp

(
−ζx

2

2D

)
.

Joint probability density: Ψ(x, t;x′, t′) = P (x, t|x′, t′)Ψ0(x′), t > t′

Ψ(x, t;x′, t′) =
ζ

2πD
√

1− exp(−2γ(t− t′))
exp

(
−ζ x

2 + x′2 − 2xx′ exp(−ζ(t− t′))
2D [1− exp(−2ζ(t− t′))]

)
.

(156)
t→∞: Ψ(x, t;x′t′) = Ψ(x, t)Ψ(x′, t′).

Expectation values

〈x〉 =

∫
xΨ(x, t;x′, t′)dxdx′ = 0,

〈
x2
〉

=
D

ζ
.

Fixed initial value x′

〈x〉 =

∫
xP (x, t|x′, t′)dx = x′e−ζ(t−t

′),

〈
x2
〉

=
D

ζ

(
1− e−2ζ(t−t′)

)
+ x′2e−2ζ(t−t′).

Asymptotic behavior

〈
x2
〉

=





2D(t− t′) + x′2[1− 2ζ(t− t′)] , ζ|t− t′| � 1

D
ζ

ζ|t− t′| � 1
.

6.4 Boundary Conditions

The Fokker-Planck equation for a single variable can be formulated as

∂

∂t
Ψ(x, t) +

∂

∂x
S(x, t) = 0, (157)

where S is the probability current

S(x, t) =

[
D(1)(x, t)− ∂

∂x
D(2)(x, t)

]
Ψ(x, t). (158)

The following boundary conditions can then be considered

• Natural boundary conditions: S = 0 for x→ ±∞.

• Periodic boundary conditions: Ψ(x, t) = Ψ(x+ L, t), S(x, t) = S(x+ L, t).

• Reflecting boundary (wall): S = 0 at the position of the boundary.

• Absorbing boundary (wall): Ψ = 0 at the position of the boundary.
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6.5 Eigenfunction Expansion

The Fokker-Planck equation can be solved by an eigenfunction expansion, similar to the
Schrödinger equation. With the separation ansatz

Ψ(x, t) = ϕ(x)e−λt

follows

LFPϕ(x) = −λϕ(x), (159)

where the eigenfunctions ϕ obey the appropriate boundary conditions.

The Fokker-Planck operator LFP is not a Hermitian operator, but a Hermitian operator
can be defined with the function φ(x) (148) of the stationary solution. The Fokker-Planck
operator can be expressed as

LFP =
∂

∂x
D(2)(x)e−φ(x) ∂

∂x
eφ(x) (160)

as is easily seen by application of the differential operators. However,

L = eφLFP or (161)

L = eφ/2LFP e
−φ/2 (162)

are Hermitian operators. Proof for expression (161): Ψ1(x) and Ψ2(x) are solutions of
the Fokker-Planck equation satisfying the same boundary condition

∫
Ψ1e

φLFPΨ2dx =

∫
Ψ1e

φ ∂

∂x
D(2)e−φ

∂

∂x
eφΨ2dx = −

∫ [
∂

∂x
Ψ1e

φ

]
D(2)e−φ

[
∂

∂x
eφΨ2

]
dx

=

∫
Ψ2e

φ ∂

∂x
D(2)e−φ

∂

∂x
eφΨ1dx =

∫
ψ2e

φLFPΨ1dx (163)

Hence,
(
eφLFP

)†
= L†FP e

φ = eφLFP is a Hermitian operator.

Orthogonality of Eigenfunctions

Eigenvalues can be discrete, continuous, or both. In the following the notation for discrete
eigenvalues will be used. The case of continuous eigenvalue is analogoues to quantum me-
chanics, where the Kronecker δnm is replaced by a δ function.

Multiplication of the eigenvalue equation (159) with eφ(x)/2 from left gives

eφ(x)/2LFPϕn(x) = −λneφ(x)/2ϕn(x)

⇔ eφ(x)/2LFP e
−φ(x)/2eφ(x)/2
︸ ︷︷ ︸

= 1

ϕn(x) = −λneφ(x)/2ϕn(x).

Hence, we have

Lψn(x) = −λnψn(x),
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where L is given by Eq. (162) and

ψn(x) = eφ(x)/2ϕn(x). (164)

Since L is a Hermitian operator, its eigenvalues are real and two eigenfunctions ψ1 and
ψ2 with different eigenvalues λ1 6= λ2 are orthogonal. For normalized eigenfunctions, we
thus find the orthonormality relation

∫
ψn(x)ψm(x)dx =

∫
eφ(x)ϕn(x)ϕm(x)dx = δnm. (165)

Positivity of Eigenvalues

From Eq. (163)—first and third term—follows for ψ1 = ψ2 = ϕn
∫
ϕn(x)eφLFPϕn(x)dx =

∫
ψn(x)Lψn(x)dx = −λn (166)

= −
∫ (

∂

∂x
ψn(x)eφ/2

)2

D(2)e−φdx ≤ 0 . (167)

The equal sign applies for the stationary state λ0 = 0 only, i.e.,

∂

∂x
ψ0(x)eφ/2 = 0 ⇒ ψ0(x) =

√
Ne−φ/2 . (168)

All other eigenvalues λn (n > 0) are larger than zero.

Completeness Relation

For a complete set of eigenfunctions of a Hermitian operator follows

∑

n

ψn(x)ψn(x′) = δ(x− x′)

= eφ(x)/2+φ(x′)/2
∑

n

ϕn(x)ϕm(x′)

= eφ(x)
∑

n

ϕn(x)ϕm(x′) = eφ(x′)
∑

n

ϕn(x)ϕm(x′) (169)

Conditional Probability Density

The formal solution of the Fokker-Planck equation ∂/∂tP (x, t|x′, t′) = LFPP (x, t|x′, t′) is
given by

P (x, t|x′, t′) = eLFP (x)(t−t′)δ(x− x′). (170)

With the representation (169) of the δ function follows

P (x, t|x′, t′) = eφ(x′)
∑

n

eLFP (t−t′)ϕn(x)ϕn(x′) = eφ(x′)
∑

n

e−λn(t−t′)ϕn(x)ϕn(x′)

= eφ(x′)/2−φ(x)/2
∑

n

e−λn(t−t′)ψn(x)ψn(x′). (171)

33



Joint Probability Density

In the stationary state, the joint probability density is given by

Ψ(x, t;x′, t′) = P (x, t|x′, t′)Ψ0(x′), (172)

with Ψ0(x) = ψ0(x)2 = N exp(−φ(x)) (cf. Eqs. (147), (168)). Since Eq. (171) yields in
the stationary state

lim
t→∞

P (x, t|x′, t′) = ψ0(x)ψ0(x′) ,

the joint probability distribution is

Ψ(x, t;x′, t′) = ψ0(x)ψ0(x′)
Nmax∑

n=0

e−λn(t−t′)ψn(x)ψn(x′), (173)

if ψ0(x) exists. In the asymptotic limit |t− t′| → ∞, Ψ(x, t;x′, t′) becomes

lim
|t−t′|→∞

Ψ(x, t;x′, t′) = ψ0(x)2ψ0(x′)2. (174)

6.6 Transformation to Schrödinger Equation

By a suitable transformation, the one-variable Fokker-Planck equation, with an x-dependent
factor D(2)(x), can be transformed into a Fokker-Planck equation with a constant factor
D = D(2). Consider the Langevin equation with time-independent factors h(ξ) and g(ξ)
(〈Γ(t)Γ(t′)〉 = 2δ(t− t′))

ξ̇(t) = h(ξ) + g(ξ)Γ(t) .

Multiplication with
√
D/g(ξ), or ĝ2 = D = const. yields

ĝ

g(ξ)
ξ̇(t) =

h(ξ)ĝ

g(ξ)
+ ĝΓ(t) = ĥ(ξ) + ĝΓ(t) .

Substitution η = η(ξ) yields the new Langevin equation

η̇(t) = ĥ(ξ(η)) + ĝΓ(t), (175)

with

• η̇ = (ĝ/g(ξ)) ξ̇ ⇒ dη = (ĝ/g(ξ)) dξ ⇒ η =

∫ ξ

(ĝ/g(ξ′)) dξ′

• ĥ(η) = h(ξ(η))ĝ/g(ξ(η)) .

Fokker-Planck equation for variable y corresponding to stochastic variable η

∂

∂t
Ψ̂(y, t) =

[
− ∂

∂y
D̂(1)(y) +D

∂2

∂y2

]
Ψ̂(y, t).

Relation between Ψ̂(y) and Ψ(x)
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• transformation of coordinates Ψ(x, t)dx = Ψ̂(y, t)dy = Ψ̂(y, t)(dy/dx)dx

Ψ̂(y) =

(
dy

dx

)−1

Ψ(x(y), t)

• D̂(2) = ĝ2 = D ⇒ dy/dx =
√
D/D(2)(x) (see relation between ξ and η)

• D̂(1)(y) = ĥ(y) = h(x)ĝ/g(x) or (x = x(y))

D̂(1)(y) =

√
D

D(2)(x)

[
D(1)(x)− dg(x)

dx
g(x)

]
=

√
D

D(2)(x)

[
D(1)(x)− 1

2

dD(2)(x)

dx

]

Replacing y by x and defining f ′(x) = −D(1)(x), i.e., f(x) = −
∫
D(1)(x)dx we find

∂

∂t
Ψ(x, t) =

[
∂

∂x
f ′(x) +D

∂2

∂x2

]
Ψ(x, t) = − ∂

∂x
S(x, t) = LFPΨ(x, t). (176)

Representation of operator L:

L = eφ/2LFP e
−φ/2 Eq. (160)

= Deφ/2
∂

∂x
e−φ(x) ∂

∂x
eφ(x)/2

= Deφ/2
∂

∂x

(
e−φ(x)

[
φ′

2
eφ(x)/2 + eφ(x)/2 ∂

∂x

])

= Deφ/2
(
φ′′

2
e−φ(x)/2 − φ′2

4
e−φ(x)/2 +

φ′

2
e−φ(x)/2 ∂

∂x
− φ′

2
e−φ(x)/2 ∂

∂x
+ e−φ(x)/2 ∂

2

∂x2

)

= D

(
φ′′

2
− φ′2

4
+

∂2

∂x2

)

= D
∂2

∂x2
− Vs(x).

Hence,

L = D
∂2

∂x2
− Vs(x). (177)

This is the negative one-particle Hamiltonian

H = −D ∂2

∂x2
+ Vs(x), (178)

where

Vs = −Dφ
′′

2
+D

φ′2

4
.

The stationary solution of Eq. (176) yields φ(x) = f(x)/D, hence

Vs(x) =
1

4D
(f ′(x))

2 − 1

2
f ′′(x).
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f ′(x) is negative force of Fokker-Planck equation.
Solutions of Schrödinger equation HΨ = EΨ with potential Vs are solutions of Fokker-
Planck equation with potential f(x).

Parabolic Potential: Harmonic Oscillator

As an example of the prescript procedure, we will discuss the harmonic oscillator. The
potential is

f(x) =
ζ

2
x2 ; ζ > 0 ,

hence, the potential Vs is

Vs(x) =
1

4D
(f ′(x))

2 − 1

2
f ′′(x) =

ζ2

4D
x2 − ζ

2
. (179)

We have to solve the equation

∂

∂t
Ψ(x, t) =

[
D
∂2

∂x2
− Vs(x)

]
Ψ(x, t),

which leads, by an eigenfunction expansion, to the eigenvalue equation
[
D
∂2

∂x2
− Vs(x)

]
ψn(x) = −λnψn(x) .

With the potential Vs follows
[
−D ∂2

∂x2
+

ζ2

4D
x2

]
ψn(x) =

(
λn +

ζ

2

)
ψn(x) . (180)

The Schrödinger equation of a harmonic oscillator is given by
[
− ~2

2m

∂2

∂x2
+

1

2
mω2x2

]
ψn(x) = Enψn(x) ,

with the solution

En = ~ω
(
n+

1

2

)
,

ψn(x) = 4

√
mω

π~
1√
2nn!

Hn

(√
mω

~
x

)
exp

(
−mω

~
x2
)
,

ψ0(x) = 4

√
mω

π~
exp

(
−mω

~
x2
)
.

The Hn are Hermite polynomials.
With the mapping D = ~2/(2m), ζ2/(2D) = mω2, or ~ =

√
2mD and ω =

√
ζ2/(2mD),

and comparison with the Schrödinger equation yields the solution of Eq. (180)

λn = nζ ;n = 1, . . . ,∞ (181)

ψ0(x) =
4

√
ζ

2πD
exp

(
− ζ

4D
x2

)
, (182)

ψn(x) =
4

√
ζ

2πD

1√
2nn!

Hn

(√
ζ

2D
x

)
exp

(
− ζ

4D
x2

)
. (183)
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Conditional probability distribution function

With the stationary state equation φ(x) = f(x)/D = ζx2/(2D) follows the conditional
probability distribution (155)

P (x, t|x′, t′) = eφ(x′)/2−φ(x)/2

∞∑

n=0

e−λn(t−t′)ψn(x)ψn(x′)

=

√
ζ

2πD

∞∑

n=0

1

2nn!
Hn

(√
ζ

2D
x

)
Hn

(√
ζ

2D
x′

)
(184)

× exp

(
− ζ

4D
x2

)
exp

(
− ζ

4D
x′2
)

exp

(
ζ

4D
x2

)
exp

(
ζ

4D
x′2
)
.

With (|α| < 1/2)

∞∑

n=0

αn

n
Hn(x)Hn(y) =

1√
1− 4α2

exp

(
− 4α

1− 4α2

[
αx2 + αy2 − xy

])
(185)

follows (2α = exp (−ζ(t− t′)) = exp (−ζ∆t) )

P (x, t|x′, t′) =

√
ζ

2πD [1− e−2ζ(t−t′)]
exp

(
− ζ

2D
x2

)

× exp

(
ζeζ∆t

D(1− e−2ζ∆t)

[
xx′ − e−ζ∆tx− e−ζ∆tx′

])

=

√
ζ

2πD [1− e−2ζ(t−t′)]
exp

(
−ζ
[
x− x′e−ζ(t−t′)

]2

2D [1− e−2ζ(t−t′)]

)
(186)
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7 Solution of Fokker-Planck Equation for Several

Variables

Fokker-Planck equation

∂Ψ({x})
∂t

= LFPΨ({x}) = −
∑

i

∂Si
∂xi

= −∇S, (187)

LFP = −
∑

i

∂

∂xi
Di({x}) +

∑

i,j

∂2

∂xi∂xj
Dij({x}) = −∇D + ∇ ·∇D. (188)

S is the probability current

Si = DiΨ−
∑

j

∂

∂xj
Dij({x})Ψ , ⇒ S = DΨ−∇ (DΨ) . (189)

In a on-dimensional system, the probability current is constant in the stationary state.
For natural boundary conditions is S = 0. For a system with N variables, the probability
current is not a constant in general in the stationary state and for natural boundary con-
ditions no longer equal to zero. Only under particular conditions (potential condition)
may the probability current vanish in the stationary state.

Lets consider the particular case Dij = Dδij, with D = const.. Then,

Si = Ψ

(
Di −D

∂

∂xi
ln Ψ

)
= DiΨ−D

∂

∂xi
Ψ. (190)

The condition Si = 0 implies Di = D∂ ln Ψ/∂xi. Hence, Didxi = Dd ln Ψ and

Ψ({x}) = Nc exp

(
1

D

∫ {x}
Di({x′}) dx′i

)
= Nc exp (−φ({x})) . (191)

Therefore, we can define a potential φ via

φ({x}) = − 1

D

∫ {x}
Di({x′}) dx′i. (192)

The potential exists, if ∂Di/∂xj = ∂Dj/∂xi. These conditions are necessary and suffi-
cient. The condition under which the probability current vanishes is denoted as detailed
balance.

In case the potential condition applies and Dij = Dδij, the Fokker-Planck operator can
be represented as

LFP =
∑

i

D
∂

∂xi
e−φ

∂

∂xi
eφ. (193)

Hence,

L†FP e
φ = D

∑

i

eφ
∂

∂xi
e−φ

∂

∂xi
eφ = eφLFP , (194)
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and

L = eφ/2LFP e
−φ/2 = e−φ/2L†FP e

φ/2 = L† (195)

= e−φ/2eφLFP e
−φ/2 = e−φ/2L+

FP e
−φ/2eφ = e−φ/2L†FP e

φ/2. (196)

Thus, L = L† is an Hermitian operator.

In general, the Fokker-Planck equation cannot be brought in a Hermitian form. As a
consequence, the eigenvalues of the Fokker-Planck operator can be complex numbers.

7.1 Approach of the Asymptotic Solution: H-Theorem

Here, it will be shown that two time-dependent solutions of the Fokker-Planck equation
will approach the same limiting value in the limit t→∞, i.e., the same stationary state
distribution, at least under certain conditions.
Prerequisites:

• natural boundary conditions apply: Ψ→ 0 for |xi| → ∞

•
∫

Ψ({x})dNx = 1, normalization

• Ψ({x}) 6= δ(x), is not a δ function

• |Di|, |Dij| <∞, no singularities

H-theorem: consider functional

H(t) =

∫
Ψ1 ln (Ψ1/Ψ2) dNx =

∫
(Ψ1 ln Ψ1 −Ψ1 ln Ψ2) dNx, (197)

with two solutions Ψ1 and Ψ2 of the FP equation.
Assertion: H(t) ≥ 0

Define R = Ψ1/Ψ2 ≥ 0, since Ψ1 and Ψ2 are probability densities. Moreover,

R lnR−R + 1 =

∫ R

1

lnx dx ≥ 0, (198)

since lnx is strictly monotonic. With the normalization
∫

Ψ1 d
Nx =

∫
Ψ2 d

Nx = 1 follows

H(t) =

∫
Ψ1 lnRdNx+1− 1 =

∫
(Ψ1 lnR−Ψ1 + Ψ2) dNx

=

∫
Ψ2 (R lnR−R + 1) dNx ≥ 0. (199)

Differential equation for Ḣ = dH(t)/dt; Assertion: Ḣ ≤ 0

Ḣ(t) =

∫ [
Ψ̇1 ln

(
Ψ1

Ψ2

)
+

Ψ1

Ψ1

Ψ̇1 −
Ψ1

Ψ2

Ψ̇2

]
dNx (200)

=

∫
Ψ̇1 lnR−RΨ̇2 d

Nx

=

∫
(LFPΨ1) lnR−RΨ̇2 d

Nx
P.I.
=

∫
ΨL†FP lnR−RΨ̇2 d

Nx.
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With

L†FP lnR =
∑

i

(
Di +

∑

j

Dij
∂

∂xj

)
∂

∂xi
lnR =

∑

i

(
Di +

∑

j

Dij
∂

∂xj

)
1

R

∂R

∂xi
(201)

=
1

R
L†FPR−

∑

ij

Dij
1

R2

∂R

∂xj

∂R

∂xi

follows

Ḣ(t) =

∫
Ψ1

R
L†FPR−RΨ̇2 d

Nx−
∫

Ψ1

∑

ij

Dij
1

R2

∂R

∂xj

∂R

∂xi
dNx (202)

R=Ψ1/Ψ2
=

∫
RL†FPΨ2 −RΨ̇2 d

Nx−
∫

Ψ1

∑

ij

Dij
1

R2

∂R

∂xj

∂R

∂xi
dNx

P.I.
=

∫
RLFPΨ2 −RΨ̇2︸ ︷︷ ︸

=0

dNx−
∫

Ψ1

∑

ij

Dij
1

R2

∂R

∂xj

∂R

∂xi
dNx.

Hence,

Ḣ(t) = −
∫

Ψ1

∑

ij

Dij
1

R2

∂R

∂xj

∂R

∂xi
dNx ≤ 0 (203)

if Dij positive definite. Thus, Ḣ decreases with time as long as ∂ lnR/∂xi 6= 0. Since
H(t) ≥ 0, it cannot decrease unlimited. As a consequence, it is assumed that lnR and R

become independent of x for t→∞. Thus, Ḣ(t)
t→0→ 0. Because of

1 =

∫
Ψ1 d

Nx =

∫
Ψ1

Ψ2

Ψ2 d
Nx =

∫
RΨ2 d

Nx
t→∞
= R

∫
Ψ2 d

Nx = R, (204)

i.e., Ψ1 = Ψ2 for H → 0 in the limit t→ 0.w
As a consequence, all solutions of the Fokker-Planck equation are equal on sufficiently
large time scales. For time-independent drift and diffusion coefficients can be a stationary
state solution, with

LFPΨst = 0. (205)

Application: Kramers equation

The above considerations do not apply for the Kramers equation, because the diffusion
matrix (Dij) is not positive definite (several of the matric elements are zero). From
Eq. (203), we can only conclude that ∂ lnR/∂v = 0. The other matrix elements are zero.
Hence, we assume that for long times the relation applies

Ψ(x, v, t) = h(x, t) exp

(
−1

2

mv2

kBT

)
. (206)

Insertion in the Klein-Kramers equation (142) yields

ḣ(x, t) =

(
− ∂

∂x
+
F (x)

kBT

)
vh(x, t). (207)
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Stationary state: ḣ = 0

h(x) = h0 exp

(
F (x)

kBT

)
= h0 exp (−βU(x)) . (208)

Hence, also the stationary state of the Kramers equation is unique.

7.2 Representation by a Biorthogonal Basis

The probability density Ψ can be represented by eigenfunctions in the form

Ψ(x, t) =
∑

n

ϕn(x)e−λnt (209)

and the Fokker-Planck equation becomes

LFPϕn = −λnϕn. (210)

Since LFP is in general non-Hermitian, the eigenfunctions of the adjunct operator are also
required:

L†FPϕ
†
m = −λmϕ†m. (211)

For the definition of the ϕ†m can either the conjugated complex eigenvalue in Eq. (211) be
used, or the eigenvalue itself. With the latter choice, the scalar product of the eigenfunc-
tions becomes

(
ϕ†m, ϕn

)
:=

∫
ϕ†m(x)ϕn(x) dNx. (212)

As a consequence, the eigenvalues in Eqs. (210) and (211) are equal:
∫
ϕ†m(x)LFPϕm(x) dNx = −λm

∫
ϕ†m(x)ϕm(x) dNx = −λm

(
ϕ†m, ϕm

)
(213)

=

∫
L†FPϕ

†
m(x)ϕm(x) dNx = −λ†m

(
ϕ†m, ϕm

)
;

⇒ λn = λ†n. (214)

The eigenfunctions corresponding to different eigenvalues are orthogonal.

−λn
(
ϕ†m, ϕn

)
=
(
ϕ†m, LFPϕn

)
=
(
L†FPϕ

†
m, ϕn

)
= −λ†m

(
ϕ†m, ϕn

)
, (215)

⇒
(
ϕ†m, ϕn

)
= 0 , λn 6= λm. (216)

Hence,
(
ϕ†m, ϕn

)
= δnm.

For a non-Hermitian operator, there is not always a complete set of eigenfunctions. If
such a set would exist, the non-Hermitian matrix could be diagonalized. If all eigenvalues
would be different, the matrix could be transformed into a diagonal matrix. Otherwise,

41



only the Jordan normal form exists.

We will assume that a biorthogonal basis set exists and the completeness relation is given
by

∑

n

ϕn(x)ϕ†n(x′) = δ(x− x′). (217)

When a stationary solution of the Fokker-Planck equation exists, the following relations
apply

λ0 = 0 , ϕ0(x) = Ψst(x) , ϕ†0(x) = 1. (218)

The transition probability is then

P (x, t|x′, t′) = eLFP (x)(t−t′)δ(x− x′) = eLFP (x)(t−t′)
∑

n

ϕn(x)ϕ†n(x′) (219)

=
∑

n

ϕn(x)ϕ†n(x′)e−λn(t−t′).

7.3 Detailed Balance

For the illustration of the meaning of detailed balance, it is most convenient to consider
a master equation.
Master equation

d

dt
Ψn(t) =

∑

m

[w(m→ n)Ψm − w(n→ m)Ψn] . (220)

Here, w(n→ m) denotes the transition rate from a (discrete) state n to m

1

2

3

w(1   3)
w(3   2)

w(2   1)

Illustration of the transitions from 1→ 3 and back from 3→ 2 and 2→ 1.
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Stationary state, i.e., Ψ̇n = 0 implies

∑

m

[w(m→ n)Ψm − w(n→ m)Ψn] = 0. (221)

Detailed balance yields

w(m→ n)Ψm = w(n→ m)Ψn. (222)

This condition is sufficient, but not necessary. It is a rather strong condition on the
transition between two levels. Stationary would be satisfied with a weaker relation.

Fokker-Planck equation

Fokker-Planck equation in master equation form

∂

∂t
Ψ(x, t) =

∫
[w(x′ → x)Ψ(x′, t)− w(x→ x′)Ψ(x, t)] dNx′ , (223)

where

w(x′ → x) =
∂

∂t
P (x, t|x′, 0)|t=0 = LFP (x)δ(x− x′) . (224)

Detailed balance for even variables, i.e., variables which don’t change sign during time
inversion

∫
w(x′ → x)Ψst(x

′) dNx′ =

∫
w(x→ x′)Ψst(x) dNx′, (225)

or

LFPΨst(x) = LFP (x)

∫
Ψst(x

′)δ(x− x′) dNx′ =
∫
LFP (x′)δ(x− x′) dNx′Ψst(x) = 0 ,

(226)

(LFP (x′)Ψst(x) = 0) hence,

LFP (x)Ψst(x) = 0 (227)

and the probability density function satisfies the Fokker-Planck equation.
If we require (detailed balance)

w(x′ → x)Ψst(x
′) = w(x→ x′)Ψst(x) (228)

for the stationary state in Eq. (223), in analogy to Eq. (222), we obtain the condition

LFP (x)δ(x− x′)Ψst(x
′) = LFP (x′)δ(x− x′)Ψst(x) (229)

or (x′ → x, left hand side)

LFP (x)Ψst(x)δ(x− x′) = Ψst(x)L†FP (x)δ(x− x′). (230)
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Here, we used A(x)δ(x− x′) = A†(x′)δ(x− x′). Hence,

LFP (x)Ψst(x) = Ψst(x)L†FP (x). (231)

This is a relation for operators, i.e., it must be valid if it is applied to any arbitrary func-
tion. If we apply the relation to the function f(x) = 1, we recover the Eq. (227), because
L†FP (x) · 1 = 0. Hence, LFP (x)Ψst(x) = 0.

The relation (231) can be generalized to odd functions. With the definition

x̃i = xi
x̃i = −xi

}
x̃i = εixi

{
ε̃i = 1, even (position)

ε̃i = −1, odd (velocity)
(232)

Hence,

w(x′ → x)Ψst(x
′) = w(εx→ (εx)′)Ψst(εx) (233)

or

LFP (x)Ψst(x) = Ψst(εx)L†FP (εx). (234)

7.4 Ornstein-Uhlenbeck Process

For the Ornstein-Uhlenbeck process, the drift and diffusion coefficients are constant, i.e.,

Di = −
∑

j

γijxj ; γij, Dij = Dji const. . (235)

We want to find the solution of the Fokker-Planck equation

∂

∂t
P (x, t|x′, t′) =

∑

i,j

γij
∂

∂xi
[xjP (x, t|x′, t′)] +Dij

∂2

∂xi∂xj
P (x, t|x′, t′) , (236)

with the initial condition P (x, t′|x′, t′) = δ(x− x′). Equation (236) is a linear equation,
hence we solve it by Fourier transformation. Fourier representation of P (x, t|x′, t′)

P (x, t|x′, t′) =
1

(2π)N

∫
eik·xP (k, t|x′, t′) dNk . (237)

Hence, Eq. (236) becomes

∂

∂t
P (k, t|x′, t′) = −

∑

i,j

(
γijki

∂

∂kj
P (k, t|x′, t′)−DijkikjP (k, t|x′, t′)

)
, (238)

with the initial condition

P (k, t′|x′, t′) = e−ikx
′
. (239)

Ansatz

P (k, t|x′, t′) = exp

(
−ik ·M (t, t′)− 1

2
kTσ(t, t′)k

)
. (240)
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Hence,

Ṗ +
∑

i,j

γijki
∂

∂kj
P + kTDkP =

(
−ik · Ṁ − 1

2
kT σ̇k − ikTγM − kTγσk + kTDk

)
P

= 0. (241)

Separating time dependence for M and σ:

Ṁ =− γM , (242)

σ̇ =− γσ − σγ + 2D . (243)

Initial conditions: M(0) = x′(0), σ(0) = 0.

Solution of Eq. (242):

M(t, t′) = exp (−γ(t− t′))M(t′) , (244)

or, with initial condition

M(t) = e−γt x′ . (245)

Solution of Eq. (243). First homogeneous equation, i.e. D = 0

σh(t) = e−γtσ(0)e−γt
σ(0)=0

= 0 , (246)

hence, solution of inhomogeneous equation

σ(t) =

∫ t

0

e−γt
′
2De−γt

′
dt′ . (247)

Or with G(t, t′) = G(t− t′) = exp (−γ(t− t′)):

M(t) = G(t)x′ , σ(t) = 2

∫ t

0

G(t′)DG(t′) dt′ , (248)

Mi(t) =
∑

j

Gij(t)x
′
j , σij = 2

∑

kl

∫ t

0

Gik(t
′)DklGlj(t

′) dt′ . (249)

Finally, conditional probability density

P (x, t|x′, t′) =
1

(2π)N

∫
eik·xP (k, t|x′, t′) dNk

=
1

(2π)N

∫
eik·x exp

(
−ikTG(t)x′ − 1

2
kTσ(t)k

)
dNk , (250)

or

P (x, t|x′, t′) =
1

(2π)N/2
1√
|σ(t)|

exp

(
−1

2
[x−G(t)x′]

T
σ−1(t) [x−G(t)x′]

)
. (251)

Stationary state
If all the real parts of the eigenvalues of the matrix γ are larger than zero, there is a

stationary state. This implies G
t→∞−→ 0, and

Ψ(x) =
1

(2π)N/2
1√
|σ(∞)|

exp

(
−1

2
xTσ−1(∞)x

)
, (252)

where σ(∞) obeys

γσ(∞) + σ(∞)γ = 2D . (253)
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8 Generalized Langevin Equation

So far, we discussed the Langevin equation as an empirical extension of Newton’s equations
of motion. However, the Langevin equations can be derived by a projection operator
formalism. As an instructive and descriptive example, the dynamics of a particle of
mass M (Brownian particle) embedded in a fluid of (Ns particles) will be considered.
The particle mass obeys M � mi, where mi is the mass of the fluid particle i. The
Hamiltonian of the whole system is then

H =
p

2M
+

Ns∑

i=1

p2
i

2mi

+ Ufl({ri}) + Uint , (254)

where
Ufl is the potential energy of the fluid particles, and

Uint the interaction energy between the fluid and the particle Uint =
∑Ns

i=1 Uint(ri − r).

We are only interested in the dynamics of the “large” particle. The dynamics of the re-
maining degrees is not of interest. We will use a projection operator formalism to remove
the undesired degrees of freedom.

8.1 Projection Operator Formalism

We divide the system in relevant and irrelevant variables

• relevant variables r, p, or, v, r

• irrelevant variables p1, . . . ,pNs , r1, . . . , rNs

In general, we will now denote the relevant variables by Ai, i = 1, . . . N . The equations
of motion of the variables Ai are given by

Ȧi = iLAi . (255)

We introduce a projection operator P via

P =
N∑

i,j=1

〈. . . A∗i 〉
〈
AiA

∗
j

〉
(256)

and the complementary operator Q by

Q = I−P . (257)

In the scaler product, 〈. . .〉 means averaging over the equilibrium distribution function (
ensemble average), i.e.,

〈
AiA

∗
j

〉
=

1

Z

∫
AiA

∗
je
−βHdΓ =

∫
AiA

∗
jΨstdΓ . (258)
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The inverse 〈. . .〉−1 is defined as

N∑

k=1

〈AiA∗k〉
〈
AkA

∗
j

〉−1
= δij . (259)

The equation of motion of Aj is then given by

dAj
dt

= iLAj(t) = eiLtiLAj(0) = eiLt (P + Q) iLAj(0) . (260)

Using the identity

eiLt = eiQLt +

∫ t

0

eiL(t−τ)iPLeiQLτ dτ , (261)

we obtain

dAj
dt

=
N∑

k=1

(
iΩjkAk(t)−

∫ t

0

Kjk(τ)Ak(t− τ)dτ

)
+ Fj(t) , (262)

with the abbreviations

iΩkl =
N∑

j=1

〈
(iLAk)A

∗
j

〉
〈AjA∗l 〉−1 , frequency function (263)

Kkl =
N∑

j=1

〈
Fk(τ)F ∗j

〉
〈AjA∗l 〉−1 , memory function (264)

Fk(t) = eiQLtiQLAk(0) , stochastic forces . (265)

Brownian particle

Back to the dynamics of the Brownian particle. The relation between particle position
and velocity is

r(t) = (x1, x2, x3)T = (A1, A2, A3)T ; ṙ(t) = v(t) = (v1, v2, v3)T = (A4, A5, A6)T .
(266)

The operator L is given by

L = −i
3∑

α=1

pα
m

∂

∂xα
+ Fα

∂

∂pα
, (267)

which yields Hamilton’s equations of motion

ẋα = iLxα =
pα
m

, (268)

ṗα = iLpα = Fα . (269)

The operator P is

P =
3∑

α,β=1

〈. . . xα〉 〈xαxβ〉−1 xβ +
3∑

α,β=1

〈. . . vα〉 〈vαvβ〉−1 vβ ; (270)
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mixed terms vanish, because a canonical ensemble is considered.
Calculation of the correlation functions yields (distribution function Ψ = Z−1 exp (−βH))

dr

dt
= v , (271)

M
dv

dt
= −Or − 1

kBT

∫ t

0

〈f(τ) · f(0)〉v(t− τ) dτ + f(t) (272)

with the definitions

f(t) = MF (t) ; 〈F (t) · F (0)〉 =
1

M2
〈f(t) · f(0)〉 ; O 〈r : r〉 = kBT I , (273)

r : r: dyadic product; O ∼ 〈AA〉−1.

We can compare Eq. (271) with the Langevin equation Eq. (130) of Sec. 5.2.1. Evidently,
f(t) corresponds to the stochastic forces Γ(t). Moreover, there are memory effects in gen-
eral. In case M � mi, the acceleration of the Brownian particle is negligible (overdamped
dynamics). Then, we find

−Or(t)− 1

kBT

∫ t

0

〈f(τ) · f(0)〉 ṙ(t− τ) dτ + f(t) = 0 . (274)

Multiplication by the inverse of 〈f(τ) · f(0)〉 and integration yields

d

dt
r(t) =

∫ t

0

M(t− τ) [−Or(τ) + f(τ)] dτ . (275)

(
∫ t

0
M(t− τ) 〈f(t′ − τ) · f(0)〉 dτ = 2kBTδ(t− t′)I; 2. fluctuation dissipation theorem)

Assuming that the correlation function of the fluid-particle forces acting on the Brownian
particles relax much faster than the correlations of the Brownian particles, we can write

M(t− τ) = Mδ(t− τ) . (276)

Moreover, the stochastic forces can be described by a δ-correlated process, i.e., we obtain
the equations

ṙ(t) = M (−Or(t) + Γ (t)) , (277)

〈Γ (t) · Γ (t′)〉 = 2kBTM−1δ(t− t′) , (278)

with MM−1 = I.
For our original system, M is given by M = I/γ.

In case of a system with several degrees of freedom (polymer chain), the stochastic equa-
tion becomes

d

dt
ri(t) =

N∑

k=1

Mik

(
−

N∑

j=1

Okjrj(t) + Γ k(t)

)
. (279)

Naturally, for these general Langevin equations there exists a Fokker-Planck equation
(Smoluchowski equation), namely

∂

∂t
Ψ(t) =

N∑

i,j=1

∇riMij

(
kBT∇rj −

N∑

k=1

Okjrj

)
Ψ(t) . (280)
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Side remarks

Properties of projection operators

• P2 = P

P =
∑

i,j

〈. . . A∗i 〉
〈
AiA

∗
j

〉−1
Aj

P2 =
∑

i,j

∑

i′,j′

〈[
〈. . . A∗i′〉

〈
Ai′A

∗
j′

〉−1
Aj′
]
A∗i

〉 〈
AiA

∗
j

〉−1
Aj

=
∑

i,j

∑

i′,j′

[
〈. . . A∗i′〉

〈
Ai′A

∗
j′

〉−1
]
〈Aj′A∗i 〉

〈
AiA

∗
j

〉−1
Aj

∑
i→δj,j′
=

∑

i′,j′

〈. . . A∗i′〉
〈
Ai′A

∗
j′

〉−1
Aj′ = P

Identity

eiLt = eiQLt +

∫ t

0

eiL(t−τ)iPLeiQLτdτ

Setting f(t) = eiLt; differential equation for f(t)

d

dt
f(t) = iLf(t) = iQLeiQLt + iPLeiQLt + iL

∫ t

0

eiL(t−τ)iPLeiQLτdτ

P+Q=1
= iLeiQLt + iL

∫ t

0

eiL(t−τ)iPLeiQLτdτ

= iLf(t)

Hence, both sides of the equation satisfy the same differential equation. With the same
initial condition, i.e., f(0) = 1 follows identical solution.

Derivatives

Identity

d

dt
Aj = iLAj(t) = eiLtiLA(0) = eiLt(P + Q)iLAj(0)

Moreover,

eiLtPiLAj(0) = eiLt
∑

k,l

〈iLAjA∗k〉 〈AkA∗l 〉−1Al(0)

=
∑

k,l

〈iLAjA∗k〉 〈AkA∗l 〉−1Al(t)

= i
∑

l

ΩjlAl(t)
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and

iΩjl =
∑

k

〈iLAjA∗k〉 〈AkA∗l 〉−1

Furthermore,

eiLtQiLAj(0) = eiQLtQiLAj(0)︸ ︷︷ ︸
Fj(t)

+

∫ t

0

eiL(t−τ)iPLeiQLτdτ QiLAj(0)

= Fj(t) +

∫ t

0

eiL(t−τ)iPL eiQLτQiLAj(0)︸ ︷︷ ︸
Fj(τ)

dτ

= Fj(t) +

∫ t

0

eiL(t−τ)iPLFj(τ) dτ

iPLFj(τ) = iPL(P + Q)Fj(τ) = iPLQFj(τ) , because PFj(τ) = 0

Consequently,

eiLtQiLAj(0) = Fj(t) +

∫ t

0

eiL(t−τ)
∑

k,l

〈iLQFj(τ)A∗k(0)〉 〈AkA∗l 〉Al(0) dτ

(iLQ)†A∗k(0)=−F ∗k (0)
= Fj(t)−

∫ t

0

eiL(t−τ)
∑

k,l

〈Fj(τ)F ∗k (0)〉 〈AkA∗l 〉Al(t− τ) dτ

And

d

dt
Aj = i

∑

k

ΩjkAk(t)−
∫ t

0

∑

k

Kjk(τ)Ak(t− τ) dτ + Fj(t)

with

iΩjk =
∑

l

〈iLAjA∗k〉
〈
AkA

∗
j

〉−1

Kjk =
∑

l

〈Fj(τ)F ∗l (0)〉 〈AlA∗k〉−1

test
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9 Hydrodynamic Interactions

Lets consider one or several objects composed of mass points in a fluid environment. The
particles interact with each other by pair-wise forces, i.e, the potential reads

U = Uex(r) +
1

2

N∑

i=1

N∑

j=1

Uij(ri − rj). (281)

Uex denotes an external potential, such as an electric field or gravitational force. The
dynamics of the particles can be described by the Langevin equation

ṙi =
1

γ
[Fi + Γ i(t)] , (282)

Fi =
∑

j Fij (external force is dropped) and the stochastic force is considered a Gaussian-
Markovian process (white noise)

〈Γ i(t)〉 =0, (283)

〈Γi,α(t)Γj,β(t′)〉 =2kBTγδαβδijδ(t− t′). (284)

Here, correlations in the solvent are neglected. The motion of a fluid particle, however,
implies fluid motion due to non-slip boundary conditions (Stokes law: F = 3πηd, where
d is the particle diameter), i.e., the fluid at the position of the particle moves with the
same velocity as the particle itself and vice versa. This fluid motion affects the dynamics
of other particles and is denoted as hydrodynamic interactions. To determine the velocity
of a particle i, the fluid velocity v(r) is needed, which is created by ”external” forces on
the fluid element at the particle position ri.

To tackle this problem analytically, the fluid is considered a continuum and its dynamics
obeys the Navier-Stokes equation, more precisely, the Stokes equation, since the low
Reynolds number limit is considered. The particle at ri has then to be coupled to the
solution of Stokes equation.

9.1 Stokes Equation

The Navier-Stokes equation of an incompressible, i.e., ∇v = 0, and isotropic fluid is given
by

ρ

(
∂

∂t
v + (v∇)v

)
= η∆v −∇p+ f , (285)

where v(r, t) is the fluid flow field, ρ the fluid density, η its viscosity, p(r, t) the pressure
field, and f(r, t) an external volume force (force per volume). The various terms in this
equation can significantly differ in magnitude, depending on the hydrodynamic problem
under consideration. To get an estimate of the various terms, we scale the fluid velocity
by a typical value u, the length scale by a a, and the time by the time M/γ (Brownian
time), where M is the mass of a dissolved particle. I.e.,

v′ = v/u ,

r′ = r/a ,

t′ = t/(M/γ) .
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Then, the Navier-Stokes equation reads

ρ
γu

M

∂

∂t′
v′ +

ρu2

a
(v′∇′)v′ = ηu

a2
∆′v′ − 1

a
∇′p+ f . (286)

Introducing the dimensionless pressure and external force

p′ =
a

ηu
p ,

f ′ =
a2

ηu
f ,

hence,

ρ
a2γ

Mη

∂

∂t′
v′ +Re(v′∇′)v′ = ∆′v′ −∇′p′ + f ′. (287)

The dimensionless number

Re =
ρau

η
(288)

is denoted as Reynolds number.
By construction, we have |(v′∇′)v′| ≈ |∆′v′| ≈ 1. Hence, for small Reynolds numbers
Re� 1, the non-linear term (v∇)v in Eq. (285) can be neglected.
For a spherical particle of radius a in a fluid, the relation γ = 6πηa (Stokes law) applies.
Hence, ρa2γ/Mη = 9ρ/2ρp, where ρp is the mass density of the spherical particle. Since
the Brownian particle swims in the fluid, ρ ≈ ρp, and ρa2γ/Mη = 9/2. The time derivative
in Eq. (287) should therefore kept in general, even for small Reynolds numbers. However,
on diffusive time scales τD � M/γ, the time derivative ∂v′/∂t′ has decayed to zero,
since v decays to zero as a result of friction during the interval M/γ. The reaming time
dependence is due to a possible time dependence of the external force.

On the diffusive (Brownian) time scale and at low Reynolds numbers, the original Navier-
Stokes equation simplifies to

η∆v = ∇p− f . (289)

This equation is denoted as Stokes or creeping flow equation.

Typical values for a Brownian particle (colloid):

• velocity: equipartition of energy M 〈v2〉 /2 = 3kBT/2 ⇒ v ≈
√
〈v2〉

• mass: m ≈ 10−17kg

• size: a ≈ 100nm

• Reynolds number: Re ≈ 10−2

Note that the inertial term in the Navier-Stokes equation can only be neglected on the
Brownian time scale τD �M/γ. Hence, solutions of Eq. (289) can only be combined with
the Smoluchowski equation, but not the Fokker-Planck equation. On the Fokker-Planck
time scale, the non-linear term can be neglected for small Reynolds numbers, but the time
derivative ∂/∂t has to be kept. Hydrodynamic friction on the Fokker-Planck time scale
follows from the equation

ρ
∂v

∂t
= −∇p+ η∆v + f . (290)

In the following, we will consider the solution of the Stokes equation (289).
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9.2 Oseen Tensor

Equation (289) is a linear, inhomogeneous differential equation and can be solved by
Fourier transformation

vk =

∫
v(r)eikrd3r.

In (289) yields

ηk2vk − ikpk = fk. (291)

Incompressibility: ∇v = 0 ⇒ kvk = 0, i.e., vk ⊥ k. Multiplication of Eq. (291) with k
yields

vk =
1

ηk2

(
I− k : k

k2

)
fk = Ω(k)fk,

where k : k denotes the tensor product. Fourier transformation gives

v(r) =

∫
Ω(r − r′)f(r′)d3r′, (292)

with the Oseen tensor

Ω(r) =
1

(2π)3

∫
1

ηk2

(
I− k : k

k2

)
e−ikrd3k.

Since the tensor Ω depends on the vector r only, it can be written in terms of two scalars
A and B and the unit vector r/|r| as

Ωαβ = Aδαβ +B
rαrβ
r2

.

A and B follow from the conditions

Ωαα = 3A+B , Ωαβ
rαrβ
r2

= A+B.

Evaluation of the integrals yields A = B = 1/(8πηr), with r = |r|, and hence, the Oseen
tensor is given by

Ω(r) =
1

8πηr

(
I +

r : r

r2

)
(293)

or, in components

Ωαβ(r) =
1

8πηr

(
δαβ +

rαrβ
r2

)
. (294)

This tensor applies for point-like particles and diverges at r = 0. For finite size particles
of diameter d the positive definite Rotne-Prager tensor can be used (r > d)

Ω(r) =
1

8πηr

(
I +

r : r

r2
+

d

2r2

[
1

3
I− r : r

r2

])
. (295)
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9.3 Equation of Motion of Solute

The flow field v(r) is created by the motion of the particles ri. Hence, with the force
density

f(r) =
N∑

i=1

[Fi + Γ i] δ(r − ri)

v(r) becomes

v(r) =
N∑

i=1

Ω(r − ri) [Fi + Γ i] . (296)

In the presence of a solvent, the friction between a particle at ri and the fluid background
is described by

γ [ṙi − v(ri(t))] = Fi + Γ i,

or, with Eq. (296)

ṙi = v(ri) +
1

γ
[Fi + Γ i] =

N∑

j=1

(
Ω(ri − rj) +

δij
γ

)
[Fj + Γ j] =

N∑

j=1

H(ri − rj) [Fj + Γ j] ,

(297)

where H is the hydrodynamic tensor

H(ri − rj) =





Ω(ri − rj) , i 6= j, i.e. |ri − rj| 6= 0

I
γ , i = j

. (298)

Alternatively,

H(ri − rj) =
δij
γ

I + (1− δij)Ω(ri − rj). (299)

For an one-dimensional continuous object embedded in 3-dimensional space, the equation
of motion (297) turns into

∂r(s, t)

∂t
=

∫
H(r(s)− r(s′)) [F (s′) + Γ (s′)] ds′, (300)

with

H(r(s)− r(s′)) =
δ(s− s′)

γ
I + Θ(|r(s)− r(s′)| − d)Ω(r(s)− r(s′)). (301)

Note, the forces in Eq. (300) are force densities, i.e., forces per length; s is the contour
coordinate along the 1-dimensional object. Similar, γ in Eq. (301) is a friction density,
i.e., friction per length. To exclude self-interactions, the parameter d is introduced in
Eq. (301), i.e., a lower cut-off is introduced for hydrodynamic interactions. d can be the
excluded volume of the considered particles. For a polymer model, e.g., DNA, d will be
the thickness of the molecule.
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10 Polymer Models

Before diving into the dynamics of polymers, a suitable polymer model has to be chosen.
There are a number models, which describe polymer properties. However, not all of them
are suitable for an analytical treatment.

10.1 Flexible Polymer

10.1.1 Polymer of Finite-Length Bonds

r
i-1

i-1

i

i+1

O

R i

R i+1

θi

l

Model:

N + 1 mass points at positions ri, i = 0, . . . , N

Bond vectors: Ri = ri − ri−1

Bond potential

Ul =
κl
2

N∑

i=1

(|Ri| − l)2 (302)

Remove translational degrees of freedom: r0 = 0, p0 = 0

The partition function (15) of this model reads (H = Ekin + Ul)

Ztot =

∫
exp (−βH) d3Nrd3Np = Zkin

∫
exp (−βU) d3Nr,

or

Z =

∫
exp

(
−βκl

2

N∑

i=1

(|Ri| − l)2

)
d3NR.

Expanding Z by (2π/(βκl))
N/2 yields with σ̂2 = 1/(βκl)

Z =

(
2π

βκl

)N/2 ∫ N∏

i=1

[(
1

2πσ̂2

)1/2

exp

(
− 1

2σ̂2
(|Ri| − l)2

)]
d3NR.

Using the representation of a δ-function

δ(x) = lim
σ̂→∞

√
1

2πσ̂2
exp

(
− x2

2σ̂2

)

yields in the limit κl →∞

Z =

∫ N∏

i=1

δ(|Ri| − l)d3NR. (303)
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Note, constant factors have been neglected.

This is the partition function of a random walk of step length l. In the simplest case, a
polymer can be considered a random walk. Now, we formally consider a chain of segments
of length l. However, this segments are flexible segments and not rigid rods. The partition
function of a chain of rigid rods is very different. The partition function (303) is very
often used to describe flexible polymers.

For a random walk, successive steps are independent. Of course, this also applies for the
considered polymer, as can easily be shown. Hence, 〈RiRj〉 = l2δij. With this property,
certain averages can easily be calculated, e.g., the

• mean square end-to-end distance

r2
e =

〈
(rN − r0)2〉 = Nl2, (304)

• radius of gyration

r2
g =

1

2(N + 1)2

N∑

i=0

N∑

j=0

〈
(ri − rj)2〉 = l2

N(N + 2)

6(N + 1)
, (305)

which leads to r2
g = r2

e/6 in the limit N →∞ (self-similarity of random walk).

Various other quantities can only be obtained with a major analytical effort or by numer-
ical methods, with the corresponding limitation of the number of polymer segments.

10.1.2 Gaussian polymer

The generic aspects of a polymer can be described and captured by a Gaussian polymer.
Typically, this model yields the correct qualitative properties of flexible polymers, often
it is even quantitatively correct. There are various ways to derive the Gaussian polymer
model. Here, the maximum entropy principle is exploited.

The constraints

〈
R2
i

〉
= l2 , (306)

yield the partition function

Z =

∫
exp

(
−

N∑

i=1

λiR
2
i

)
d3NR =

N∏

i=1

∫
exp

(
−λiR2

i

)
d3R =

N∏

i=1

(
π

λi

)3/2

. (307)

The independent Gaussian integrals can evidently easily be calculated. The λi follow from
the equation [cf. Eq. (16)]

∂ lnZ

∂λi
= −l2, ⇒ λi =

3

2l2
.
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Hence,

Ψ({r}) =
1

Z
exp

(
− 3

2l2

N∑

i=1

R2
i

)
, (308)

Z =

∫
exp

(
− 3

2l2

N∑

i=1

R2
i

)
d3NR. (309)

The model yields the same mean square end-to-end distance and radius of gyration as the
polymer model of Sec. 10.1.1, i.e., Eqs. (304), (305). In addition, the end-to-end vector
distribution function can easily be calculated, which reads

Ψ(rN) =

∫
Ψ(r1, . . . , rN)d3N−1r =

〈
δ

(
rN −

N∑

i=1

Ri

)〉

=
1

Z

∫
exp

(
− 3

2l2

N∑

i=1

R2
i

)
δ

(
rN −

N∑

i=1

Ri

)
d3NR

=

(
3

2πNl2

)3/2

exp

(
− 3

2Nl2
r2
N

)
. (310)

The end-to-end vector distribution function is again Gaussian, which reflects the self-
similarity of that distribution function.

10.1.3 Continuous Polymer

For various calculations, a continuous polymer model is advantageous. Instead of sums,
integrals appear, which can often be evaluated more easily. However, there are also draw-
backs, as will be shown below. From a physical point of view, it does not matter whether
a continuous or a discrete model is used. Because of the adopted abstraction of a real
polymer, the chosen description applies on larger length scale only. For the above models
only properties are described on length scales larger than the segment length l.

The continuum transition: N → ∞, l → 0, such that L = Nl = const., where L is the
length of the polymer, yields

Z =

∫
exp

(
−

N∑

i=1

λiR
2
i

)
d3Nr =

∫
exp

(
−

N∑

i=1

λi
R2
i

l2
l2

)
d3Nr

l→0,N→∞−→
∫

exp

(
−
∫ L

0

λ(s)l

(
∂r

∂s

)2

ds

)
D3r,

i.e., a functional integral (path integral) is obtained. However, the limit of λ(s)l =
3/(2l) → ∞ for l → 0 and the partition function approaches 0 (liml→0 Z = 0). The
polymer collapses into a point in this case. The reason is that the distribution function
(308) corresponds to a Wiener process (cf. Sec. 6.2), which implies that the derivative
of the ’trajectory’, i.e., the polymer contour, does not exist! A meaningful continuum
transition can only be performed for a semiflexible polymer, as shown in the next section.
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Here, a continuum description can only be adopted on length scales s � l. Hence, the
length l is assumed to be small, but finite and the distribution function reads

Z =

∫
exp

(
− 3

2l

∫ L

0

(
∂r

∂s

)2

ds

)
D3r. (311)

l is sometimes denoted as Kuhn length lK . As will be shown, it is related to the polymer
persistence length lp via lK = l = 2lp.

10.2 Semiflexible Polymer

Most biological polymers, e.g., DNA, actin filaments, or viruses, are rather semiflexible
than flexibel. Semiflexible means that there are correlations between successive polymer
segments.

Ri
Ri+1

ϑi

i

i-1

i+1l

To account for the correlations, the constraints

〈RiRi+1〉 = l2t, i = 1, . . . , N − 1 (312)

are introduced for the orientation of successive bonds. The parameter t is a measure for
the correlations. For rather rigid bonds with Ri = |Ri| = l, the correlation function is
〈RiRi+1〉 = 〈RiRi+1 cosϑi〉 = l2t, i.e., t = 〈cosϑi〉. The flexible polymer of the previous
section follows for t = 0.

The constraints (312) can be combined with any bond potential or constraint.

10.2.1 Kratky-Porod Wormlike Chain

Using the bond potential (302) of Sec. 10.1.1, the maximum entropy principle yields in
the limit κl →∞

Z =

∫
exp

(
N−1∑

j=1

µiRiRi+1

)
N∏

i=1

δ(|Ri| − l)d3Nr,

with the Lagrangian multipliers µi for the constraints (312). Introducing spherical coor-
dinates, the partition function reads

Z =

∫
exp

(
N−1∑

j=1

µiRiRi+1 cosϑi

)
N∏

i=1

δ(Ri − l)
N∏

j=1

sinϑjR
2
jdRjdϕjdϑj

=
(
4πl2

)N N−1∏

i=1

sinhµil
2

µil2
.
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With the condition ∂ lnZ/∂µi = l2t follows

cothµil
2 − 1

µil2
= L(µil

2) = t. (313)

The Lagrangian multipliers are independent of i und are given by µl2 = L−1(t), where
L(x) = coth x− 1/x is the Langevin function.

There are only of few quantities, which can be obtained analytical for this model. One is
the mean square end-to-end distance:

〈
r2
N

〉
=

〈
N∑

i=1

R2
i

〉
+ 2

〈
N∑

j=1

j−1∑

i=1

RiRj

〉
= Nl2 + 2l2

N∑

j=1

j−1∑

i=1

tj−i,

or,

〈
r2
N

〉
= Nl2

(
1 + t

1− t +
2t

N

tN − 1

(t− 1)2

)
(314)

〈
r2
G

〉
=

Nl2

N + 1

(
(N + 2)(1 + t)

6(1− t) − t

(1− t)2
+

2t2

(N + 1)(1− t)3
+

2t3(tN − 1)

N(N + 1)(t− 1)2

)
.

(315)

Continuum

To derive the continuum representation of the Kratky-Porod model, the identity 2RiRi+1 =
2l2 − (Ri+1 −Ri)

2 is considered. With the constraints (312) follows
〈
(Ri+1 −Ri)

2〉 = 2l2(1− t). (316)

Taylor expansion in the vicinity of ri yields up to second order in l

Ri+1 −Ri = ri+1 + ri−1 − 2ri = ri + l
∂ri
∂s

+
l2

2

∂2ri
∂s2

+ ri − l
∂ri
∂s

+
l2

2

∂2ri
∂s2
− 2ri = l2

∂2ri
∂s2

.

Hence, Eq. (316) yields

l2

〈(
∂2r

∂s2

)2
〉

= 2(1− t).

Limiting process: l→ 0, t→ 1 such that p = limt→1,l→0(1− t)/(2l) is finite. Hence,

lim
t→1,l→0,N→∞

l

〈(
∂2r

∂s2

)2
〉

= 4p, (317)

where lp = 1/(2p) is denoted as persistence length. With the same replacement, the
partition function turns into

Z =

∫
exp

(
N−1∑

j=1

µiRiRi+1

)
N∏

i=1

δ(|Ri| − l)d3Nr

→
∫

exp

(
2µlL− µl3

2

∫ L

0

(
∂2r

∂s2

)2

ds

)
∞∏

s

δ(|u| − 1)D3r.
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The limit is performed such that ε = liml→0 µl
3 is finite. The equation (313) for the

Lagrangian multiplier µ yields then (cothµl2 = coth ε/l→ 1 for l→ 0)

ε =
l

1− t
l→0,t→1−→ 1

2p
= lp. (318)

Thus,

Z =

∫
exp

(
− ε

2

∫ L

0

(
∂2r

∂s2

)2

ds

)
D3r , (319)

Kratky-Porod model
with the constraint u(s)2 = (∂r(s)/∂s)2 = 1 ∀s and ε = lp = 1/(2p).

Averages

〈
r2
L

〉
=
L

p
− 1

2p2

(
1− e−2pL

)
, (320)

〈
r2
g

〉
=

L

6p
− 1

4p2
+

1

4p3L
− 1

8p4L2

(
1− e−2pL

)
. (321)

10.2.2 Gaussian Semiflexible Chain

For an analytical treatment, a Gaussian model is more suitable than the Kratky-Porod
model. The constraints for auch a model are

〈
R2
i

〉
= l2 , i = 1, . . . , N, (322)

〈RiRi+1〉 = l2t , i = 1, . . . , N − 1. (323)

The partition reads (r0 = 0)

Z =

∫
exp

(
−

N∑

i=1

λiR
2
i +

N−1∑

i=1

µiRiRi+1

)
d3Nr. (324)

The term in the exponent is a quadratic form, hence, the integral is easily calculated and
gives

Z = π3N/2|A|−3/2.

|A| is the determinant of the matrix

A =




λ1 −µ1
2 0 . . . 0

−µ1
2 λ2 −µ2

2 . . . 0

0
. . . . . . . . . −µN−1

2
0 . . . 0 −µN−1

2 λN



.
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Unfortunately, no general expression can be given for |A| with arbitrary λi and µi. How-
ever, a solution can be derived for the constraints

N−2∑

i=2

〈
R2
i

〉
= (N − 1)l2, (325)

〈
R2

1

〉
=
〈
R2
N

〉
= l2, (326)

N−1∑

i=1

〈RiRi+1〉 = (N − 1)l2t. (327)

Then, the distribution and partition function read

Ψ({r}) =
1

Z
exp

(
−λ

N−1∑

i=2

R2
i − λ1R

2
1 − λNR2

N + µ
N−1∑

i=1

RiRi+1

)
, (328)

Z =

∫
exp

(
−λ

N−1∑

i=2

R2
i − λ1R

2
1 − λNR2

N + µ
N−1∑

i=1

RiRi+1

)
d3Nr = π3N/2|A0|−3/2,

(329)

with

|A0| =
(µ

2

)N (
4
λ2

1

µ2

sinh(N − 1)θ

sinh θ
− 4

λ1

µ

sinh(N − 2)θ

sinh θ
+

sinh(N − 3)θ

sinh θ

)
,

where, cosh θ = λ/µ. For symmetry reasons λ1 = λN . The solution of the equations for
the Lagrangian multipliers is given by

λ =
3

2l2
1 + t2

1− t2 , λ1 =
3

2l2
1

1− t2 , µ =
3

l2
t

1− t2 . (330)

The multipliers are evidently independent of the polymer length. Hence, we found a
solution of the original problem with the matrix A. This is confirmed by the distribution
function of bond vectors

Ψ(Ri) =

(
3

2πl2

)3/2

exp

(
− 3

2l2
R2
i

)
,

which follows from Eq. (328).

The partition function itself is given by

Z =

(
2πl2

3

)3N/2 (
1− t2

)3(N−1)/2
. (331)

Calculation of the mean square end-to-end distance and the radius of gyration yields ex-
actly the same expressions as the Kratky-Porod model Eqs. (314) and (315).
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Continuum

In the continuum limit, the constraints (325) – (327) are given by
〈∫ L

0

(
∂r

∂s

)2

ds

〉
= L, (332)

〈(
∂r

∂s

)2

s=0,L

〉
= 1, (333)

lim
l→0

l

〈∫ L

0

(
∂2r

∂s2

)2

ds

〉
= 4pL. (334)

The partition function reads

Z =

∫
exp

(
−ν
∫ L

0

(
∂r

∂s

)2

ds− ν0

[(
∂r(0)

∂s

)2

+

(
∂r(L)

∂s

)2
]
− ε

2

∫ L

0

(
∂2r

∂s2

)2

ds

)
D3x ,

(335)

with the Lagrangian multipliers

ν = lim
l,t,N→0,1,∞

(λ− µ)l =
3p

2
, (336)

ν0 = lim
l,t,N→0,1,∞

(λ1 −
µ

2
)l2 =

3

4
, (337)

ε = lim
l,t,N→0,1,∞

µl3 =
3

4p
, (338)

such that L = liml,N→0,∞ lN and lp = 1/(2p) = liml,t→0,1 l/(1 − t). The mean square
end-to-end distance and the radius of gyration are given by Eqs. (320) and (321).

In addition, the correlation function of the tangent vectors u(s) = ∂r(s)/∂s can be
calculated

〈u(s)u(s′)〉 = e−2p|s−s′|, (339)

which decays on the length scale lp = 1/(2p).

More importantly, at equilibrium, the distribution function for any distance ∆r = r(s)−
r(s′) can be determined. Explicitly, the distribution reads

Ψ(∆r) =

(
3

2πσ2(s, s′)

)3/2

exp

(
−3∆r2

2σ2

)
, (340)

where

σ2(s, s′) =
〈

(r(s)− r(s′))
2
〉

=
|s− s′|
p

− 1

2p2
[1− exp(−2p|s− s′|)] . (341)

As follows from Eq. (332), the difference between the Gaussian semiflexible chain and the
Kratky-Porod model is the constraint on the tangent vector. For the Gaussian polymer
the average 〈u(s)2〉 = 1 is used, whereas the Kratky-Porod model requires u(s)2 = 1, i.e.,
in the Gaussian model the constraint is relaxed and fluctuations along the chain contour
appear.
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11 Stretching Polymers

There are various ways—corresponding to different ensemble—to stretch a polymer chain
[5,7]. In an isometric ensemble, the end-to-end vector is fixed and the force is determined
as function of that distance. In an isotensional ensemble, a force is applied at the free
chain end and the mean extension of the polymer is determined. In the following, only
the isotensional ensemble is considered.

Within the maximum entropy approach, the constraint (r0 = 0)

〈rN〉 = a (342)

is taken into account additionally for the (free) end point of the polymer.

11.1 Polymer of Finite Length Bonds (Kratky-Porod)

With the Lagrangian multiplier η accounting for the constraint (342), the partition func-
tion (303) turns into

Z =

∫
exp (−ηrN)

N∏

i=1

δ(|Ri| − l) d3NR (343)

=
N∏

i=1

∫
exp (−ηl cosϑi) 2πl2 sinϑidϑi =

(
4πl2

)N
(

sinh lη

lη

)N
. (344)

η follows from ∂ lnZ/∂η = −a, which yields

a =
N

η2
η −Nl coth(ηl)

η

η
, (345)

or, since a ‖ η,

F = −kBTη =
kBT

l
L−1

( a
L

) a
a
. (346)

L is the Langevin function. This relation has been derived more than 50 years ago by
Kuhn and Grün [8].

11.2 Gaussian Polymer

With the additional constraint (342), the partition function of the Gaussian flexible poly-
mer [cf. Eq. (307)] is given by

Z =

∫
exp

(
−

N∑

i=1

λiR
2
i − η

N∑

i=1

Ri

)
d3NR =

N∏

i=1

∫
exp

(
−λiR2

i − ηRi

)
d3R

=
N∏

i=1

(
π

λi

)3/2

exp

(
η2

4λi

)
. (347)
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Figure 1: Force extension relation for a polymer of ”rigid” segments (blue) and Gaussian
segments (red).

Lagrangian multipliers

∂ lnZ

∂λi
= − 3

2λi
− η

4λ2
i

= −l2,

∂ lnZ

∂η
=

1

2
η

N∑

i=1

1

λi
= −a, ⇒ a ‖ η.

For λi = λj = λ, ∀i, j, follows

η = −2aλ

N
,

λ =
3

2l2 [1− (a/L)2]
,

which yields the force-extension relation

F = −kBTη =
3kBT

l [1− (a/L)2]

a

L
. (348)

As shown in Fig. 1, the two force-extension relations are identical for a/L� 1 and deviate
from each other at large extensions. In the limit a/L → 1, both functions exhibit the
asymptotic dependence F ∼ 1/(1− a/L); only the Gaussian function is by the factor 1.5
larger. The reason is the different number of relevant degrees of freedom. The fluctuations
of the Gaussian model along the chain contour corresponds to 3 degrees of freedom per
bond, whereas the for the potential (302), the degree of freedom along the polymer contour
is suppressed, i.e., 2 degrees of freedom are left.
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11.3 Gaussian Semiflexible Polymer

The partition function of a continuous Gaussian semiflexible polymer with the constraints
〈(

∂r

∂s

)2
〉

= 1, (349)

lim
l,t,N→0,1,∞

l

〈(
∂2r

∂s2

)2
〉

= 4p,

〈r(L)〉 = a,

is given by

Z =

∫
exp

(
−
∫ L

0

ν(s)

(
∂r

∂s

)2

ds− ε

2

∫ L

0

(
∂2r

∂s2

)2

ds− η
∫ L

0

∂r

∂s
ds

)
D3x.

Here, ν is no longer constant along the polymer contour, which makes it impossible to
calculate the partition function in closed form. We will assume that ν(s) = ν = const. is
suitable approximation for most of the relevant cases and that useful expectation values
are obtained, which only deviate slightly from the exact result with ν(s). As it turns
out, the force-extension relation of the analytical model agrees very well with that of
a discrete model, which accounts for every constraint individually in the appropriate
continuum limit, for pL & 5 [9]. Hence, a contour-independent parameter ν is an excellent
approximation to capture the overall polymer response. However, the multiplier ε and
ν0 can be determined exactly for any external potential and are given by the equilibrium
values Eqs. (337) and (338). The proof is outlined in Ref. [7]. With ν(s) = ν, the
partition function becomes

Z =

∫
exp

(
−
∫ L

0

ν(s)

(
∂r

∂s

)2

ds− ε

2

∫ L

0

(
∂2r

∂s2

)2

ds− η
∫ L

0

∂r

∂s
ds

− ν0

[(
∂r(0)

∂s

)2

+

(
∂r(L)

∂s

)2
])
D3x.

The path integral can be evaluated by exploiting the analogy with the path integral
of a harmonic oscillator in quantum mechanics, using the eigenfunction expansion for
the operator O = ν − (ε/2)∂2/∂s2 with the appropriate boundary conditions, or by a
continuum transition of the discrete model [7]. The result is

Z = lim
l,N→0,∞

|A|3/2 exp

(
1

6
η2R2

)
,

with

|A| =
(πµ

2

)N
l

√
ε

2ν

[(
2ν2

0

ε2
+
ν

ε

)
sinhL

√
2ν

ε
+

2ν0

ε

√
2ν

ε
coshL

√
2ν

ε

]
,

R2 =
3

2ν

(
L− 2ν0

ν

[
1 +

2ν0

ν

√
ν

2ε
cothL

√
ν

2ε

]−1
)
.
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Figure 2: Fit of the force-extension curve of the Gaussian semiflexible chain model (red)
to experimental data of Smith et al. [10] (squares). The fit parameters obtained from a
logarithmic fit are lp = 53.5 nm and L = 33.5 µm. The blue line is calculated using the
interpolation formula derived by Marko and Siggia [11] for the Kratky-Porod model with
the parameters lp = 53 nm and L = 32.8 µm, respectively.

Calculation of the Lagrangian multiplier:

• η: ∂ lnZ/∂η = −a ⇒ η = −3a/R2 or F = −kBTη = 3kBTa/R
2.

• ν: ∂ lnZ/∂ν = −L

⇒ ν =





3

2
p

(
1− a2

L2

)−2

, pL > 1

3

2

(
p+

a2

L3

)(
1− a2

L2

)−1

, pL� 1

,

or

F/kBT =





2ν
a

L
=

3pa

L

(
1− a2

L2

)−2

, pL� 1

3a

L2

(
1 +

2νL

3

)
=

3(1 + pL)a

L2

(
1− a2

L2

)−1

, pL� 1 .

Force-extension relation of Kratky-Porod model

The force-extension relation of the Kratky-Porod model can be approximated by

F/kBT =
1

4lp

[(
1− a

L

)−2

− 1 +
4a

L

]
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for pL� 1. Hence, the two relations are equal for a/L� 1, where F/kBT ≈ 3a/(2lpL) =
3a/(lKL), with the Kuhn segment length lK = 2lp. In the limit a→ L follows

a

L
=





1−
√

3

8

√
kBT

F lp
Gauss

1− 1

2

√
kBT

F lp
Kratky − Porod

.

In this limit, the correction terms deviate by approximately 20%.
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12 Dynamics of Semiflexible Polymers

The comparison of the polymer force-extension relation with experimental results shows
that only the semiflexible polymer describes stretching correctly. Since we are interested
in the dynamics of biological systems, we will therefore only discuss the dynamics of semi-
flexible polymer models and not that of flexible models. The latter corresponds to the
Rouse or Zimm model, respectively, for systems with and without hydrodynamic inter-
actions of classical polymer theory (cf. book of Doi and Edwards) and follows from the
general result in the limit of flexible polymers (pL� 1).

The question, which model to use to investigate the dynamics of biopolymers is simply an-
swered, since there is so far no analytical solution for the Kratky-Porod model due to the
strict inextensibility constraint. Only in the limit of a nearly rigid rod or a very stiff poly-
mer, an analytical solution of the Kratky-Porod model has been determined. Here, the
dynamics along the polymer contour is suppressed and only fluctuations transverse to the
contour are considered [12–14]. The fluctuations themselves are considered to be Gaus-
sian, i.e., they are described in the same spirit as for the Gaussian semiflexible polymer [9].

Only the continuous polymer will be considered. To derive an equation of motion, the
exponent of the partition function (335) is identified with the potential energy of the
polymer. The Lagrangian is then given by

L =

∫ L/2

−L/2

1

2
ρ

(
∂r

∂t

)2

ds− νkBT
∫ L/2

−L/2

(
∂r

∂s

)2

ds− εkBT

2

∫ L/2

−L/2

(
∂2r

∂s2

)2

ds (350)

− ν0kBT

[(
∂r(L/2)

∂s

)2

+

(
∂r(−L/2)

∂s

)2
]
.

The first term is the kinetic energy with the mass density ρ. Newton’s equations of motion
follow via the Lagrangian equations of the second kind

∂

∂t

δL
δṙ(s)

− δL
δr(s)

= 0.

12.1 Free-Draining Dynamics

For simplicity, the free-draining case will be considered first, i.e., hydrodynamic interac-
tions are neglected. Taking the force from Newton’s equations of motion, the following
Langevin equation is obtained for the over-damped motion

γ
∂r(s, t)

∂t
= 2νkBT

∂2r(s, t)

∂s2
− εkBT

∂4r(s, t)

∂s4
+ Γ (s, t), (351)

with the boundary conditions

2ν
∂r(s, t)

∂s
− ε∂

3r(s, t)

∂s3

∣∣∣∣
s=±L/2

= 0, (352)

2ν0
∂r(s, t)

∂s
± ε∂

2r(s, t)

∂s2

∣∣∣∣
s=±L/2

= 0, (353)
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and the stochastic force (white noise)

〈Γ (s, t)〉 = 0, (354)

〈Γα(s, t)Γα′(s
′, t′)〉 = 2γkBTδαα′δ(t− t′)δ(s− s′). (355)

γ is here the friction per length. Equation (351) is a linear partial differential equation,
which is easily solved by an eigenfunction expansion.

Eigenvalue equation

εkBT
∂4

∂s4
ϕn(s)− 2νkBT

∂2

∂s2
ϕn(s)− ξnϕn(s) = 0 ; (356)

or

Oϕn(s) = ξnϕn(s) (357)

with

O = εkBT
∂4

∂s4
− 2νkBT

∂2

∂s2
. (358)

Boundary conditions

2ν
∂ϕn(s)

∂s
− ε∂

3ϕn(s)

∂s3

∣∣∣∣
s=±L/2

= 0, 2ν0
∂ϕn(s)

∂s
± ε∂

2ϕn(s)

∂s2

∣∣∣∣
s=±L/2

= 0. (359)

There are even and odd eigenfunctions, which are combinations of the 4 basis functions
sinx, cos x, sinh x, and coshx of the 4th order differential equation, namely

ϕ0 =

√
1

L
,

ϕn(s) =

√
cn
L

(
ζ ′n

sinh ζ ′ns

cosh ζ ′nL/2
+ ζn

sin ζns

cos ζnL/2

)
, ∀ n odd,

ϕn(s) =

√
cn
L

(
ζ ′n

cosh ζ ′ns

sinh ζ ′nL/2
− ζn

cos ζns

sin ζnL/2

)
,∀ n even . (360)

ϕ0 describes the translational motion of the whole molecule. The cns follow from the nor-
malization condition. The wave numbers ζn and ζ ′n, where ζ ′2n − ζ2

n = 4p2, are determined
by the boundary conditions (359), which read now as

ζ3
n sin ζn

L

2
cosh ζ ′n

L

2
− ζ ′3n cos ζn

L

2
sinh ζ ′n

L

2
− 2p(ζ2

n + ζ ′2n ) cos ζn
L

2
cosh ζ ′n

L

2
= 0, n odd

ζ3
n cos ζn

L

2
sinh ζ ′n

L

2
+ ζ ′3n sin ζn

L

2
cosh ζ ′n

L

2
+ 2p(ζ2

n + ζ ′2n ) sin ζn
L

2
sinh ζ ′n

L

2
= 0, n even,

(361)

and are related to the eigenvalues via ξn = kBT (εζ4
n + 2νζ2

n). The solutions of these equa-
tions are presented in Fig. 3.
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Eigenfunction expansion

The solution of Eq. (351) is then obtained by the eigenfunction expansion

r(s, t) =
∞∑

n=0

χn(t)ϕn(s) , Γ (s, t) =
∞∑

n=0

Γ n(t)ϕn(s), (362)

which yields the Langevin equations for the amplitudes χn(t)

d

dt
χn = − 1

τn
χn +

1

γ
Γ n , n > 0 ;

d

dt
χ0 =

1

γ
Γ 0 , (363)

with the relaxation times

τn =
γ

ξn
; τ0 =∞ . (364)

The solution of the Langevin equation (Ornstein-Uhlenbeck process) is (t0 = −∞)

χn(t) =
1

γ

∫ t

−∞
exp

(
−t− t

′

τn

)
Γ n(t′)dt′ ; χ0(t) = χ0(0) +

1

γ

∫ t

0

Γ 0(t′)dt′ . (365)

Note:
〈
Γα
n (t)Γα′

m (t′)
〉

= 2γδαα′δnmδ(t− t′). Hence,

r(s, t) = χ0(t)ϕ0 +
∞∑

n=1

1

γ

∫ t

−∞
exp

(
−t− t

′

τn

)
Γ n(t′)dt′ϕn(s). (366)

The relaxation times are presented in Fig. 4.

For the evaluation of time correlation functions, typically the correlations of the ampli-
tudes χn are required. By Eq. (365) follows (n,m > 0)

〈χn(t)χm(0)〉 =
1

γ2

∫ t

−∞

∫ 0

−∞
exp

(
−t− t

′

τn

)
exp

(
t′′

τm

)
〈Γ n(t′)Γm(t′′)〉 dt′dt′′ (367)

=
6kBT

γ
δnme

−t/τn
∫ 0

−∞
e2t′/τndt′ =

3kBT

γ
τnδnme

−t/τn =
〈
χ2
n

〉
δnme

−t/τn .

Moreover, 〈χn(t)χ0(t′)〉 = 0 for n > 0, and 〈χ0(t)χ0(t′)〉 = 〈χ0(0)2〉+6kBTt
′/γ for t′ ≤ t.

Asymptotic behavior

• Flexible polymer (Rouse chain): pL→∞

ζn =
nπ

L
, ξn = 2νkBTζ

2
n =

3π2pkBTn
2

L2
, τn =

γL2

3π2kBTpn2

ϕ0 =

√
1

L
,

ϕn(s) =

√
2

L
sin

nπs

L
, ∀ n odd,

ϕn(s) =

√
2

L
cos

nπs

L
, ∀ n even . (368)
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Alternatively,

ϕn(s) =

√
2

L
cos

nπ(s− L/2)

L
, ∀ n > 0 . (369)

• Semiflexible polymer (weakly bending rod): pL→ 0

ζn =
(2n− 1)π

2L
, ξn = εkBTζ

4
n =

3π4(2n− 1)4kBT

64pL4
, τn =

64γpL4

3π4(2n− 1)4kBT

ϕ0 =

√
1

L
,

ϕn(s) =

√
1

L

(
sinh ζns

sinh ζnL/2
+

sin ζns

sin ζnL/2

)
,∀ n odd,

ϕn(s) =

√
1

L

(
cosh ζns

cosh ζnL/2
+

cos ζns

cos ζnL/2

)
,∀ n even . (370)

• Rod: pL = 0 ⇒ ζ1 → (48pL)1/4/L→ 0

ξ1 =
36kBT

L3
, τ1 =

γL3

36kBT

ϕ0 =

√
1

L
, ϕ1(s) =

√
12

L3
s.

12.1.1 Center-of-Mass Mean Square Displacement

Center-of-mass: rcm(t) = r0(t) =
∫ L/2
−L/2 r(s)ds/L = χ0(t)ϕ0. Hence,

〈
∆rcm(t)2

〉
=
〈
(r0(t)− r0(0))2〉 =

1

L

〈
(χ0(t)− χ0(0))2

〉

=
1

γ2L

∫ t

0

∫ t

0

〈Γ 0(t′)Γ 0(t′′)〉 dt′dt′′ = 6kBT

γL
t,

or
〈
(r0(t)− r0(0))2〉 = 6D0t, with D0 = kBT/(γL).

12.1.2 Segmental Mean Square Displacement

With Eq. (367) follows

〈
∆r(s, t)2

〉
=
〈
[r(s, t)− r(s, 0)]2

〉
=

〈[
∞∑

n=0

ϕn (χn(t)− χn(0))

]2〉

=
〈
∆rcm(t)2

〉
+
∞∑

n=1

2ϕn(s)2
〈
χ2
n

〉 (
1− e−t/τn

)

=
〈
∆rcm(t)2

〉
+

6kBT

γ

∞∑

n=1

ϕn(s)2τn
(
1− e−t/τn

)

72



10
-2

10
-1

10
0

10
1

10
2

10
3

ζ
n
L

pL

0

π

π2

π3

π4

π5

π6

π7

Figure 3: The first seven wave numbers ζn as a function of pL, numerically determined
from Eqs. (361). For pL� 1, ζnL approaches the value nπ (n ≥ 1) (Rouse chain), and for
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To arrive at a s-independent term, 〈∆r(s, t)2〉 is averaged over s, i.e.,
〈∆r(t)2〉 =

∫
〈∆r(s, t)2〉 ds/L. Alternatively, a chain end or the chain center could be

considered. Averaging yields (
∫ L/2
−L/2 ϕ

2
nds = 1)

〈
∆r(t)2

〉
=
〈
∆rcm(t)2

〉
+

6kBT

γL

∞∑

n=1

τn
(
1− e−t/τn

)
(371)

For t� τ1, the terms e−t/τn � 1 ∀n and the mean square displacement is dominated by
the center-of-mass mean square displacement, thus, 〈∆r(t)2〉 = 〈∆rcm(t)2〉. In the oppo-
site case t � τ1, the sum is dominated by contributions from large n values. Therefore,
the mean square displacement depends on the stiffness of the polymer—probing large n
corresponds to probing small length scales. Therefore, the behavior of flexible and semi-
flexible polymers will be considered separately.

Flexible Polymer

Here, the relaxation times are given by τn = τR/n
2, with the Rouse relaxation time

τR = γL2/(3π2pkBT ). For t/τR � 1, the difference between xn+1 = (n + 1)
√
t/τR and

xn = n
√
t/τR is very small and the sum can be replaced by an integral over x2 = n2t/τR,

i.e.,

∞∑

n=1

τR
n2

[
1− e−tn2/τR

]
=
√
tτR

∞∑

n=1

τR
n2t

[
1− e−tn2/τR

]
∆n

√
t

τR

−→
√
tτR

∫ ∞

0

1

x2
(1− e−x2)dx =

√
tτR
√
π.

Hence,

〈
∆r(t)2

〉
=
〈
∆rcm(t)2

〉
+

6kBT

γL

√
πtτR

t/τR�1−→ 2L

p
√
π3

√
t

τR
, (372)

i.e. the segments display an anomalous (fractal) diffusion behavior.
Asymptotic limit t→∞:

〈
∆r(t)2

〉
−
〈
∆rcm(t)2

〉
=

6kBT

γL

∞∑

n=1

τn =
2L

π2p

∞∑

n=1

1

n2
=

L

3p
= 2

〈
r2
G

〉
. (373)

Semiflexible Polymer

Similarly, x4 = (2n− 1)4t/τ1, with τ1 = 64γpL4/(3π4kBT ) yields

∞∑

n=1

τ1

(2n− 1)4

[
1− e−t(2n−1)4/τ1

]
−→ 1

2
4
√
t3τ1

∫ ∞

0

1

x4
(1− e−x4)dx ≈ 1.21

2
4
√
t3τ1.

Hence,

〈
∆r(t)2

〉
∼ t3/4. (374)
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Figure 5: Mean square displacements of a free-draining polymer. The green line indicates
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G in the limit t → ∞. The dotted line represents the analytical
approximation (372).

12.1.3 End-to-End Vector Correlation Function

The correlation function of the end-to-end vector re(t) = r(L/2, t)− r(−L/2, t) is given
by

〈re(t)re(0)〉 =
∞∑

n=1

∞∑

m=1

〈χn(t)χm(0)〉 (ϕn(L/2)− ϕn(−L/2))(ϕm(L/2)− ϕm(−L/2))

=
∑

n,odd

〈χn(t)χn(0)〉 4ϕn(L/2)2 =
12kBT

γ

∑

n,odd

τne
−t/τnϕn(L/2)2.

For t & τ1 follows

〈re(t)re(0)〉 =
12kBT

γ
τ1e
−t/τ1ϕ1(L/2)2.

At t = 0, 〈re(0)re(0)〉 = r2
e , hence

〈re(t)re(0)〉 ≈ r2
ee
−t/τ1 .

The model discussed so for applies to systems without hydrodynamic interactions. Strictly
speaking, it applies for systems without excluded volume interactions. This is (approxi-
mately) realized in polymer melts, as long as the polymer length is not exceeding a certain
value denoted as entanglement length.
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12.2 Non-Draining Dynamics: Hydrodynamic Interactions

In dilute solution, the polymer dynamics is governed by hydrodynamic interactions. As
a consequence, the diffusion and relaxation behavior is significantly different from that of
a free-draining system.

As outlined in Sec. 9.3 [Eq. (300)], the equation of motion of the continuous polymer is
given by

∂r(s, t)

∂t
=

∫ L/2

−L/2
H(r(s)− r(s′))

[
2νkBT

∂2r(s′, t)

∂s′2
− εkBT

∂4r(s′, t)

∂s′4
+ Γ (s′, t)

]
ds′,

(375)

with the force from Eq. (351) and the boundary conditions (352), (353). Note, the corre-
lations of the stochastic forces changed now. The corresponding Fokker-Planck equation
(Smoluchowski equation) reads

∂Ψ

∂t
=

∫ L/2

−L/2

δ

δr(s)
H(r(s)− r(s′))

[
δU

δr(s′)
Ψ + kBT

δ

δr(s′)
Ψ

]
ds′ds. (376)

The stationary state solution of this equation is

Ψ([r(s)]) =
1

Z
exp (−βU) ,

since δΨ/δr(s) + ΨδU/δr(s)/kBT = 0. (Z is given in Eq. (335).) Thus, the stationary
state solution is independent of H. As a consequence, hydrodynamic interactions affect
dynamical properties only.

To solve the non-linear equation (375) the following approaches are typically adopted.

Preaveraging Approximation

Here, the hydrodynamic tensor is replaced by its spatial isotropic averaged expression
(cf. Doi and Edwards). Utilizing the Gaussian joint probability density (340), Ω(∆r)
becomes

Ω(s− s′) = 〈Ω(∆r)〉 =
Θ(|s− s′| − d)

3πη

√
3

2πσ2
I = Ω(s− s′)I. (377)

The expression is isotropic, because any non-diagonal part of Ω vanishes (space is homo-
geneous and isotropic). Moreover, the averages of the various Cartesian components are
equal, i.e.,

〈
1

|∆r|
∆rα∆rα

∆r2

〉
=

1

3

〈
1

|∆r|
∆r2

∆r2

〉
=

1

3

〈
1

|∆r|

〉
.

Hence, H(s−s′) = IH(s− s′) = I [δ(s− s′)/3πη + Ω(s− s′)], where γ = 3πη has be used.
For the latter, it is assumed that every segment is a sphere of diameter l with the friction
coefficient γ = 3πηl (Stokes law). This leads to the friction density γ → γ/l → 3πη in
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the continuum limit l→ 0.

Within the preaveraging approximation, the equation of motion (375) is linear and the
eigenfunction expansion (362) leads to the equation for the amplitudes

3πη
∂χk
∂t

=
∞∑

n=0

Hkn

(
−3πη

τn
χn + Γ n

)
, (378)

where Hkn = 3πηΩkn + δkn and (σ from Eq. (341)),

Ωkn =
1√

6π3η

∫ L/2

−L/2
ϕk(s

′)
Θ(|s− s′| − d)

σ(s− s′) ϕn(s)dsds′, (379)

〈Γnα(t)Γkα′(t
′)〉 = 6πηkBTδαα′δ(t− t′)H−1

nk .

Eq. (378) is an infinite system of coupled linear differential equations, which can be solved
(numerically) by diagonalization. For an analytical solution, the off-diagonal elements are
neglected and an approximation for the eigenfunctions is used, i.e.,

Ωkn ≈
√

2

3π3

δkn
ηL

∫ L

d

L− s
σ(s)

cos(ζns)ds. (380)

This is reasonable approximation, since a numerical calculation shows that the matrix
Hnk is almost diagonal over the whole range of the flexibility parameter pL, except for the
first few modes in the limit of large chain stiffness. As for the non-hydrodynamic case,
we then obtain

χn(t) =
τn

3πητ̃n

∫ t

−∞
exp

(
−t− t

′

τ̃

)
Γ n(t′)dt′, (381)

1

τ̃n
=

1 + 3πηΩnn

τn
, (382)

〈χk(t)χn(0)〉 =
kBT

πη
τnδkne

−t/τ̃n , ∀k, n 6= 0. (383)

The relaxation times τn are given in Eq. (364).

Asymptotic behavior

• Flexible polymer (Zimm model): pL→∞

σ(s)2 =
|s|
p
, τ̃n =

η√
3πkBT

(
L

np

)3/2

. (384)

• Semiflexible polymer: pL� 1

σ(s)2 = s2, τ̃n =
64ηpL4

π3kBT (2n− 1)4

[
1−

√
6

π

(
C + ln

(
(2n− 1)πd

2L

))]−1

,

(385)

C = 0.57721.. is the Euler constant.
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Figure 6: Relaxation times for the extensions a/L = 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 (from
top to bottom) [15]. The experimental data (symbols) are taken from Ref. [16]. The inset
shows the exponents (ζ) of the relation τn ∼ nζ corresponding to the various curves .

12.2.1 Center-of-Mass Mean Square Displacement

Equation (378) gives for χ0(t)

χ0(t) = χ0(0) +
H00

3πη

∫ t

0

Γ 0(t′)dt′,

which yields the center-of-mass mean square displacement

〈
∆r cm(t)2

〉
=

1

L

〈
(χ0(t)− χ0(0))2

〉
=

H2
00

(3πη)2

∫ t

0

〈Γ 0(t′)Γ 0(t′′)〉 dt′dt′′ = 6kBT

3πηL
H00t.

Hence, the diffusion coefficient is

D =
kBT

3πηL
H00 =

kBT

3πηL

[
1 +

√
6

π

1

L

∫ L

d

L− s
σ(s)

ds

]
. (386)

The asymptotic dependence on polymer length is

D =





8kBT

3
√

6π3η

√
p

L
, pL� 1

√
6

π

kBT

3πηL
ln(L/d) , pL� 1

to leading order in L/d. Note, the preaveraging approximation does not strictly apply in
the rod limit. Hence, a more accurate calculation of the diffusion coefficient yields other
front factors in that limit.
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frame 〈∆r(t)2〉 − 〈∆rcm(t)2〉. The red line approaches the asymptotic value 2R2

G in the
limit t→∞.

12.2.2 Segmental Mean Square Displacement

Similar to the free-draining case, the averaged segmental mean square displacement is
given by

〈
∆r(t)2

〉
= 6Dt+

2kBT

πηL

∞∑

n=1

τn
(
1− e−t/τ̃n

)
. (387)

Flexible Polymer

With the Zimm relaxation time

τz =
η√

3πkBT

(
L

p

)3/2

,

the sum is replaced by an integral as follows (x = n(t/τz)
2/3)

∞∑

n=1

τR
n2

[
1− e−tn3/2/τz

]
→
(
t

τz

)2/3

τR

∫ ∞

0

1

x2

[
1− e−x3/2

]
dx = 2.6789

(
t

τz

)2/3

τR. (388)

Hence, 〈∆r2〉 ∼ t2/3.
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Figure 8: Mean square displacements of DNA molecules with pL = 0.68, 1.7, 3.4, 10, 170
(left to right). The thickness is d = 2.5nm and persistence length lp = 50nm.

Semiflexible Polymer

Hydrodynamic interactions yield a logarithmic correction in the relaxation times only [cf.
Eq. (385)], compared to the free-draining case. Suppression of this extra dependence
leads to the same time dependence of the segmental mean square displacement as for the
free-draining case, namely

〈
∆r(t)2

〉
∼ t3/4.
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Figure 10: Mean square displacements of semiflexible polymers [17]. Comparison of
Brownian dynamics simulations and various theoretical approaches.
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Figure 12: Top: ∆end(t), the mean square displacement of an end-monomer in a
dsDNA strand, for various lengths L = 98 − 19941 bp. Bottom: the local slope
αend(t) = d lnend /d ln t of the log-log curves in the top panel. In both panels the cir-
cles are from the experimental FCS measurements in Ref. [18]. The solid lines are MFT
predictions, without any fitting parameters [19].
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the semiflexible polymer model.
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12.2.3 Diffusion of Rod

The preaveraging approximation does not apply to rather stiff polymers or rods. Here,
the anisotropy of the hydrodynamic interactions has to be taken into account (cf. Eq.
(389)). For an infinitely thin rod, a position independent tensor is obtained. With
∆r = r(s)− r(s′) = (s− s′)û, where û is the unit vector pointing along the rod axis, we
obtain

Ω(s− s′) =
Θ(|s− s′| − d)

8πη|s− s′| (I + û : û) .

Hence, the Oseen tensor components parallel and perpendicular to û are

Ω⊥(s) = Ω‖(s)/2 =
Θ(|s| − d)

8πη|s| , (389)

which is evident, when, e.g., û = (1, 0, 0)T is used.
Within the approximation Ωkn = Ωnnδkn, the segmental mean square displacement (387)
reduces to

〈
∆r(t)2

〉
= 6Dt+

L2

6

(
1− e−t/τ̃1

)
, (390)

since all τn, with n > 1 are zero for pL = 0. The two terms describe the center-of-mass
motion and the rotational diffusion of the rod. τ̃1 is the rotational relaxation time, which
is related to the rotational diffusion coefficient via Dr = 1/(2τ̃1).

D is given by the average D = (2D⊥ +D‖)/3, where D⊥ and D‖ are the diffusion coeffi-
cients perpendicular and parallel to the rod axis.

The equation of motion for rcm = χ0ϕ0 reads

ṙcm =
1

3πη
√
L

H00Γ 0 ,

or, parallel and perpendicular to director û

ṙcm,⊥ =
1

3πη
√
L

H00,⊥Γ 0,⊥,

ṙcm,‖ =
1

3πη
√
L

H00,‖Γ 0,‖,

where H00,‖,⊥ = 3πηΩ‖,⊥+ 1 and Ω‖,⊥ is given in Eq. (389). The solution yields the mean

square displacements
〈

∆r2
cm,⊥,‖

〉
= 2D⊥,‖t, with

D⊥,‖ =
kBT

3πηL
+
kBT

L2

∫ L/2

−L/2
Ω⊥,‖(s− s)dsds′.

Evaluation yields for L/d� 1

D⊥ = D‖/2 =
kBT

4πηL
ln(L/d). (391)
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More precise calculations yield correction terms (O(d/L))

D‖ =
kBT

2πηL
[ln(L/d)− 0.2] , (392)

D⊥ =
kBT

4πηL
[ln(L/d) + 0.84] ,

Dr =
3kBT

πηL3
[ln(L/d)− 0.66] .

Evidently, the rod diffuses faster parallel to its main axis than perpendicular to it.
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13 Excluded-Volume Interactions

So far, polymers in a Θ solvent have been discussed, i.e., polymers, where the excluded-
volume interactions between the various monomers are screened. Experimentally, it has
been show that this is an adequate description of polymers in melts. In dilute solution
under so-called good solvent conditions, excluded-volume interactions lead to a swelling of
a polymer coil. The mean square end-to-end distance increases then with the power law
〈(rN − r0)2〉 ∼ l2N2ν with polymer length, where mean field approaches predict ν = 0.6
and more precise renormalization group calculations ν ≈ 0.588 [20,21].

13.1 Model of the Excluded Volume Chain

The interaction between the polymer segment n and m is of short-range nature and can
be expressed by the potential

uex = kBT ũ(rn − rm). (393)

It can even, for a theoretical study, be approximated by the delta function

uex = vkBTδ(rn − rm). (394)

v is the excluded volume and has the dimension of a volume. The total energy of a
continuous polymer is then

U ex =
1

2
vkBT

∫
δ(r(s)− r(s′))dsds′. (395)

With the density of segments

ρ(r) =

∫
δ(r − r(s))ds (396)

the energy (395) can be written as

U ex =
1

2
kBTv

∫
ρ(r)2d3r.

Hence, U ex can be considered as the first term in a density expansion of the excluded
volume interaction, i.e., a virial expansion.
The partition function of a flexible polymer is then given by

Z =

∫
exp

(
−3p

2

∫ L

0

(
∂r(s)

∂s

)2

ds− 1

2
v

∫ L

0

∫ L

0

δ(r(s)− r(s′))dsds′

)
D3r. (397)

13.2 Mean-Field Estimation of Swelling Exponent

A estimation of the swelling exponent is obtained by a dimension analysis of the partition
function. Alternative the free energy can be considered. For a Gaussian polymer with
fixed ends at r = 0 and r(L) = R, the partition function is (l = 1/p)

Z ∼ exp

(
−3R2

2lL

)
.
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Hence, the free energy of the Gaussian polymer reads

FG = −kBT lnZ = kBT
3R2

2lL
(398)

To estimate the effect of the excluded volume interaction, the connectivity of the chain is
disregarded, i.e, an ’segment gas’ is considered confined in a volume V = 4πR3/3, with
R = |R|. The concentration of the segment gas is

ρ̄ =
1

V

∫
ρ(r)d3r =

L

V
(399)

(for a discrete system ρ̄ = N/V ). Then, the energy U ex becomes

U ex = kBT
vL2

2V
. (400)

With

Z =

∫
exp

(
−3p

2

∫ L

0

(
∂r(s)

∂s

)2

ds

)
D3r exp

(
−vL

2

2V

)

follows for the free energy

F ≈ kBT

(
3R2

2lL
+
vL2

8R3

)
. (401)

Minimization of F yields

R =

(
vl

8

)1/5

L3/5 ∼ Lν . (402)

Hence, ν = 3/5 = 0.6.

13.3 Dynamics

The swelling also affects the dynamics of a polymer. Qualitatively, this effect can be
captured by the linearization approximation [21]. Here the distribution function Ψ(r(s)−
r(s′)) = F (|r(s)− r(s′)|/[|(s− s′)/l|ν ]) is used, which gives

〈
1

|r(s)− r(s′)|

〉
≈
(

l

|s− s′|

)ν
(403)

and leads to the relaxation times (L/l� 1) [21]

τ̃n ≈
ηl3

kBT

(
L

ln

)3ν

. (404)

With the exponent ν = 1/2 for a Θ solvent, the dependencies (384) are recovered. Renor-
malization group theory calculations yield the diffusion coefficient DZ = 0.2kBT/(

√
6ηRG)

in good solvent, with the radius of gyration RG ≈ l(L/l)ν [21, 22].
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14 Mesoscale Hydrodynamic Simulations

During the last two decades, varies mesoscale hydrodynamic simulation techniques have
been developed to account for hydrodynamic interactions and to bridge the length- and
time-scale gap between solvent and solute degrees of freedom. Popular approaches are
the Lattice Boltzmann (LB) method, Dissipative Particle Dynamics (DPD) simulations,
and recently the Multiparticle Collision Dynamics (MPC) method (the latter is often
denoted as Stochastic Rotation Dynamics (SRD)) [23, 24]. Aside from these, simulation
methods are used, which capture hydrodynamic interactions by a hydrodynamic tensor,
e.g., the Oseen (293) or Rotne-Prager (295) tensor, or more elaborated ones, and solve a
Langevin equation [cf. Eq. 297]. Stokesian Dynamics is applied for rather large objects,
where Brownian motion, i.e., thermal motion, can be neglected—here, random forces are
neglected. Simulations including thermal (random) force are denoted as Brownian Dy-
namics simulations with or without hydrodynamic interactions. All these approaches are
essentially alternative ways of solving the NavierStokes equation and its generalizations.
This is because the hydrodynamic equations are expressions for the local conservation
laws of mass, momentum, and energy, complemented by constitutive relations which re-
flect some aspects of the microscopic details. Frisch et al. [25] demonstrated that discrete
algorithms can be constructed which recover the NavierStokes equation in the continuum
limit as long as these conservation laws are obeyed and space is discretized in a sufficiently
symmetric manner.

14.1 Multiparticle Collision Dynamics (MPC)

As an example, I will briefly outline the MPC method and its coupling to the dynamics
of polymers.

The common approach of all mesoscale methods is to average out irrelevant microscopic
details in order to achieve high computational efficiency while keeping the essential fea-
tures of the microscopic physics on the length scales of interest. Applying these ideas to
suspensions leads to a simplified, coarse-grained description of the solvent degrees of free-
dom, in which embedded macromolecules such as polymers are treated by conventional
molecular dynamics simulations. For MPC, this means that the fluid is represented by
point particles, which interact with each other by a stochastic process, thereby preserving
locally momentum and energy. It is momentum conservation, which leads to the build-up
of a correlated fluid motion. Specifically, the solvent is composed of Ns pointlike particles
of mass m and the algorithm consists of alternate streaming and collision steps. In the
streaming step, the particles move ballistically and their positions are updated according
to

ri(t+ h) = ri(t) + hvi , (405)

where h is the time interval between collisions and is denoted as collision time. In the
collision step, the system is partitioned into cubic cells of side length a. The particles are
sorted into this cells according to their position and their relative velocities ∆vi = vi−vcm,
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with respect to the center-of-mass velocity of the cell

vcm =
1

Nc

Nc∑

j=1

vj,

are changed by a random process. Nc denotes the particles in the particular cell. There
are various realizations of the stochastic process. Here, two examples are given:

(i) Stochastic rotation

A randomly oriented axis is selected for every collision cell and every collision step,
and the relative velocities ∆vi are rotated around the corresponding axis by the
fixed angle α, i.e.,

vi(t+ h) = vi(t) + (R(α)− I)(vi − vcm) . (406)

R(α) is the rotation matrix

R(α) =




l2x + (1− l2x)c lxly(1− c)− lzs lxlz(1− c) + lys

lxly(1− c) + lzs l2y + (1− l2y)c lylz(1− c)− lxs
lxlz(1− c)− lys lylz(1− c) + lxs l2z + (1− l2z)c


 ,

with lx = cos(ϕ)
√

1− θ2, ly = sin(ϕ)
√

1− θ2, lz = θ, c = cos(α), and s = sin(α). ϕ
and θ are uncorrelated random numbers, which are taken from uniform distributions
in the intervals [0, 2π] and [−1, 1], respectively.

(ii) Maxwellian distributed random numbers

Velocities ∆vi are taken from the Maxwellian distribution
P (∆v) = exp(−m∆v2/(2kBT ))/Z and the velocity of a fluid particle is calculated
according to

vi(t+ h) = vcm(t) + ∆vi −
1

Nc

Nc∑

j=1

∆vi . (407)

The last sum ensures conservation of momentum. The advantage of this method is
that the system is always thermalized.

To establish Galilean invariance, a random shift is performed at every collision step. This
means that a uniformly distributed random number ξ ∈ [−0.5, 0.5] is taken for every spa-
tial direction and every collision step, and the collision lattice is shifted by that amount.
In practice, the particles are shifted and redistributed in the collision lattice.

The advantage of the method is that the viscosity and Schmidt number can be given. The
viscosity η = ηkin + ηcol has two contributions, a kinetic one ηkin and a collisional one ηcol,
which read

ηkin =
NskBTh

V

[
5Nc

(Nc − 1)(4− 2 cos(α)− 2 cos(2α))
− 1

2

]
,

ηcol =
Nsma

2

18V h
(1− cos(α))

(
1− 1

Nc

)
.
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Figure 14: Viscosities determined via the internal (bullets) and external (open squares)
stress tensors (α = 130o, 〈Nc〉 = 10). The analytical results for the total (black), the
kinetic (red, ∼ h), and collisional (blue, ∼ 1/h) contributions are presented by solid
lines [26].

Figure 14 shows a comparison with simulation results.

The Schmidt is defined as Sc = ν/D, where ν = η/ρ is the kinematic viscosity and D
the diffusion coefficient. Thus, Sc is the ratio between momentum transport and mass
transport. It is known that this number for gases is smaller than but on the order of unity,
while in fluids like water it is on the order of 102 to 103. A prediction for the Schmidt
number of a MPC fluid can be obtained from the theoretical expressions for the viscosity
and the diffusion coefficient

D =
1

3

[
1

2

〈
v2(0)

〉
+
∞∑

n=1

〈v(nh)v(0)〉
]
h ≈ kBT

m
h

(
1

γα
− 1

2

)
,

with γα = 2(1−cosα)(1−1/Nc)/3. For h� 1, the Schmidt number increase as Sc ∼ 1/h2,
i.e., large Schmidt numbers can be achieved.

Hydrodynamic interactions lead to long-time correlations, which is reflected in the decay
of the fluid particle auto-correlation function and is denoted as long-time tail. Figure 15
gives a example of such a behavior.

14.2 Hybrid MPC-MD Simulations

There are various ways to couple the MPC solvent with another object in the solution,
such as a colloid or a polymer.
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Figure 15: Time dependence of the normalized velocity autocorrelation function for h = 1
and h = 0.1. Dashed lines correspond to an exponential decay. In both cases the number
density is 〈Nc〉 = 5, the rotation angle α = 130o, and the system size L/a = 20. On the
right, the data are compared with long-time the tail prediction t−3/2.

(i) Hard sphere colloid

Two type of boundary conditions are typically applied for colloidal particles, namely
slip or no-slip boundary conditions. In the first case, the interaction of the solvent
particle with the colloid can be described by a Lennard-Jones potential, i.e., the
particle is reflected by the colloid. Similarly, the elastic collision rule for reflection
can be applied. In the no-slip case, the bounce-back rule is applied. This means
that the relative velocity between the colloid and solvent particle is reverted.

(ii) Polymers

Objects composed of point particles, such as polymers (linear, branched) can very
easily be coupled by incorporation of the monomers in the collision step. Since hy-
drodynamic interactions definitely appear only beyond one collision cell–the actual
minimal distance depends on the collision step size—the monomer size is typically
set equal to a collision cell. This implies that typically at most one monomer is
in a collision cell. To achieve a sufficiently strong coupling, the monomer mass M
is set equal to the average mass of fluid in a collision cell, i.e., M = 〈Nc〉m. The
center-of-mass velocity is the given by

vcm =

∑Nc

j=1 mvj +
∑Nm

c
j=1MVj

mNc +MNm
c

,

where Nm
c is the number of monomers in the considered collision cell and the Vj are

their velocities. The collision is then either performed via the rule (406) or (407).

14.2.1 Gaussian Polymer in dilute solution

As an example, results are presented for the dynamics of a Gaussian polymer in dilute
solution.
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• Center-of-mass mean square displacement neglecting fluid-fluid correlations (no HI)

〈
(rcm(nh)− rcm(0))2〉 =

6kBTh
2

MNm

[(
1

γ
− 1

2

)
n− (1− γ)− (1− γ)n+1

γ2

]
(408)

γ = γα(e−φ + φ− 1)/φ2, φ: average number of monomers in collision cell.

• Kirkwood diffusion coefficient [27]

D(K) =
D0

Nm

+
kBT

6πη

1

RH

, (409)

where the hydrodynamic radius RH is defined as

1

RH

=
1

N2
m

〈
Nm∑

i=1

Nm∑

j=1

′ 1

|ri − rj|

〉
(410)

and the prime indicates that the term with j = i has to be left out in the summation.
For a Gaussian chain, the hydrodynamic radius is found to be

RH =
3l

8

√
π

6
N1/2
m

[
1− 3

4
ζ(1/2)N−1/2

m +O(N−3/2
m )

]
(411)

where ζ(1/2) = −1.460 . . .. Thus, RH ∼ rg to leading order in Nm, but corrections
to scaling are different. D0 is the diffusion coefficient of a single monomer in the
same solvent. Equation (409) applies for a single chain in an infinitely large system
only. In a system with periodic boundary conditions, interactions with periodic
images appear. We are primarily interested in the scaling behavior of the diffusion
coefficient with respect to the hydrodynamic radius and not in its absolute values for
a finite system. Therefore, we discuss the diffusion coefficient as a function of the hy-
drodynamic radius of an infinite system, assuming that D−D0/Nm ∼ g(rg/L)/RH ,
where D is extracted from the center of mass mean-square displacement [27].
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Figure 17: Center-of-mass mean square displacements for Gaussian polymers of lengths
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15 Microswimmers

Life at low Reynolds numbers is quit different from our everyday experience, as has already
be recognized by Purcell [28] several decades ago. Low Reynolds numbers (Re = ρvL/η)
can either be achieved by small objects or at very high viscosity. Hence, a microorganism
experiences a similar dynamics as a human swimming in a very viscous honey. Since
inertia effects are negligible, forward motion stops immediately when the motor driving
the object forward stops. Therefore, a continuous action of a motor is necessary to
maintain motion.
The time-reversal symmetry of the Stokes equation implies another fundamental conse-
quence, which is denoted as ’scallop theorem’ by Purcell: To achieve propulsion at low
Reynolds number in simple fluids (i.e., Newtonian fluids), a swimmer must deform in a
none invariant manner under time-reversal. It means that just by opening and closing
its two shells, a mussel cannot move forward. A non-time reversal sequence of moves is
required to generate motion.

15.1 Swimming of Bacteria

Some bacteria, such as Escherichia coli (E. coli) and Salmonella, swim by rotating helical
filaments called flagella. Several of these flagella are attached to the cell body. By rotating
the flagella, a bundle is formed, which drives the bacteria forward.

The bacteria swim in a ’run-and-tumble’ motion as illustrated in Fig. 21. This is only
possible by hydrodynamic interactions, which are essential, e.g., for bundle formation.

Essential for swimming by flagella is the anisotropy of the hydrodynamic friction of a
slender body [29]. As pointed out in section 12.2.3, the friction of a rod is different
parallel and perpendicular to its orientation. As illustrated in Fig. 22, by the motion in
the direction of u, a force is induced in the direction fprop. This can easily be demonstrate.
According to Eqs. (391) , (392), friction coefficients parallel and perpendicular to a rodlike
segment can be defined: ξ⊥,‖ = kBT/D⊥,‖. The frictional force due to the velocity u is
then

f = −ξ‖u‖ − ξ⊥u⊥.

Introducing polar coordinates, we find

u⊥ = u⊥

(
cos θ

sin θ

)
,u‖ = u‖

( − sin θ

cos θ

)

Hence

fprop =
(
ξ‖u‖ sin θ − ξ⊥u⊥ cos θ

)
ex =

(
ξ‖ − ξ⊥

)
u sin θ cos θex ,

with u⊥ = u sin θ and u‖ = u cos θ.
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Figure 20: Various microswimmers: (top) sperm, (middle) E. coli, (bottom) Clamy-
domonas.
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Figure 21: Sequence of events in a tumble caused by the reversal of a single motor. From
left to right: 1, a bacterium swimming along its original trajectory with all left-handed
normal filaments; 2, a motor reversal (CCW (counter-clockwise) to CW (clockwise)) caus-
ing the filament to start unbundling and the cell body to deflect slightly; 3, initiation of
the transformation of the filament from the left-handed normal form to the right-handed
semicoiled form and the beginning of a large deflection of the cell body opposite the pre-
vious small deflection; 4, complete transformation of the filament to the semicoiled form
and reorientation of the cell along a new trajectory; 5, movement of the cell along the new
trajectory, propelled by a normal bundle turning CCW and a semicoiled filament turn-
ing CW which has partially transformed to the right-handed curly 1 form; 6, complete
conversion of the filament to the curly 1 form, which is flexible enough to twist loosely
around the bundle; 7, the motor reversing again (CW to CCW), causing the curly 1 form
to revert to normal; and 8, after the filament has rejoined the bundle [30].
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