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1 Introduction
Cell motility is a major achievement of biological evolution and is essential for a wide spec-
trum of cellular activities [1]. Swimming of uni- and multi-cellular organisms is essential for
their search for food (chemotaxis), the reaction to light (phototaxis), and the orientation in the
gravitation field (gravitaxis). Microorganisms, such as spermatozoa, bacteria, protozoa, and al-
gae, use flagella—whip-like structures protruding from their bodies—for their propulsion [1–4].
Furthermore, flagellar motion plays a major role in higher organisms [5,6], where they transport
fluid in the respiratory system in form of cilia [7], are involved in cellular communications [8],
and even determine the morphological left-right asymmetry in the embryo [9].
Unicellular swimmers, e.g., bacteria like Escherichia coli, spermatozoa, and Paramecia are
typically of a few to several tens of micrometers in size. The physics ruling the swimming on
this micrometer scale is very different from that applying to swimming in the macro-world.
Swimming at the micrometer scale is swimming at low Reynolds numbers [10], where viscous
damping by far dominates over inertia. Hence, swimming concepts of the high Reynolds num-
ber macro-world are ineffective on small scales. In the evolutionary process, microorganisms
acquired propulsion strategies, which successfully overcome and even exploit viscous drag.
Microswimmers hardly ever swim alone. Sperm cells are released by the millions to compete in
the run for the egg [11]. Bacteria grow by dividing and invading their surroundings together. In
assemblies of motile microorganisms, cooperativity reaches a new level of complexity as they
exhibit highly organized movements with remarkable large-scale patterns such as networks,
complex vortices, or swarms [4, 12, 13].
Hydrodynamics and hydrodynamic interactions (HI) are fundamental for swimming on the
microscale. This includes the propulsion mechanism itself, the synchronized motion of flag-
ella in flagellar bundles of bacteria such as E. coli or Salmonella, in cilia beating of cilia arrays,
which form metachronal waves [14], and even extends to collective behaviors.
Hydrodynamic interactions pose a major challenge in computer simulation of swimming sys-
tems due to the presence of disparate time and length scales as well as far from equilibrium
strong spatially and temporally varying forces. As a consequence, coarse-grained or meso-
scopic simulation approaches are adopted that mimic the behavior of atomistic systems on the
length scales of interest. Established examples of such approaches are Dissipative Particle Dy-
namics (DPD) [15–17], Lattice Boltzmann (LB) [18–20], Direct Simulation Monte Carlo
(DSMC) [21–23], and Multiparticle Collision dynamics (MPC) [24–26]. All the approaches
are essentially alternative ways of solving the Navier-Stokes equations for the fluid dynamics.
Common to them is a simplified, coarse-grained description of the fluid degrees of freedom
while maintaining the essential microscopic physics on the length scales of interest, provid-
ing at the same time a computationally efficient implementation in complex geometries and on
parallel computers.
In this contribution, several aspects of mesoscale hydrodynamics will be discussed. First of
all, the basic equations of hydrodynamics, the Navier-Stokes equations, will be introduced and
its long-range character and dynamical long-time tail will be derived. As an application, the
synchronization of microrotors by time-dependent hydrodynamic interactions will be consid-
ered. Secondly, the MPC approach will be introduced, and results achieved by this simulation
approach for the swimming behavior of E. coli cells in bulk and near surfaces be discussed.
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2 Hydrodynamics

2.1 Linearised Hydrodynamics

Fluid flow on macroscopic scales is typically described by the Navier-Stokes equations

∂

∂t
%+ ∇ · (%v) = 0, (1)

%

(
∂

∂t
v + (v ·∇)v

)
= ∇ · σ + f (2)

in terms of a velocity field v(r, t), where %(r, t) is the fluid mass density, σ(r, t) the stress
tensor, and f(r, t) the volume force density [27–29]. Equation (1) expresses the conservation
of mass. Equation (2) is an extension of Newton’s equation of motion mv̇(t) = F , (m mass, F
force) to viscous fluids and reflects the conservation of momentum. Strictly speaking there is
also an equation for the conservation of energy [27–29], but we will consider isothermal systems
in the following and, hence, the two equations characterize the system. The (symmetric) stress
tensor of an isotropic system is given macroscopically by [27]

σαβ = −pδαβ +
∑
α′β′

ηαβα′β′
∂vα′

∂rβ′
= −pδαβ + η

(
∂vα
∂rβ

+
∂vβ
∂rα

)
− δαβ

(
2

3
η − ηv

)
∇ · v, (3)

with

ηαβα′β′ = η(δαα′δββ′ + δαβ′δα′β)−
(

2

3
η − ηv

)
δαβδα′β′ , (4)

the local pressure p = p(r, t), the shear and bulk viscosities η and ηv, and α, β, α′, β′ ∈
{x, y, z}. Other constitutive equations can be added. We will additionally consider thermal
fluctuations of the fluid, which are described by the stress tensor σR, a Gaussian and Markovian
stochastic process with the moments

〈σR〉 = 0, (5)

〈σRαβ(r, t)σRα′β′(r′, t′)〉 = 2kBTηαβα′β′δ(r − r′)δ(t− t′). (6)

Here, kB is the Boltzmann constant and T the temperature. The tensor η is defined in Eq. (4).
Hence, σR satisfies the fluctuation-dissipation theorem [30]. With the stress tensor (3) and the
random force fR = ∇ · σR, Eq. (2) turns into

%

(
∂

∂t
v + (v ·∇)v

)
= −∇p+ η∆v +

(η
3

+ ηv
)
∇(∇ · v) + f + fR. (7)

In order to asses the relevance of the various terms in Eq. (7), in particular the time-dependent
and non-linear inertia terms, we scale the velocity field by a typical value v0, length by L0, and
time by T0, as usual [31], which yields the equation

ReT
∂v′

∂t′
+Re (v′ ·∇′)v′ = −∇′p′ + ∆′v′ +

(
1

3
+
ηv

η

)
∇′(∇′ · v′) + f ′ + fR

′
, (8)
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where the primed quantities are dimensionless and of O(1). Furthermore, we introduced the
Reynolds numbers

Re =
ρv0L0

η
=
v0L0

ν
, ReT =

ρL2
0

ηT0
=

L2
0

νT0
, (9)

with the kinematic viscosity ν = η/% [32, 33]. Typically, T0 is defined as T0 = L0/v0 which
yields ReT = Re. For a micrometer size sphere of radius R in water with thermal velocity,
i.e., R = L0 = 10−3µm, η = 10−3Ns/m2, v0 =

√
3kBT/%V =

√
9kBT/4%πL3

0—V is the
volume—, the Reynolds number is Re ≈ 2 × 10−3. Since the other terms are O(1), the left
hand side of Eq. (8) is typically neglected and the Navier-Stokes equation (7) reduces to the
Stokes equation. In addition, often incompressible fluids are considered, i.e., % = const. and
∇ · v = 0, hence, Eq. (7) becomes (Stokes equation)

η∆v −∇p+ f = 0 (10)

without thermal fluctuations [27–29,31,34]. The oscillatory Reynolds numberReT can be writ-
ten as ReT = τν/T0, with τν = L2

0/ν. Hence, ReT is the ratio of the viscose time scale τν for
shear wave propagation over the distance L0 and the characteristic system time T0. In order to
establish proper hydrodynamic interactions, τν/T0 < 1 and, hence, ReT < 1.

For microswimmers,Re = 0 is typically assumed and their dynamics is described by the Stokes
equation (10), which leads to peculiarities in their locomotion as expressed by the scallop theo-
rem [10]. The theorem states: If the sequence of shapes displayed by a swimmer is identical to
the sequence of shapes traversed in reverse motion—so-called reciprocal motion—the average
position of the body cannot change over one period [2, 10, 33, 35]. The main reason is the time
independence of the Stokes equation, which naturally cannot lead to an asymmetry in time.
Hence, the mechanism for flow generation—the swimming stroke—has to break time-reversal
symmetry. This is of particular importance for the synchronization of flagellar beating of bac-
teria and algae such as Chlamydomonas [1] (see also D.6 Synchronization by B. M. Friedrich).

The relevance of the unsteady acceleration term with the oscillatory Reynolds number ReT
depends on the time scale of the physical phenomenon of interest. We will keep this term to
analyze time correlations in fluids. However, we will only consider linearized hydrodynamics,
which means only small deviations from stationary values. With a zero stationary velocity and
% = ρ+ δ%, we obtain the linearised Landau-Lifshitz Navier-Stokes equations

∂

∂t
δ%+ ρ∇ · v = 0, (11)

ρ
∂

∂t
v = −∇p+ η∆v +

(η
3

+ ηv
)
∇(∇ · v) + f + fR. (12)

These are two equations for the two unknown quantities p and v. Taking the divergence of
Eq. (12), we arrive at the equation

∆p− 1

c2
∂2p

∂t2
= ∇ ·

(
η∆v +

(η
3

+ ηv
)
∇(∇ · v) + fR

)
. (13)

The second derivative with respect to time on the left-hand side follows from Eq. (11) together
with the ideal gas equation of state; c is the isothermal velocity of sound.
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2.2 Solution of the linearised Landau-Lifshitz Navier-Stokes equations
In order to solve the linear equations (12) and (13), we apply the Fourier transformation

v(r, t) =
1

2π

∑
k

∫
v̂(k, ω)e−ik·reiωtdω, (14)

v̂(k, ω) =
1

V

∫
v(r, t)eik·re−iωtd3rdt (15)

for the velocity field, with kα = 2πnα/L, nα ∈ Z, and k 6= 0. We use periodic boundary
conditions for the spatial coordinates, since the results will later be compared with simulations.
This yields (f = 0)

iωρv̂ = ikp̂− ηk2v̂ −
(η

3
+ ηv

)
k2Pv̂ + f̂R,(

ω2

c2
− k2

)
p̂ = ik ·

(
ηk2v̂ +

(η
3

+ ηv
)
k2Pv̂ − f̂R

)
, (16)

where P is a projection operator with the components Pαβ = kαkβ/k
2, which projects a vector

along the direction of k, and k = |k|. With the separation v̂ = v̂L + v̂T into a longitudinal v̂L

and transverse part v̂T with respect to k, i.e., v̂ · k = v̂Lk and v̂T · k = 0, Eqs. (16) yield

v̂(k, ω) = Q̂f̂R =
(
Q̂L + Q̂T

)
f̂R, (17)

with

Q̂L =

(
η̃k2 +

iρ

ω
[ω2 − c2k2]

)−1
P = Q̂LP, (18)

Q̂T =
(
ηk2 + iρω

)−1
(E−P) = Q̂T (E−P) , (19)

and η̃ = 4η/3 + ηv; E is the unit matrix [36].
Fourier transformation with respect to time yields (Θ(t): Heaviside’s function)

QT (k, t) =
1

ρ
e−νk

2tΘ(t), (20)

QL(k, t) =
1

ρ
e−k

2ν̃t/2

[
cos(Ωt)−

√
k2ν̃2

4c2 − k2ν̃2
sin(Ωt)

]
Θ(t) (21)

for 4c2/(k2ν̃2) > 1 and with the abbreviation Ω = k2ν̃
√

4c2/(k2ν̃2)− 1/2. The expression for
4c2/(k2ν̃2) < 1 follows by analytical continuation [36].

2.3 Velocity correlation function in Fourier space
With the help of the correlation function for the random force〈

f̂Rα (k, ω)f̂Rβ (k′, ω′)
〉

= −
∑
α′,β′

kα′k′β′

〈
σ̂Rαα′(k, ω)σ̂Rββ′(k′, ω′)

〉
=

4πkBT

V
k2

[
ηδαβ +

(
1

3
η + ηv

)
kαkβ
k2

]
δ(ω + ω′)δk,−k′ , (22)
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velocity autocorrelation functions in Fourier space can easily be calculate [36]; in particular,

〈v̂(k, ω) · v̂(k′, ω′)〉 =
4πkBT

V
k2
(

2η|Q̂T |2 + η̃|Q̂L|2
)
δ(ω + ω′)δk,−k′ (23)

is obtained by Eqs. (17), (18), and (19). The factor 2 in front of |QT |2 reflects the two transverse
components of vorticity
The time-dependent correlation function 〈v(k, t) · v(k′, 0)〉 follows by convolution

〈v(k, t) · v(k′, 0)〉 =

2kBTk
2

V
δk,−k′

∫ [
2ηQT (k, t− t′)QT (k′,−t′) + η̃QL(k, t− t′)QL(k′,−t′)

]
dt′. (24)

Explicitly, we find for the
(i) transverse velocity autocorrelation function

〈
vT (k, t) · vT (−k, 0)

〉
=

2kBT

ρV
e−νk

2|t|, (25)

(ii) longitudinal velocity autocorrelation function

〈
vL(k, t)vL(−k, 0)

〉
=
kBT

ρV
e−ν̃k

2|t|/2

[
cos(Ω|t|)−

√
k2ν̃2

4c2 − k2ν̃2
sin(Ω|t|)

]
. (26)

The transverse correlation function decays simply in an exponential manner, with a characteris-
tic time τν = 1/νk2 determined by the kinematic viscosity and the wave vector. The longitudi-
nal correlation function decays with a different factor (sound attenuation coefficient) involving
ν̃/2 and exhibits oscillations with the frequency Ω. Examples are provided in Fig. 5.

2.4 Velocity correlation function in real space—long-time tail
Adopting the Lagrangian description of the fluid, where a fluid element is followed as it moves
through space and time, we additionally average the correlation function over the distribution
of displacements r − r′. Hence, Fourier transformation of Eq. (24) with respect to k leads to

〈v(t) · v(0)〉 =
∑
k

〈v(k, t) · v(−k, 0)〉
〈
e−ik·(r−r

′)
〉
. (27)

Assuming a diffusive motion of the fluid element, with Gaussian distributed displacements, we
find

〈v(t) · v(0)〉 =
∑
k

〈v(k, t) · v(−k, 0)〉 exp
(
−k2

〈
(r(t)− r(0))2

〉
/6
)

=
kBT

V

∑
k

[
2QT (k, t) +QL(k, t)

]
e−k

2Dt. (28)

Here, 〈(r(t)− r(0))2〉 is the mean square displacement, which, in the simplest case, reduces to
〈(r(t)− r(0))2〉 = 6Dt, with D the diffusion coefficient.
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In general, the sum over k in Eq. (28) cannot be evaluated analytically. For the transverse
velocity correlation function, however, we obtain the expression

〈
vT (t) · vT (0)

〉
=

2kBT

ρ(2π)3

∫
e−νk

2te−Dk
2td3k =

kBT

4ρ

1

[π(ν +D)t]3/2
. (29)

in the limit of an infinitely large system (L → ∞,
∑

k → V/(2π)3
∫
d3k). Hence, we find the

well-known long-time tail of the transverse velocity correlation function—a major characteris-
tics of hydrodynamics [36–45].

2.5 Hydrodynamic tensor in real space—Oseen tensor
We will now consider the mean velocity fieldu(r, t) = 〈v(r, t)〉, where the thermal fluctuations
fR have been averaged out. Focusing on the transverse part of the hydrodynamic tensor only,
e.g., for an incompressible fluid, the flow field can be expressed as

u(r, t) =
∑
k

e−ik·r
∫ t

0

QT (k, t− t′)f(t′) dt′ (30)

starting from Eq. (17). We will assume that the force f changes much more slowly with time
than the tensor QT . Then, f can be taken out of the integral and the upper integration limit can
be extended to infinity. Hence,

u(r, t) =
∑
k

e−ik·r
1

ηk2
(E−P)f(t) =

∑
k

e−ik·rQT (k)f(t). (31)

For an infinite system, Fourier transformation yields u(r, t) = QT (r)F , where F = V f and

QT (k) =
1

ηk2
(E−P) , (32)

QT (r) =
1

8πη|r|

(
E +

rrT

|r|2

)
(33)

are the well-known Oseen tensors in Fourier and real space, respectively [31, 34]. Here, rT is
the transpose of the vector r. The Oseen tensor reflects another important property of hydro-
dynamic interactions, namely their long-range character, i.e., Q(r) ∼ 1/r. Note that the same
tensor follows directly as solution of the Stokes equation (10) for an incompressible fluid.

The various hydrodynamic properties have to been accounted for by hydrodynamic simulation
algorithms.

2.6 Hydrodynamic synchronization of microrotors
Synchronization of motion is a common phenomenon in nonlinear many-particle systems, and
thus appears in a broad range of physical, biological, engineering, and social systems [33, 46,
47]. Various aspects of synchronization will be discussed in the lecture D.6 Synchronization by
B. M. Friedrich. Here, I want to illustrate time-dependent hydrodynamic effects on synchro-
nization of rotors.
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Fig. 1: (Left) Average phase-angle difference ∆(t) for the Péclet numbers Pe = 120, 140, 160,
and 180 (top to bottom). Symbols represent simulation results and the solid lines are obtained
by numerical integration of Eq. (36) including transversal and longitudinal modes of the hy-
drodynamic tensor. Inset: Model system of hydrodynamically coupled rotors. The beads move
along fixed circular trajectories in the xy-plane, each driven by a constant tangential force F .
(Right) Flow field in the stationary synchronized state for the Péclet number Pe = 120. The
reddish colors indicate the dipolar character of the flow field. The flow field is calculated via
Eq. (37). For details see Refs. [33, 45].

From a microswimmer point of view, a rotor is the most simple description of a beating cilium
[48]. For example, its endpoint moves along a closed trajectory, which might be approximated
by a circle. The rotor model is illustrated in the inset of Fig. 1. The two beads of radius RH

move along circles of radius R, each driven by an active force Fi. The circles are centered at
r0i = (−1)i(d/2)êx (i = 1, 2), where êx is the unit vector along the x-axis and d the center-to-
center distance. The trajectories of the bead centers can be expressed as

ri(t) = r0i +R(cosϕi(t), sinϕi(t), 0)T , (34)

in terms of the phase angles ϕi(t). The driving forces Fi(t) = F t̂i(t) are of equal magnitude
and point along the tangents t̂i(t) = (− sinϕi(t), cosϕi(t), 0)T .
The equations of motion of the points are given by

ṙi(t) =
1

γ
Fi(t) +

∑
j 6=i

∫ t

0

Q(ri(t)− rj(t′), t− t′) Fj(t′) dt′ (35)

in terms of the hydrodynamic tensor of Eq. (17) with the components of Eqs. (20) and (21).
Here, thermal fluctuations are only included via the hydrodynamic tensor. For a numerical
treatment, the simpler, approximate expressions for the dynamics of the phase angles

ϕ̇i = ω +
F

R

∑
j 6=i

∫ t

0

t̂i(t) ·Q(dex, t− t′) t̂j(t′) dt′, (36)

derived within the mean-field approximation R2(t)−R1(t
′) ≈ d = dêx, are sufficient, where

ω = F/γR is the intrinsic angular frequency and γ = 6πηRH Stokes’ friction coefficient of a
bead [33, 45].
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v
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v
v v

FF F

FT

vz
z

Fig. 2: Helical segment moving in a viscous fluid. Only half of a helical pitch is shown. The
drag-based thrust force FT appears by the motion of the red rodlike segment in the direction v.
For details see Refs. [1, 3].

Figure 1 shows phase-angle differences ∆(t) = ϕ1(t) − ϕ2(t) of co-rotating beads calculated
according to Eq. (36) and obtained from MPC simulations (see Sec. 3.1). Interestingly, the
beads exhibit synchronization of their rotational motion despite strong thermal fluctuations for
the various Péclet numbers Pe, where Pe is defined as Pe = FR/kBT [33]. The simulation
results compare well with the theoretical predictions of Eqs. (36), although there are small dif-
ferences for Pe = 140 and 160.

The flow field

v(r, t) = F
2∑
i=1

∫ t

0

Q(r − ri(t′), t− t′)t̂i(t′) dt′ (37)

is illustrated in Fig. 1 (right). The velocity profile decays very fast with separation from a beat.
Thereby, it is anisotropic—-of Stokeslet shape—with a slower decay in the tangential forward
and backward direction. The synchronous state is preferable, because it minimizes dissipation.

Naturally, synchronization by time-dependent hydrodynamic interactions is possible, because
the time reversibility of the underlying dynamical equations is broken, despite a time-reversible
cyclic rotor motion. We find the dependence ts/Tr ∼ 1/

√
ReT of the synchronization time

on the oscillatory Reynolds number, where Tr is the rotational period of a rotor [33]. Hence,
ts approaches infinity for ReT → 0, i.e., for systems where the period is far larger than the
viscous time. However, the transition is gradual, which implies a continuous breakdown of
synchronization. Only for ReT = 0, there is no synchronization anymore, in analogy with the
scallop theorem [33, 35]

2.7 Propulsion of rotating helix
As mentioned in the introduction, propulsion of a rotating helical filament in a viscous fluid
appears due to hydrodynamic interactions. To illustrated the appearing thrust force FT , the ge-
ometry of Fig. 2 is considered. The helix moves in the direction v by rotation. To calculate
the (local) friction force, the helical segment is approximated by a rod (red). Separation of the
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(c)

Fig. 3: Schematics of the flow field of dipole swimmers; (a) pusher and (b) puller. (c) Flow lines
of a hydrodynamic dipole aligned horizontally according to Eq. (39). For details see Ref. [1].

velocity v it its components parallel (v‖) and perpendicular (v⊥) to the rod yields the respective
friction forces F‖ = −γ‖v‖ and F⊥ = −γ⊥v⊥. Here, the distinct friction coefficients parallel
(γ‖) and perpendicular (γ⊥) to the rod orientation are used. In the asymptotic limit of an in-
finitely long rod, the ratio between the coefficients is γ‖/γ⊥ = 1/2. Explicit expression for the
two values can be obtained by the Oseen tensor (33) [1, 34, 49]. The thrust force is given by
FT = −γ‖v‖,z − γ⊥v⊥,z. Simple geometrical considerations yield then

FT = (γ‖ − γ⊥)v sinϑ cosϑ. (38)

Hence, propulsion only appears due to frictional anisotropy of the helix. More precise calcula-
tions and expressions for the friction coefficients are presented in Refs. [1, 50, 51].

2.8 Dipole swimmer
Biological swimmers move autonomously, free from any net external force or torque. Hence,
the total interaction force of the swimmer on the fluid, and vice versa, vanishes. In the simplest
case, which actually applies to many microswimmers like bacteria, spermatozoa, or algae, the
far-field hydrodynamics (at distances much larger than the swimmer size) can then well be
described by a force dipole [1–3,52]. This has been confirmed experimentally and by simulation
for E. coli in Refs. [53, 54] (see also Sec. 4.1). Two classes of such dipole swimmers can be
distinguished, as shown schematically in Fig. 3. If the swimmer has its motor in the back,
and the passive body drags along the surrounding fluid in front, the characteristic flow field of
a pusher emerges, e.g., E. coli. Similarly, if the swimmer has its motor in the front, and the
passive body drags along the surrounding fluid behind, the characteristic flow field of a puller
develops. It is important to notice that the flow fields of pushers and pullers look similar, but
with opposite flow direction, which has important consequences for the interactions between
swimmers and of swimmers with walls.
Mathematically, the flow field ud(r − r0) of a hydrodynamic force dipole located at r0 can be
obtained easily from the Oseen tensor of Eq. (33) by considering two opposite forces f = f ê
of equal magnitude acting on the fluid at r = r0 ± d/2, with d = dê. An expansion to leading
order in d/|r − r0| yields

ud(r) =
P

8πηr3

[
−1 + 3

(r · ê)2

r2

]
r, (39)
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where P = fd is the dipole strength. Note that the flow field of a force dipole decays as 1/r2

from the center of the dipole, faster than the force monopole or Stokeslet of Eq. (33). The flow
lines of a hydrodynamic dipole oriented vertically are shown in Fig. 3(c). There are two inflow
and two outflow regions in the xy-projection, which are separated by the separatrices y =

√
2x.

In three dimensions, the out-flow region is a cone.
In general, higher order multipoles can be derived and be used to describe the flow field of
(complex) microswimmers [2].

3 Mesoscale hydrodynamic simulations
The macroscopic flow behavior is rather similar for many fluids even though the microscopic
structure is quite different. The microscopic details may influence the absolute values of trans-
port coefficients, however, the form of the macroscopic hydrodynamic equations is solely de-
termined by symmetries and conservation laws. This is the basis for various mesoscale hydro-
dynamic simulations approaches, which select particular “microscopic” dynamical equations,
but yield hydrodynamics on large scales and long times.

3.1 Multiparticle Collision Dynamics
In MPC, the fluid is represented by N point particles of mass m. The algorithm consists of
individual streaming and collision steps (cf. Fig. 4). In the streaming step, the particles move
independent of each other and experience only possibly present external forces. Without such
forces, they move ballistically and their positions ri are updated according to

ri(t+ h) = ri(t) + hvi(t), (40)

where vi is the velocity of particle i and h is the time interval between collisions, which will be
denoted as collision time. In the collision step, a coarse-grained interaction between the fluid
particles is imposed by a stochastic process. For this purpose, the system is divided in cubic
cells of side length a to define the collisional environment. An elementary requirement is that
the stochastic process conserves momentum on the collision-cell level, only then hydrodynam-
ics emerges on large length scales. There are various possibilities for such a process, namely
the stochastic rotation dynamics (SRD) approach [24] and the assignment of new Gaussian dis-
tributed random relative velocities (”Andersen thermostat” (AT)) [55–57]. Here, I will focus on
the MPC-SRD implementation.
In MPC-SRD, the relative velocities vi − vcm, with respect to the center-of-mass velocity vcm
of a cell, are rotated around an axis by a fixed angle α [24–26, 58], i.e,

vi(t+ h) = vi(t) + (R(α)− E) (vi(t)− (t)) , (41)

where R is the rotation matrix [59], and

vcm =
1

Nc

Nc∑
i=1

vi (42)

of the Nc particles contained in the cell of particle i. The orientation of the rotation axis is cho-
sen randomly for every collision cell and time step. As is easily shown, the algorithm conserves
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Fig. 4: Illustration of the MPC-SRD dynamics: (left) streaming of particles; (middle) sorting of
particles in collision cells. (Right) Rotation of the vector u to u′ around the axis alongR by the
angle α. u‖ and u⊥ denote the vectors parallel and perpendicular toR, respectively [55, 59].

mass, momentum, and energy in every collision cell. The velocity distribution is given by the
Maxwell-Boltzmann distribution in the limit N →∞ [59, 60].

This MPC algorithm violates angular momentum conservation. In Refs. [33, 56, 57] algorithms
are presented, which additionally preserve angular momentum. More importantly, partition of
space into collision cells implies a violation of Galilean invariance. In Refs. [61, 62], a random
shift of the entire collisional grid is introduced to restore Galilean invariance. In practice, for
sorting into collision cells, all particles are shifted by the same random vector with Cartesian
components uniformly distributed in the interval [−a/2, a/2]. As a consequence, no reference
frame is preferred. A canonical ensemble is obtained under isothermal conditions. This is
achieved by a velocity scaling procedure as described in Refs. [59, 60]. In addition, a virial-
based stress tensor of the fluid has been presented in Ref. [63]. Moreover, analytical expressions
have be derived for the transport coefficients, i.e., the diffusion coefficient of a fluid particle and
the fluid viscosity [63–65].

3.2 Hydrodynamics and Multiparticle Collision Dynamics

In order to characterize the hydrodynamic properties of the MPC fluid, we considered three-
dimensional systems and applied periodic boundary conditions.
Figure 5 provides examples of hydrodynamic correlations of a MPC fluid. The expected expo-
nential decay of Eq. (25) is clearly present (left), as well as the long-time tail Eq. (29) (middle).
The oscillations for long times are due to sound propagation in the periodic system. Figure 5
(right) shows the k dependence of the MPC fluid hydrodynamic tensor, which follows by inte-
gration of the fluid correlation function in the limit t→∞. We evidently obtain the dependence
QT = 1/ηk2 for sufficiently small k values, i.e, sufficiently large lengths scales. More details
are presented in Ref. [36].
These results clearly show that MPC is a suitable simulation approach for fluids, since it cap-
tures their essential aspects. Naturally, a quantitative agreement with the solution of the Navier-
Stokes equations can only be expected on sufficiently large length and times scales. In terms of
length scale, this means scales larger than the collision cell size or, if the mean free path of a
MPC particle is larger than a, larger than its mean-free path. As far as time is concerned, shear
and sound waves should have propagated over one collision cell, i.e., t > τν ≈ a2/ν. This is
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Fig. 5: Example of MPC-fluid correlations. (left) Normalized transverse velocity autocorrela-
tion in Fourier space. Inset: universal dependence on νk2t. (middle) Magnitude of the normal-
ized velocity autocorrelation function (27). The oscillations at longer times are due to sound
propagation in the periodic system. (right) Dependence of the hydrodynamics tensor Q(k) (33)
on the wave number for various fluid viscosities; Q(k) ∼ 1/k2 for ka . 2. Note that longitudi-
nal (sound) modes do not contribute to the long-time behavior. For details see Ref. [36].

consistent with the simulation results.

3.3 MPC: Embedded object and boundary conditions
A very simple procedure for coupling embedded objects such as colloids or polymers to a MPC
fluid has been proposed in Refs. [66–69]. In this approach, a colloidal particle or a polymer is
composed of point particles which are connected by a suitable bond potential to maintain the
respective shape. To couple the object to the MPC fluid, the individual particles (monomers)
participate in the MPC collision. If particle (monomer) k has mass M and velocity Vk the
center-of-mass velocity of all particles (MPC and monomers) in a collision cell is

vcm =

Nc∑
i=1

mvi +

Nc
m∑

k=1

MVk

mNc +MN c
m

, (43)

where N c
m is the number of monomers in the collision cell. A stochastic rotation of the rel-

ative velocities of both the fluid particles and embedded monomers is then performed in the
collision step, which leads to an exchange of momentum between them. The dynamics of the
monomers is typically treated by molecular dynamics simulations (MD), applying the velocity
Verlet integration scheme [70, 71]. Hence, the new monomer momenta are used as initial con-
ditions for the subsequent streaming step (MD) of duration h involving several MD steps, since
the MD simulation time step is typically smaller than h. In this approach, the average mass of
fluid particles per cell m 〈Nc〉 should be of the order of the total monomer mass MN c

m. This
corresponds to a neutrally buoyant object which responds quickly to the fluid flow but is not
kicked around too violently. It is also important to note that the average number of monomers
per cell 〈Nm〉 should be on the order of unity to properly resolve HI between them. On the other
hand, the average bond length in a semiflexible polymer or rodlike colloid should not be much
larger than the cell size a, in order to capture the anisotropic friction of rodlike molecules due
to HI (which leads to a twice as large perpendicular than parallel friction coefficient for long
stiff rods [31, 34]), and to avoid an unnecessarily large ratio of the number of fluid-to-solute
particles. Hence, the average bond length should be of order a.
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To accurately resolve the local flow field around a hard-sphere colloid, methods have been
proposed which exclude fluid-particles from the interior of the colloid and mimic slip [58, 72]
or no-slip boundary conditions [26, 73–77]. No-slip boundary conditions are modeled by the
bounce-back rule. Here, the relative velocity of a fluid particle ṽi = vi − vs, where vs is the
velocity of the surface point rs hit by the particle i, is inverted from ṽi to−ṽi, when it intersects
the surface of an impenetrable particle, e.g., a colloid, a blood cell, or a wall. The velocity vs
may comprise translational and rotational components, i.e, vs(rs) = V +ω× (rs−R), where
V and R are the center-of-mass velocity and position of the colloid, respectively, and ω is its
rotational frequency.
Since walls or surfaces will generally not coincide with the collision cell boundaries, in par-
ticular due to a random shift, the simple bounce-back rule fails to guarantee no-slip boundary
conditions. To establish no-slip boundary conditions or at least reduce slip as far as possible, the
following procedure has been suggested [73]: For all collision cells that are intersected by walls,
fill the wall part of the cell with a sufficient number of virtual (phantom) particles in order to
ensure that the total number of particles is equal to 〈Nc〉. The velocities of the wall particles are
taken from a Maxwell-Boltzmann distribution with an appropriate mean and variance kBT/m
(for details see Refs. [75–77]). Since the sum of Gaussian random numbers is also Gaussian
distributed, the velocities of the individual virtual particles need not be determined explicitly in
simple geometries, it suffices to determine a momentum p from a Maxwell-Boltzmann distri-
bution with zero mean and variance mNpkBT , where Np = 〈Nc〉−Nsc is the number of virtual
particles corresponding to the partially filled cell of Nsc particles. The center-of-mass velocity
of the cell is then

vcm =
1

m 〈Nc〉

(
Nsc∑
i=1

mvi + p

)
. (44)

Results for a Poiseuille flow obtained by this procedure are in good agreement with the correct
parabolic flow profile [60, 73]. A more advanced method, taking into account fluctuations of
virtual particles in a collision cell is described in Refs. [59, 63].

4 Swimming of bacteria
As an examples of the MPC approach and the relevance of hydrodynamics, the swimming
behavior of a model of an E. Coli bacterium will be discussed.

4.1 Flow field of E. coli in bulk
The bacterium consists of a body and flagellar filaments, as shown in Fig. 6, which are com-
posed of point particles of mass M = 10m. The cell body is represented by a spherocylinder of
diameter d = 9a and length `b = 25a. In each of the 49 sections, 60 particles are uniformly dis-
tributed along circles on the spherocylinder surface. To maintain the shape of the body, various
particles, specifically nearest- and next-nearest-neighbors, are bonded by a harmonic potential
of finite length. A flagellum is described by the helical wormlike-chain model, [78, 79] with an
adaptation suitable for the combination with MPC. As shown in Fig. 6(b), a flagellum consists
of N = 76 segments with a total of 381 particles. In each segment, six particles are arranged
in an octahedron of edge length a/

√
2, forming 12 bonds along the edges and three along the

diagonals. The preferred bond lengths are re = a/
√

2 for edges and re = a for diagonals.
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Fig. 6: (a) Model of the spherocylindrical cell body of diameter d = 9a = 0.9 µm and length
`b = 25a = 2.5 µm. It is composed of 51 circular sections of particles, which are connected
by harmonic bonds of finite length. (b) The flagellum, a three-turn left-handed helix of radius
R = 0.2 µm, pitch Λ = 2.2 µm, and contour length Lc = 7.6 µm (corresponding to the parallel
length L‖ = 6.6 µm), consists of 76 consecutive segments. (c) Swimming model bacterium. For
details see Ref. [54].

(a) (b)

Fig. 7: (a) Time-averaged flow field generated by a single swimming bacterium in a simulation
box with periodic boundary conditions. (b) Flow profile for a finite-distance force dipole for
the same geometry. For details see Ref. [54].

The octahedron construction allows for a straightforward description of the intrinsic twist of the
flagellum and a coupling of the twist to the forces exerted by the MPC fluid.

The flow field created by the rotating cell body and counter-rotating flagellar bundle is displayed
in Fig. 7(a). The flow pattern not too close to the bacterium approximately resembles that of
swimming E. coli determined from experiments (see Fig. 1A in Ref. [53]). Closer to the bac-
terium, the flow field exhibits specific features reflecting the bacterium’s detailed structure. In
particular, the flow field reveals a front-back asymmetry, since the cell body and flagellar bundle
are physically different units. The streamlines are closed as a consequence of the applied peri-
odic boundary conditions, which implies differences in the far field compared to experimental
observations. The effect of the boundary conditions is confirmed by the theoretical flow field
for a finite-distance force dipole with the same boundary conditions in Fig. 7(b). The flow field
for an infinite fluid domain is displayed in Fig. 3.
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(a) (b)

(c) (d)

Fig. 8: (a) The rotational motion with frequency ω of the bacterium body induces a shear flow
for a surface with non-zero slip. The slip length b is the extrapolated distance inside the wall,
where the shear velocity vanishes. (b) Clockwise, (c) noisy straight, and (d) counterclockwise
trajectories of a bacterium swimming near homogeneous surfaces of slip lengths b. For details
see Ref. [82].

4.2 Swimming of E. coli at surfaces

Hydrodynamic interactions between swimmers and nearby walls determine their swimming be-
haviors [1, 50]. As shown in Fig. 8, different slip lengths—denoted by b—lead to different
trajectories. For no-slip surfaces (glass, b = 0), a bacterium exhibits clockwise (CW) circular
trajectories, whereas counterclockwise (CCW) circular trajectories are obtained for slip bound-
aries (air-water interface, b = ∞) [50, 80]. Typically, a surface exhibits partial slip due to
adsorbents, microstructures, and hydrophobicity. A trajectory switches from CW to CCW (or
vice versa) when b reaches some characteristic value (cf. Fig. 8(c)). Such a transition has been
observed experimentally for E. coli swimming near glass surfaces upon addition of alginate,
and has been attributed to changes in the slip length [81]. The simulation results presented in
Ref. [82] show that swimming E. coli bacteria are able to sense surface slip on the nanoscale.
This fact can be exploited to direct bacterial motion [82]. Further aspects on swimmer-surface
interactions are presented in the lecture D.4 Swimming near surfaces by J. Elgeti and G. Gomp-
per.

5 Conclusions
Hydrodynamics and hydrodynamic interactions are indispensable for biological microswim-
mers. The long-range nature of hydrodynamic interactions and hydrodynamic long-time tails
combined with the autonomous microswimmer motion give rise to peculiar phenomena such
as dipolar flow fields, synchronization of flagellar motion/beating, or collective phenomena [1].
Moreover, hydrodynamic interactions with surfaces govern the microswimmer dynamics adja-
cent to walls and cause particular trajectories. The latter provides a route to control the swim-
ming behavior of bacteria such as E. coli [54].
Mesoscale hydrodynamic simulation approaches are extremely valuable tools to study soft mat-
ter systems. Specifically, the MPC approach developed into a versatile tool to study hydrody-
namic properties of complex fluids since it has been introduced in 1999 [24]. By now, several
collision algorithms have been proposed and employed, and the method has been generalized
to describe multi-phase flows [83] and viscoelastic fluids [26,84,85]. A major advantage of the
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algorithm is its easy coupling to the dynamics of embedded particles using a hybrid MPC-MD
simulations approach. Results of such studies are in excellent quantitative agreement with both
theoretical predictions and results obtained using other simulation techniques. In the future, we
will see more applications of the method in non-equilibrium and driven soft-matter systems;
specifically for systems where thermal fluctuations play a major role. Here, the full advantage
of the method can be exploited, because the interactions of colloids, polymers, and membranes
with the mesoscale fluid can be treated on the same basis.
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