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1 Introduction

Active matter, whose constituents (agents) consume internal energy or extract energy from the
environment and are thus far from thermal equilibrium, comprises a vast range of systems rang-
ing from the nano- and microscale up to macroscopic length scales (cf. Fig. 1) [1–5]. On the
nanoscale, proteins and other macromolecules in the interior of a cell undergo cyclic confor-
mational changes and stir the surrounding fluid [6, 7]. Since the appearing fluctuating flows
are non-thermal, work can be performed by extraction of energy leading to, e.g., an enhanced
diffusive motion [6, 8] and chemotaxis [9]. In motility assays, biological semiflexible polar fil-
aments, such as actin and microtubules, are propelled on carpets of motor proteins anchored on
a substrate, which results in a directed motion [10–17]. Propulsion of such biological filaments
in the cell cytoskeleton due to tread-milling and dimeric or tetrameric motor proteins is ubiqui-
tous. Mixtures of active and passive components are a characteristics of eukaryotic cells with
the active cytoskeleton on the one hand and an embedded large variety of passive colloidal and
polymeric objects on the other hand. Here, an enhanced random motion of tracer particles has
been observed [18]. Moreover, an influence of the active microtubule [19] or actin-filament [20]
dynamics on the motion of chromosomal loci [21,22] or that of chromatin has been found [23].
On larger scales, there is plethora of biological microswimmers such as spermatozoa, bacteria,
protozoa, and algae [2]. They use flagella—whip-like structures protruding from their bodies—
for their propulsion (cf. Fig. 1). Swimming of uni- and multicellular organisms is essential
for their search for food (chemotaxis), the reaction to light (phototaxis), the orientation in the
gravitation field (gravitaxis), or for reproduction [2,24]. A paradigmatic example is Escherichia
coli (E. coli), which propels itself by helical filaments (cf. Fig. 1). A flagellum is rotated by a
motor complex consisting of several proteins, and is anchored in the bacterial cell wall [25,26].
The (counterclock-wise) rotating flagella self-organize in helical bundle(s), which push the cell
forward [24, 27, 28]. E. coli and other bacteria swim in a “run-and- tumble” motion, where
they change the rotation direction of some or all flagella, which results in a deterioration of the
bundle and a reorientation (tumble) [25, 29, 30]. By returning to the original rotation direction,
the bundle is reestablished and the bacterium swims again (run). This leads to a diffusive motion
determined by the activity of the cell on long time scales.
Flagellated microorganisms not only swim as individuals, but exhibit collective behavior at a
surface or in a thin liquid film in form of swarming [2]. Here, bacteria cooperativity reaches a
new level as they exhibit highly organized movements with remarkable large-scale patterns such
as networks, complex vortices, swarms, or turbulence [31, 32]. Remarkably, similar collective
phenomena are observed by active systems on the macroscale such as schools of fish, flocks of
birds (cf. Fig. 1), mammalian herds, or crowds of humans [33].
Aside from biological active matter, the design of artificial nano- and microswimmers is highly
desirable to perform a multitude of tasks in technical and medical applications. Consequently,
various design strategies are explored and different propulsion mechanisms have been proposed
[2, 3, 34]. In particular, experimental studies on self-propelled Janus particles and computer
simulations reveal motility induced cluster formation and phase separation (MIPS) [2,3,35–42]
(cf. Fig. 1).
The physics ruling activity and swimming on the micrometer scale is very different from that
applying to the macroworld. Swimming at the micrometer scale is swimming at low Reynolds
numbers, where viscous damping by far dominates over inertia [43]. Hence, swimming con-
cepts of the high-Reynolds number macroworld are ineffective on small scales. In the evolu-
tionary process, microorganisms acquired propulsion strategies, which successfully overcome
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Fig. 1: (Top left) An active nematic liquid of filamentous microtubules driven by molecu-
lar motors exhibits collectively drive mesoscale turbulent-like dynamics [44, 45]. (Top right)
Swarming E. coli bacteria [46]. The inset shows a Salmonella enterica with the cylindri-
cal cell body and several flagella [47]. (Bottom left) Living crystals phoretically assembled
from a homogeneous distribution of bimaterial colloids—a TPM polymer colloidal sphere (3-
methacryloxypropyl trimethoxysilane) with protruding hematite cube (inset)—under illumina-
tion by blue light [38]. (Bottom right) Swarm of starlings [48].

and even exploit viscous drag. Hence, the rules governing swarming on the macroscale of flocks
of birds or schools of fish are very different from those applying to the microscale of bacteria.
Nevertheless, similar features appear on very distinct length scales.
A variety of models for active matter or agents has been developed to describe the aspect of
interesting in sufficient detail. Examples are models for sperm [49] or E. coli bacteria [28]
(see also references therein). From the theoretical side, rather generic models have been pro-
posed, which lack details of real agents, but allow for a systematic study of active matter over
a wide range of parameters. The prototype of a generic model is the active Brownian particle
(ABP), a hard-sphere colloid, which actively moves in a prescribed direction, where the lat-
ter changes in a diffusive manner [2, 3]. This model has developed into the standard model
to study the nonequilibrium statistical properties of active matter. A system of ABPs is a so
called dry active system, because the ABPs are not embedded in a fluid, which is typically the
case for biological and synthetic active matter. Fluid-mediated interactions (hydrodynamics)
are captured by the so-called squirmer model for an active particle. Thereby, the squirmer is
propelled by a prescribed flow velocity (slip velocity) on the colloid surface [50–54]. In the
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hydrodynamic far field, the squirmer flow field is determined by the weakest decaying point
multipoles, which are the source dipole and the force dipole flow field. Specifically, by the
latter, the difference, e.g., between bacteria (pusher) and algae (puller) can be captured by a
squirmer representation [52–54].
In this contribution, various specific aspects of active matter, compared to passive systems, will
be discussed. First of all, active Brownian particles will be introduced and their properties
be studied. Secondly, the low-Reynolds number hydrodynamics of microswimmers will be
addressed. Specifically, the squirmer model is presented, and the difference of its collective
behavior compared to ABPs is discussed.

2 Active Brownian particle (ABP)
The active Brownian particle captures essential aspects of a self-propelled object [2, 3, 35, 37,
41, 55–59]. It is typically represented as a repulsive spherical colloid (rigid body) propelled by
a constant (external) force in the direction of its instantaneous orientation, which is changing in
a diffusive manner. However, no hydrodynamic interactions are taken into account, an aspect
to be kept in mind.

2.1 Equations of motion
The Langevin equations for the center-of-mass position r and the orientation e of an ABP are
given by [10]

ṙ(t) = v(t) +
1

γ
(F (t) + Γ(t)) , (1)

ė(t) = ξ(t)× e(t), (2)

where v = v0e, with e a unit vector, is the propulsion velocity, F a force exerted on the particle,
Γ and ξ are Gaussian and Markovian processes (white noise) with zero odd moments and the
second moments

〈Γα(t)Γα′(t′)〉 = 2γkBTδαα′δ(t− t′), (3)
〈ξα(t)ξα′(t′)〉 = (d− 1)DRδαα′δ(t− t′). (4)

Here, kB is the Boltzmann constant, T the temperature, γ the translational friction coefficient,
which is related to the translational diffusion coefficientDT viaDT = kBT/γ,DR the rotational
diffusion coefficient, d the spatial dimension, and α, α′ ∈ {x, y, z}. For a particle in a viscous
fluid in three dimensions (3D), γ = 6πηR, with η the viscosity and R the particle radius,
hence, DR and DT are related according to DT/DRR

2 = 4/3. However, in general, DR can
be independent of DT and be of nonthermal origin, e.g., tumbling of bacteria. Equations (1)
and (2) describe the solid-body translation and rotation, respectively. Thereby, we neglect the
inertia terms, consistent with the fact that propulsion and motility on the nano- and microscale is
typically governed by low-Reynolds number hydrodynamics (cf. Sec. 3) [2, 24]. The rotational
motion (Eq. (2)) is independent of the colloid translation. As a particular result, the correlation
function

〈v(t) · v(t′)〉 = v2
0e
−(d−1)DR|t−t′| (5)
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is obtained (d > 1) [60–62]. In the above description, we consider the velocity v as an intrinsic
property of the ABP. Alternatively, we can consider Eq. (1) only, with v as an external stochastic
process with the exponential correlation (colored noise) of Eq. (5) [2, 41].
A general solution of Eqs. (1) and (2) is difficult to determine, even a stationary state solution,
because of the violation of detailed balance [14] (cf. App. A). However, various aspects can be
calculated directly, specifically for a zero force F = 0.

2.2 Active Ornstein-Uhlenbeck particle (AOUP)
The propulsion direction e, with Eq. (4), obeys the strict condition |e(t)| = 1. By lifting this
condition and considering the equation of motion for the propulsion velocity

v̇(t) = −γRv(t) + η(t), (6)

a model is obtained, which is analytically easier tractable [2, 57, 63–67]. Here, the Cartesian
velocity components are independent. The damping factor γR is related to the rotational diffu-
sion coefficient according to γR = (d − 1)DR, and η is a Gaussian and Markovian stochastic
process with zero mean and the second moments

〈ηα(t)ηα′(t′)〉 =
2(d− 1)

d
v2

0DRδαα′δ(t− t′). (7)

The Langevin equations (6) with noise amplitudes (v2
0DR), which are independent of the stochas-

tic variables (v), describe a process denoted as Ornstein-Uhlenbeck process [68]. Hence,
an active particle obeying Eqs. (3) and (6) is denoted as active-Ornstein-Uhlenbeck particle
(AOUP) [66]. Most importantly, an analytical solution and a stationary-state distribution func-
tion is obtained for a linear force F (harmonic potential) (cf. App. B) [67].

2.3 Mean square displacement
Integration of Eq. (1) in the force-free case (F = 0) yields

r(t)− r(0) =

∫ t

0

(
v(t′) +

1

γ
Γ(t′)

)
dt′, (8)

from which the mean square displacement ∆r(t)2 = 〈(r(t)− r(0))2〉, with

∆r2 =
6kBT

γ
t+

∫ t

0

∫ t

0

〈v(t′) · v(t′′)〉 dt′dt′′ = 2dDT t+
2v2

0

γ2
R

(
γRt+ e−γRt − 1

)
, (9)

is obtained by insertion of the correlation function (5). Equation (9) turns, for small and large
times, respectively, into

∆r2 = 2dDT t+ v2
0t

2, γRt� 1; ∆r2 =

(
2dDT +

2v2
0

γR

)
t, γRt� 1. (10)

Hence, activity leads to a ballistic motion at short times, and a diffusive motion for γRt � 1
due to rotational diffusion of the propulsion direction, with the effective translational diffusion
coefficientDT,eff = DT +v2

0/d(d−1)DR. The latter is much larger thanDT for v0 �
√
DTDR.
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Fig. 2: Surface accumulation of ABPs. (Left) Separation of the active velocity v = v0e parallel
(v‖) and perpendicular (v⊥) to the surface. (Right) Probability distribution of an ABP in 3D
confined between two parallel flat walls. The walls are located at z = 0 and z = 200R. The
Péclet numbers are Pe = 0, 5, 10, 20, and 40 (bottom to top).

Thus, activity leads to a drastically increased diffusive motion. The theoretical prediction of
Eq. (9) has been confirmed experimentally, e.g., for phoretic Janus particles [55].
The activity of an ABP is usually characterized by the dimension less Péclet number

Pe =
v0

2RDR

. (11)

Therefore, DT,eff/DT is much larger than unity for Pe � 1. This corresponds to the regime,
where activity dominates over thermal fluctuations.

2.4 Surface accumulation
Activity gives raise to various unusual and a priori unexpected effects. An example is the ac-
cumulation of ABPs even at purely repulsive walls [71]. The mechanism is illustrated in Fig. 2.
The propulsion velocity (v) of an ABP located at the wall can be separated in a component par-
allel (v‖) and normal (v⊥) to the wall. The parallel component leads to a translational motion
of the center-of-mass parallel to the wall, since there is no friction between wall and ABP. The
component normal to the wall pushes the swimmer toward the wall as long as v⊥ · ez < 0 (ez
is the unit vector along the z-axis), and the APB stays at the wall. Only after the change of the
propulsion direction and for v⊥ · ez > 0, the particles leaves the wall again. This is different
from thermal motion, where the velocity v⊥ is inverted instantaneously upon a collision with a
(hard) wall. The appearing force onto the surface is calculated in Sec. 2.5. Figure 2 shows den-
sity profiles from simulations at various Péclet numbers for ABPs confined between to parallel
walls in 3D, where the ABP-wall interaction is described by the Lennard-Jones potential (wall
at z = 0)

Uw
LJ =

 ε

[(
R

z

)48

−
(
R

z

)24
]

, r < rc

0 , r > rc

, (12)

with rc = R 6
√

2. Hence, we use a soft, but steep potential. The different behavior compared
to a thermal system is evident, as well as the density increase with increasing Pe. As a con-
sequence, the distribution of active agents, e.g., in a convex container is dramatically affected
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Fig. 3: Rectification of bacteria motion. (Top left) Bacterial driven micromotor. A nano-
fabricated asymmetric gear immersed in an active bath of motile E. coli cells rotates clockwise
visualized by the yellow circle [69]. (Right) Steady-state distribution of colloidal particles in a
bacterial bath exposed to an asymmetric square saw-tooth structure (scale bar 20µm). There
is a preferred transport in the direction of f0 (bottom left), which leads to an accumulation of
colloids inside (blue) or outside (red) of the squares [70].

by the boundary shape in the limit, in which the container size is small compared to the active
persistence length, lp = RPe, the distance a particle travels before its orientation decorrelates.
In particular, the particles are confined at the boundary and their steady-state distribution is pro-
portional to the local curvature [72]. This effect can be exploited for rectification or trapping of
active agents [73, 74]. Examples are provided in Fig. 3, where bacteria produce a spontaneous
and unidirectional rotation of a nano-fabricated gear [69], or passive colloids are spatially orga-
nized by a suspension of swimming bacteria [70].

2.5 Active pressure
During the encounter with a wall (cf. Fig. 2), an ABP exerts a force on the wall due to propulsion
[62]. The force can be estimated from Eq. (1). For simplicity, we consider a cubic volume,
within ABPs are confined. The velocity of an ABP at a wall and in the direction of the wall
normal n (n points outward of the volume) is zero, i.e., ṙ · n = 0, which implies that
v0e ·n+F s ·n/γ = 0. Here, F s is the force between the ABP and the wall, which we assume
to be short ranged. Since Fn = −F s · n, we find

Fn(zmax) = γv0e · n (13)

for the particle of Fig. 2 (left), where zmax is approximately equal to the z-position of the max-
imum in Fig. 2 (right). Defining surface stress (pressure) as force per area, A, Eq. (13) yields
a the mechanical stress γv0ez/A per particle. Extending the concept to a three-dimensional
volume and taking into account N ABPs in the volume V , the viral approach yields the more
general expression for the pressure 3pV = −

∑N
i=1 〈F s

i · ri〉 [62]. For a short-range surface
interaction, the ABP i is at a wall and ri can be taken out of the sum, which leads to above
stress (pressure) in the special case of single wall rather than six.
In systems with periodic boundary conditions, there are no confining walls. Here, as for any
confined system, pressure can be calculated from the virial formulation exploiting the actual



E3.8 Roland G. Winkler

 

lo
g 10

(P
e ef

f)

0

0.5

1

1.5

2

Fig. 4: Motility-induced phase separation of ABPs. (Left) Two-dimensional well-ordered clus-
ter in contact with a gas of ABPs. The inset illustrates the blockage of three particles. (Right)
Highly dynamic cluster in three dimensions in contact with a gas of ABPs. In inset shows the
three-dimensional structure.

positions and velocities of the ABPs. This approach leads to the pressure [62]

3pV = 3NkBT + 3NkBT
v2

0

6DTDR

+
N∑
i=1

〈F s
i · ei〉+

1

2

N∑
i=1

N∑′

j=1

〈Fij · (ri − rj)〉 . (14)

The first term on the right hand side is the ideal gas contribution due to the Brownian motion
of the ABP center of mass. The second term is the swim pressure, which is proportional to
the square of the propulsion velocity [75]. The third terms captures corrections due to interac-
tions with the walls; the term vanishes for infinite system sizes. Finally, the last term accounts
for interparticle interactions. Compared to passive systems, the second and third term appear
additionally.
Active systems are out of equilibrium and equilibrium statistical mechanics and thermodynam-
ics cannot strictly be applied in their description. This is, e.g., reflected by the fact that tempera-
ture is ill defined in active systems [67], hence, there is no equation of state, in general, relating
properties such as density and temperature with other thermodynamic bulk properties [76].
As shown above, there is an equation of state for the pressure of spherical ABPs confined in
an orthorhombic volume. However, as discussed in Ref. [76], no such equation exists for an
active fluid in general, since small orientation-dependent interactions (whether wall-particle
or particle-particle) immediately destroy the equation of state. Such interactions are typically
present in every experimental system. Yet, the mechanical pressure is well defined and can be
calculated.

2.6 Motility-induced phase separation (MIPS)
The mechanism responsible for accumulation of ABPs at walls (Sec. 2.4) leads also to novel
bulk phenomena. In dilute systems, clusters emerge and a motility-induced phase separation [3],
as illustrated in Fig. 1. When two or three particles collide, they block each other due to their
persistent motion as sketched in Fig. 4 (left). The particular cluster would resolves after a
time t ∼ 1/γR due to the rotational diffusion of the orientation e. Interactions and collisions
with other particles are controlled by the density and velocity v0. Hence, if other particles
collide before the original cluster resolved, the cluster grows. At higher concentrations, a phase
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Fig. 5: (Left) Illustration of the Vicsek dynamics. The red central particle with original orien-
tation (red) aligns with neighbours (green) inside the circle of radius R0 (red) (top), and then
moves along its heading direction (bottom). (Middle) Magnitude S = |S| of the order parame-
ter as function of noise strength ξ0 for various system sizes L. (Right) Snapshot in the ordered
phase. Points represent the individual particles and the red arrow indicates the global direc-
tion of motion. Periodic boundary conditions are applied for the 2D system. The simulation
parameters can be found in Ref. [77].

transition in a high-density and a low density phase can appear, as depicted in Fig. 4. Thereby,
the structure of the high density phase depends on the spatial dimension. In 2D, this phase is
typically well ordered in a hexagonal fashion [3, 35], whereas in 3D, the high-density phase is
rather mobile [39].

2.7 Collective motion—the Vicsek model
The three-dimensional APB system of Sec. 2.6 (Fig. 4) exhibits collective motion without any
alignment rule between neighbors. Collective motion is often studied by implementing an align-
ment rule for spherical particles, or emerges naturally due to the anisotropy of the active parti-
cles, e.g., rods [78]. A prototypical example for a system with an explicit alignment rule is the
Vicsek model [14, 79, 80].
The translational motion of a force free (F = 0) particle within the Vicsek model is given by
Eq. (1), however the thermal noise is neglected, i.e, Γ = 0. Particles are assumed to align their
direction of motion with their local neighbors. Hence, the orientation ei of particle i depends on
the average direction of all particles (including particle i) in a spherical neighborhood of radius
R0 centered at ri (cf. Fig. 5). In fact, alignment within a neighborhood is almost perfect, its
only perturbed by thermal-type white noise. For simplicity, we focus on 2D systems, where the
direction of motion is determined by the angle θi, with ei = (cos θi, sin θi)

T . The angle itself
changes in time according to

θi = Arg

(∑
j

Θ(R0 − |ri(t)− rj(t)|)ej(t)

)
+ ξ0∆ξi(t). (15)

The argument Arg yields the angle between the effective vector
∑

j Θ(R0−|ri(t)−rj(t)|)ej(t)
and an arbitrary direction. Here, Θ(x) is the Heaviside step function, ∆ξi white noise with the
correlation function 〈∆ξi(t)∆ξj(t)〉 = 2δij , and ξ0 is the noise amplitude.
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Simulations show that the Vicsek model exhibits a transition from disordered to ordered collec-
tive motion. The degree of ordering depends on the parameter ξ0. A measure for the degree of
alignment is the order parameter S(t) =

∑N
i=1 ei(t)/N , where N is the number of active par-

ticles. Figure 5 (middle) displays the dependence of the order parameter on the noise strength
for various system sizes. For large systems and below a certain ξ0, a first order phase transition
appears from a disordered to an ordered collective dynamic state [77]. The emerging sharp
bands are illustrated in Fig. 5 (right).

3 Life at low Reynolds numbers

3.1 Hydrodynamics
Typically, the dynamics of the incompressible (isothermal) fluid flow field surrounding a mi-
croswimmer is described by the Navier-Stokes equations

ρ

(
∂

∂t
v + (v · ∇)v

)
= −∇p+ η∇2v + f , ∇ · v = 0, (16)

where v(r, t), p(r, t), and f(r, t) are the velocity, pressure, and volume-force-density fields,
respectively. At small Reynolds numbers Re = ρuL/η � 1, where ρ is the fluid mass density,
u the characteristic velocity, L the size of the micoswimmer, and η the fluid viscosity, the inertia
terms on the left-hand side of Eq. (16) can be neglected, and the equations reduce to the Stokes
or creeping flow equations

∇p(r)− η∇2v(r) = f(r) , ∇ · v = 0. (17)

For illustration, the Reynolds number in water of a swimmer of length L = 10 µm, a velocity
of u = 50µm/s, and the kinematic viscosity ν = η/ρ = 10−6m2/s is Re ≈ 10−3. The Stokes
equation (17) is linear and time independent. The consequences of this intrinsic symmetry
under time reversal for microswimmers undergoing periodic shape changes was first expressed
in Ref. [43] by Purcell, and is now know as “scallop theorem”, which can be stated as: if
the shape changes displayed by a swimmer are identical when viewed in reverse order, it will
generate an oscillatory, but no directed motion [2,24,43,81]. Thus, just by opening and closing
its two shells, a mussel (scallop) cannot move forward at Re � 1. Microswimmers developed
various strategies to beat the scallop theorem. Aside from many (elastic) degrees of freedom,
they use specific propulsion mechanisms—bacteria such es E. coli are propelled by rotating
helical flagella bundles, sperm use sinusoidal bending waves propagating from head to tail, and
algae, e.g., Chlamydomonas uses an non-reciprocal stroke pattern.

3.2 Solution of Stokes equation
The linear Stokes equations (17) are easily solved analytically for an unbounded fluid. The
respective velocity field is

v(r) =

∫
Q(r − r′)f(r′) d3r′ , Qαα′(r) =

1

8πηr

[
δαα′ +

rαrα′

r2

]
, (18)

where Q(r) is the well-know Oseen tensor, with the Cartesian components Qαα′ (α, α′ ∈
{x, y, z}) and r = |r| [82, 83]. The Oseen tensor, also denoted as Stokeslet, shows that hy-
drodynamic interactions are long ranged, with a 1/r decay like the Coulomb potential, and it is



Active Matter E3.11

Fig. 6: (Left) Flow lines of a hydrodynamic dipole oriented horizontally, Eq. (20) [2]. The
separatrices between the inflow and outflow regions are shown by thick red lines. Flow field of a
E. coli bacterium from (Middle) experiment [84] and (Right) simulations [28]. In simulations,
a system with periodic boundary conditions is considered, which yields closed flow lines in
contrast to the flow lines of the experimental bulk system. The logarithmic color scheme (right)
indicates the magnitude of the flow speed scaled by the bacterial swimming velocity.

anisotropic due to the incompressibility of the fluid. The Oseen tensor is the Green’s function
of the Stokes equation (17), which is evident, when the point force f(r) = f0δ(r)e in the
direction e (|e| = 1) is inserted. Then, Eq. (18) yields

v(r) =
f0

8πηr

[
e+

(r · e)r

r2

]
. (19)

The magnitude of the flow field is evidently twice larger in the force direction than perpendicular
to it.

3.3 Force dipole
Most swimmers move autonomously, with no external force or torque applied, and hence the
total interaction force/torque of the swimmer on the fluid, and vice versa, vanishes. In the
simplest case, which actually applies to many microswimmers like bacteria, spermatozoa, or
algae, the far-field hydrodynamics (at distances from the swimmer much larger than its size)
can well be described by a force dipole [24,85]. This has been confirmed experimentally for E.
coli [84, 86] and in simulations [28]. The flow field of Chlamydomonas is well reproduced by
three Stokeslets [86].
Mathematically, the flow field vd(r − r0) of a hydrodynamic force dipole located at r0 follows
by a superposition of two Stokeslets (18) with opposite forces f0 = ±f0e of equal magnitude
at r0 ± l/2, where l = le. Taylor expansion to leading order in |l|/|r − r0| yields

vd(r) =
P

8πηr3

[
−1 + 3

(r · e)2

r2

]
r, (20)

where P = ±f0l is the dipole strength. Note that the flow field of a force dipole decays as 1/r2

from the center of the dipole, faster than the force monopole (Stokeslet) (18). The flow lines of
a hydrodynamic dipole oriented vertically (x-direction) are displayed in Fig. 6. There are two
inflow and two outflow regions in the xy-projection, which are separated by the separatrices
y = ±

√
2x. In three dimensions, the outflow region is a cone.
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Fig. 7: Flow streamlines of isolated squirmers in the laboratory reference frame for (Left) a
pusher (β < 0), (Middle) a neutral squirmer (β = 0), and (Right) a puller (β > 0). The
inset indicates the definition of the angle ϑ and the tangential vector eϑ in the squirmer-fixed
reference frame.

Two classes of dipole swimmers can be distinguished, A swimmer with its “motor” in the
back, and a passive body dragging along the surrounding fluid in front, creates a “pusher” flow
field (cf. Fig. 6 (left)). Similarly, a swimmer with its “motor” in front, and the passive body
dragging along the fluid behind, develops a “puller” flow field. The flow fields of pushers and
pullers look similarly, but with opposite flow directions. This has important consequences for
the interactions between swimmers and of swimmers with walls.
The flow field of an E. coli bacterium obtained from experiment [84] and simulations [28] is
presented in Fig. 6. In both cases, the far field is well described the force dipole field of Eq. (20)
[28]. However, there is also a distinct near field determined by the shape of the bacterium.

3.4 Squirmer—a model hydrodynamic microswimmer
A prototype of a swimmer capturing hydrodynamics is the squirmer, which was introduced
by Lighthill [50] and revised by Blake [51]. Originally, it was intended as a model for cili-
ated microswimmers such as Paramecia. Nowadays, it is considered as a generic model for
a broad class of microswimmers, ranging from diffusiophoretic particles [3, 55, 87, 88] to bi-
ological cells, and has been applied to study collective effects in bulk [52, 53, 89–93], at sur-
faces [53, 94, 95], and in narrow slits [96, 97]. In its simplest form, a squirmer is represented
as a spherical rigid colloid with a prescribed surface velocity [50, 51, 90, 97]. Restricting the
surface (slip) velocity to be tangential, the spherical squirmer is typically characterized by two
modes accounting for its swimming velocity (B1) and its force dipole (B2). Explicitly, the slip
velocity is then given by (cf. Fig. 7) [2, 53, 90, 97]

vsq = (B1 sinϑ+B2 sinϑ cosϑ)eϑ = B1(sinϑ+ β sinϑ cosϑ)eϑ. (21)

The parameter B1 = 2v0/3 is related to the swimming velocity, v0, and β = B2/B1 accounts
of the force dipole. Higher order term can easily be taken into account [2,53]. By the term with
B2 (or β), we can distinguish between pushers (β < 0), pullers (β > 0), and neutral squirmers
(β = 0), corresponding, e.g., to E. coli, Chlamydomonas, or Volvox, respectively.
The far field of a squirmer is well described by the flow fields of a force dipole (FD), a source
dipole (SD), and a source quadrupole (SQ)

v(r) = κFDvFD(r) + κSDvSD(r) + κSQvSQ(r) +O(r−5), (22)
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Fig. 8: Flow field of a spheroidal squirmer with the aspect ration two. For each of the three
pairs, the left image is the flow field in the laboratory reference frame and the right image in the
body-fixed frame. (Left) Pusher with β = −3, (Middle) neutral squirmer (β = 0), and (Right)
puller with β = 3. The magnitude of the velocity field is color coded logarithmically.

where

vFD(r) =
r

r3

(
3z2

r2
− 1

)
, (23)

vSD(r) =
1

r3

(
−ez +

3zr

r2

)
, (24)

vSQ(r) =
3

r4

(
5z2r

r3
− 2zez + r

r

)
, (25)

which decay like r−2, r−3, and r−4 [98], respectively, and κFD = P/8πη, κSD = −v0R
3/2,

and κSQ = PR3/8πη. Note that in Eqs. (23)-(25) the swimming direction e points along the
positive z axis, and ez is the unit vector along that axis. Figure 7 depicts flow fields of the
various kinds of microswimmers. In the far field, the flow fields of pushers and pullers are
given by the force-diploe field (23) (or Eq.(20)).
The assumption of a spherical shape is adequate for swimmers like, e.g., Volvox, however,
the shapes of other microswimmers (E. coli, Chlamydomonas, Paramecium) are nonspherical.
Here, an extension of the squirmer concept to spheroidal objects has been proposed [97, 99].
Figure 8 depicts flow fields of a spheroidal squirmer with the aspect ratio of two for the various
kinds of dipolar terms (Eqs. (23), (24)) in the laboratory and body-fixed reference frame. The
near-field modifications by the finite-size swimmer is clearly visible in comparison with Fig. 6
(left). Moreover, pusher and puller exhibit a stagnation point in front or back, respectively, in
the body-fixed reference frame.

3.5 Squirmer cooperative locomotion
Hydrodynamic interactions substantially affect the properties of active particles. An example
is the cooperative motion of two spheroidal squirmers confined in a thin slit by two no-slip
walls (cf. Fig. 9). Initially, the squirmer’s surface-to-surface distance is ds = 3.5a and the
angle between their swim directions θ0 = 3π/8. Due to the setup, the squirmers initially ap-
proach each other and collide at tv0/σ ≈ 0.5 (cf. Fig 9 (right)). The (persistence) Péclet
number Pe = v0/(2D

⊥
Rσ) ≈ 60 is sufficiently large, such that the squirmer orientation has

hardly changed before collision. When the neutral squirmers collide, they initially align par-
allel (cos θ ≈ 1 at tv0/σ ≈ 1 in Fig. 9), but their trajectories start to diverge immediately
thereafter. Pushers remain parallel for an extended time window, which is expected as pushers

Roland G. Winkler




E3.14 Roland G. Winkler

θ0

Fig. 9: (Left) Definition of the geometry of the confined squirmers, their orientation, and dis-
tance. (Middle) Flow streamlines of two pullers swimming cooperatively (laboratory reference
frame). The magnitude of the velocity field is color coded logarithmically. (Right) Average
surface-to-surface distance ds and orientation of squirmers, where cos(θ) = e1 · e2, as func-
tion of time. The solid blue, dashed black, and dotted red lines correspond to pullers (β = 4),
neutral squirmers, and pushers (β = 4). The standard deviation of the blue line is indicated by
the cyan shaded region [54].

are known to attract each other [89], but at tv0/σ ≈ 3 (cf. Fig. 9) their trajectories diverge as
well. This is probably due to noise, since we observe several realizations where pushers remain
parallel for an extended time. Interestingly, pullers, which are known to repel each other when
swimming in parallel [89] (cf. Fig. 7 for the flow field), swim cooperatively and reach a stable
orientation with 〈cos(θ)〉 ≈ 0.77 shortly after they collided (tv0/σ ≈ 1). Thereby, their cooper-
ative swimming velocity is about 0.8v0. The flow field of this stable state, determined by MPC
simulations, is shown in Fig. 9 (middle). Note that the velocity field in the swimming plane
is left-right symmetric, and that there is a stagnation point in the center behind the swimmers.
This point actually corresponds to a line normal to the walls [97]. In contrast, in Ref. [90]
a cooperative swimming mode for spherical squirmers has been observed (see Fig. 22(c) of
Ref. [90]). However, this cooperative swimming—termed pair-swimming by the authors—is
unstable to perturbations that displace one swimmer out of the swimming plane [90]. Since our
simulations and those of Ref. [89] include thermal fluctuations, we consequently do not observe
the cooperative swimming mode of Ref. [90].
Hence, the stable close-by cooperative swimming of pullers is governed by the squirmer aniso-
tropy, by the hydrodynamic interactions between them and, importantly, between pullers and
confining surfaces.

3.6 Squirmer cluster formation

As discussed in Sec. 2.6, activity leads to MIPS in ABPs systems. Detailed studies reveal
substantial changes in the phase behavior of active particles in the presence of hydrodynamic
interactions [96,100–103]. Hydrodynamic simulation studies of disks (2D system) [100], where
MIPS is most pronounced for APBs, show no evidence for a bulk phase separation. The quali-
tative different behavior is attributed to an emergent faster decorrelation of the squirmers swim-
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Fig. 10: (Left) Time dependence of the orientation correlation function Ce(t) for a system of
spherical squirmers and active Brownian particles. The dashed line indicates the exponen-
tial decay with the rotational diffusion coefficient DR. (Right) Snapshot of a configuration
of squirmers. The two-dimensional packing fraction is φ2D = 0.6 and the Péclet number
Pe = 115.

ming direction due to HIs compared to the Brownian rotational motion of ABPs. Similar results
have been found for spherical squirmers confined in a narrow slit [104]. Figure 10 displays a
snapshot of the structure of a system of neutral squirmers. Neither large clusters nor a pro-
nounced order is present for neutral squirmers (compare with Fig. 4). Similarly, no MIPS is
observed for pusher and pullers. In addition, Fig. 10 shows the time dependence of the orien-
tation correlation function of the propulsion direction Ce(t) =

∑Ns

i=1 〈ei(t) · ei(0)〉 /Ns, where
Ns is the number of squirmers in the system. The significant faster decay of the correlation func-
tion compared to ABPs is evident, with little difference between pushers, pullers, and neutral
squirmers. Note that the correlation function of an individual squirmer decays similarly to the
correlation function of an APB. Hence, the enhanced decay is a consequence of inter-squirmer
interactions.
Structure formation is decisively affected by the shape of a microswimmer (squirmer). On
the one hand, it is expected that an elongated shape enhances parallel alignment due to steric
interactions, an effect already present for elongated ABPs [78, 105]. On the other hand, hy-
drodynamic interactions prevent stable aligned states, at least for pusher and neutral squirmers.
The question is how hydrodynamics ultimately affects MIPS of elongated squirmers keeping in
mind that hydrodynamics suppresses MIPS for spherical squirmers. Our computer simulations
show that hydrodynamics enhances cluster formation for spheroidal squirmers. This is illus-
trated in Fig. 11. At the same Péclet number, Pe = 12, spheroids with the aspect ratio three
exhibit evidently a highly compact and large-scale aggregate in contrast to the gas-like spher-
ical system. Interestingly, hydrodynamic interactions enhance cluster formation, as shown in
Fig. 11 (right). ABPs show the least tendency to form clusters for Pe = 12, followed by pushers
and neutral squirmers; pullers show the highest tendency for cluster formation, already at rather
low densities.

4 Conclusions
Active matter exhibits a spectrum of unusual and fascinating phenomena, and offers many
promising avenues for creating novel materials with tunable properties. Most remarkably is
the intriguing collective behavior with emerging large-scale turbulence-like flow, or motility-
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puller

neutral

pusher ABP

Fig. 11: (Left) Snapshots of spherical and spheroidal (aspect ratio three) squirmer configura-
tions. (Right) Density-aspect ratio state diagram for ABPs, pullers (β = 1), neutral squirmers
(β = 0), and pushers (β = 1). Here, bz denotes the long and bx the short axis of the spheroid.
The density is φ2D = 0.6 and Pe = 12.

induced phase separation. Here, active Brownian particles are an excellent model system to
unravel the underlying generic principles of out-of-equilibrium systems. Remarkably, hydro-
dynamic interactions are essential for active matter, specifically biological microswimmers,
and are able to completely alter the steady-state behavior of interacting motile particles. Hy-
drodynamic interactions are not only fundamental for the propulsion of microswimmers (see
contribution E4), but also determine their behavior next to surfaces as well as the emergent
collective dynamics and structures. Hydrodynamic interactions imply a very rich dynamics,
which depends on the detailed swimming mechanism. We are only at the beginning of our
strive to elucidate the properties of active matter. Specifically, the design of novel synthetic
active agents and the control of existing (mostly biological) agents requires intensive studies in
the future, both from the theoretical and the experimental side.

Appendices

A Fokker-Planck equation of ABP

Equivalently to the Langevin equations (1) and (2), the dynamics of an ABP is described by the
Fokker-Planck equation for the distribution function ψ(r, e, t),

∂ψ

∂t
= − ∂

∂r

([
v0e+

1

γ
F

]
ψ

)
+DT

∂2

∂r2
ψ +DR

∂2

∂e2
ψ. (26)

Here, ∂2/∂e2 is the Laplace operator in polar (2D) or spherical (3D) coordinates. There is
typically no simple way to find a stationary-state (∂ψ/∂t = 0) solution of this equation, because
detailed balance is violated [14]. According to Refs. [68, 106], the stationary state distribution
function, or the generalized potential [68], is required to examine detailed balance. A necessary
and sufficient condition for the existence of a potential for Eq. (26) is v0∂eα/∂eα′ = 0, ∀α, α′,
(natural boundary conditions are assumed), which is only satisfied for v0 = 0. Note that there is
no drift term related to the orientation e. Hence, there is in general no potential and a stationary-
state solution is difficult to obtain [68].
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B Fokker-Planck equation of AOUP
The Fokker-Planck equation for the distribution function ψ(r,v, t) of the AOUP dynamics (6)
reads [67]

∂

∂t
ψ =− ∂

∂r

([
v +

1

γ
F

]
ψ

)
+ 2DR

∂

∂v
(vψ) +DT

∂2

∂r2
ψ +

2DRv
2
0

3

∂2

∂v2
ψ. (27)

Due to the Gaussian nature of the stochastic processes, and the fact that a Gaussian is determined
by its first and second moment, the full time-dependent solution of Eq. (27) can be obtained for
the special case of a harmonic potential, i.e., a linear force [67, 68].
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[3] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, and G. Volpe, Rev.
Mod. Phys. 88, 045006 (2016).

[4] D. Needleman and Z. Dogic, Nat. Rev. Mater. 2, 201748 (2017).

[5] S. Ramaswamy, J. Stat. Mech. Theor. Exp. 2017, 054002 (2017).

[6] A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112, E3639 (2015).

[7] R. Kapral and A. S. Mikhailov, Physica D 318-319, 100 (2016).

[8] H. S. Muddana, S. Sengupta, T. E. Mallouk, A. Sen, and P. J. Butler, J. Am. Chem. Soc.
132, 2110 (2010).

[9] K. K. Dey, S. Das, M. F. Poyton, S. Sengupta, P. J. Butler, P. S. Cremer, and A. Sen, ACS
Nano 8, 11941 (2014).

[10] R. G. Winkler, J. Elgeti, and G. Gompper, J. Phys. Soc. Jpn. 86, 101014 (2017).

[11] Y. Harada, A. Noguchi, A. Kishino, and T. Yanagida, Nature 326, 805 (1987).

[12] V. Schaller, C. Weber, C. Semmrich, E. Frey, and A. R. Bausch, Nature 467, 73 (2010).
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[77] H. Chaté, F. Ginelli, G. Grégoire, and F. Raynaud, Phys. Rev. E 77, 046113 (2008).

[78] M. Abkenar, K. Marx, T. Auth, and G. Gompper, Phys. Rev. E 88, 062314 (2013).
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