Precision Physics and Antimatter

Summary Day 2

Physics in the AD/ELENA-facility

BASE, ATRAP, Fundamental properties of the antiproton

ALPHA, ATRAP, Spectroscopy of 1S-2S in antihydrogen

ASACUSA, ALPHA Spectroscopy of GS-HFS in antihydrogen

ASACUSA Antiprotonic helium spectroscopy

ALPHA, AEgIS, GBAR Test free fall/equivalence principle with antihydrogen

M. Hori, J. Walz, Prog. Part. Nucl. Phys. 72, 206-253 (2013).

Antihydrogen in the ALPHA Experiment

• Production, detection and trapping of antihydrogen

ATHENA Collaboration, Nature 419, 456 (2002).

• Measurements of the GS-HFS and 1S-2S transition

ALPHA Collaboration, Nature 541, 506 (2017). ALPHA Collaboration, Nature 548, 66 (2017).

Precision Physics and Antimatter

Part 2/3 Antihydrogen – Beam and Gravity Experiments

Some CPT tests based on particle/antiparticle comparisons

V. A. Kostelecky, N. Russell, 0801.0287v10 (2017).

ASACUSA

Atomic Spectroscopy and Collisions using Slow Antiprotons

~ 36 people, 10 institutes

A Rabi-Experiment with Antihydrogen

Aim of the collaboration is precise spectroscopy of antihydrogen hyperfine structure

ASACUSA – CUSP An Antihydrogen Experiment

How it actually looks like:

Experimental Procedure

- Catch positrons
- Ramp to nested well
- Inject antiprotons from MUSASHI trap (typical energy is at some eV)
- Mixing

Field Ionization

Effective Hamiltonian:

$$H = H_H - q E x$$

Modifies the coulomb potential and high n-state positrons are stripped

Equating effective potential and particle energy

Ionizable n-state:

$$F = \frac{3.2 \cdot 10^8}{n^4} V/cm$$

Antihydrogen Detection by F.I.

- Accumulate positrons
- Direct injection of antiprotons
- Apply field ionization trap
- Release field ionization trap

- No F.I. signal without positrons
- Clear indication on antihydrogen production

Antihydrogen production

Antihydrogen production drops after a few seconds

Antiproton cool / Plasma overlap decreases

Rf-drive reexcites the antiproton plasma

-> Boost antihydrogen production by a factor ~5

Formation of an antihydrogen beam

First spectroscopy can be done with a ~10-fold improved production rate

N. Kuroda, S. Ulmer et al., Nat. Comm. 5, 3089 (2014).

ASACUSA Hydrogen apparatus

Hydrogen spectroscopy

 Table I. Error budget

contribution	1σ st.dev. (Hz)
systematic error	
frequency standard	1.62
common fit parameters	
\overline{v}_H	0.05
σ_v	0.03
$B_{ m osc}$	0.02
systematic error total	1.62
statistical error	3.43
total error	3.79

- Non-homogenous amplitude in the MW-cavity
- State conversion probability depends on velocity

 $\Delta \nu = 1420405748.4(3.4)(1.6) \text{ Hz}$ -2.7 ppb

M. Diermaier et al., Nat. Comm. 8, 15749 (2017).

Comparison: Beam vs. Trap Methods

- Requires a lot of antihydrogen atoms
- Dedicated GS-HFS spectrometer
- Antihydrogen is not necessarily in the ground state
- No systematic limits up to ~ 10⁻¹¹?
- Limits: Statistics (~1000 atoms for 10⁻⁶)

- Works with a few antihydrogen atoms
- It is not primarily a GS-HFS experiment
- Limits: Magnetic field stability, Magnetic field gradients

Conclusion

- ASACUSA has a very powerful spectrometer to measure the antihydrogen GS-HFS (~2.7 ppb, no showstoppers for another factor of ~100?)
- Open challenges:
 - More antihydrogen is needed
 - Antihydrogen is required in the ground state -> no trapping / decay in flight
 - Low temperature/velocity boosts the precision

Some ASACUSA People

Supporters of this presentation:

Yasunori Yamazaki

Chloe Malbrunot

Stefan Ulmer

1. Wigner Research Center of Physics (HU)

- 2. CERN (CH)
- 3. Stefan Meyer Institute (AT)
- 4. Università di Brescia and INFN (IT)
- 5. RIKEN (JP)
- 6. The University of Tokyo (JP)
- 7. Hiroshima Univerity (JP)
- 8. The University of Tokyo, Komaba (JP)
- 9. Max-Planck-Institut für Quantenoptik (DE)
- 10. University of Aarhus (DK)

List of Collaboration Members

C. Amsler³, D. Barna¹, H. Breuker², A. Capon³, M. Corradini⁴, M. Diermaier³, P. Dupre⁵, <u>R.S. Hayano⁶</u>, H. Higaki⁷, Y. Higashi⁸, M. Hori⁹, D. Horváth¹, Y. Kanai⁵, C. Kaga⁷, H. Knudsen¹⁰, B. Kolbinger³, N. Kuroda⁸, M. Leali⁴, E. Lodi-Rizzini⁴, C. Malbrunot², V. Mascagna⁴, Y. Matsuda⁸, Y. Murakami⁶, Y. Nagata⁵, C. Sauerzopf³, M. Simon³, A. Sótér⁹, M. Tajima⁸, H.A. Torii⁸, U. Uggerhøj¹⁰, S. Ulmer⁵, L. Venturelli⁴, E. Widmann³, H. Yamada⁶, Y. Yamazaki⁵, J. Zmeskal³

Antimatter and Graviation

Antimatter and Antigravitation?

The experiment idea:

Some considerations

• Thermal velocity of antihydrogen at 4.2 K:

 $\sqrt{\langle v^2 \rangle}$ = 263 m/s

• Change of position/velocity in 10 ms:

 $\Delta x = 2.63 \text{ m} + 0.49 \text{ mm}$

 $\Delta v = 263 \text{ m/s} + 98.1 \text{ mm/s}$

- You want to see a tiny effect on top of a thermal distribution!
- Low temperature antihydrogen is essential for these measurements!

Experiment ideas

ALPHA-g

Magnetic antihydrogen trap

Bias in the number of events in the vertical direction

Requires cold antihydrogen

Observe interference pattern of photons and antihydrogen in a deflectometer

AEgIS

grating 2

grating

position-sensitive

Requires cold antihydrogen

Requires H+

First constraints set in the horizontal apparatus

ARTICLE

Received 14 Jan 2013 | Accepted 22 Mar 2013 | Published 30 Apr 2013

DOI: 10.1038/ncomms2787

OPEN

Description and first application of a new technique to measure the gravitational mass of antihydrogen

The ALPHA Collaboration^{*} & A.E. Charman¹

Gravitational force of antihydrogen is not more than +/- 110-fold larger than the one on hydrogen

See Publication for details.

AEgIS: The experiment idea

AEgIS experimental setup

Courtesy of C. Malbrunot

Antihydrogen production in AEgIS

 $Ps^* + \bar{p} \to \bar{H}^* + e^-$

Porous target for positronium production

http://aegis.web.cern.ch/aegis/

Moire deflectometer tested with antiprotons

Gravitational force: 10⁻²⁶ N

Magnetic force on antiprotons: 5 10^-16 N

AEgIS collaboration, Nat. Comm. 5, 4538 (2014).

GBAR installation in the AD

Antiproton Injection/Pulsed drift tube

The GBAR housing of the small electron accelerator

Production of positive antihydrogen ions (Two positrons, one antiproton) Sympathetic cooling with a single beryllium ion Ionization and free fall experiment of an ultra-cold antihydrogen atom

http://gbar.web.cern.ch

Some AD people

Patrice Perez

Michael Doser

Jeff Hangst

A final comment on antihydrogen experiments

Images of ions in a Penning trap after Doppler laser cooling. Each image is approximately 90µm X 150µm 99 of 100 problems can be solved with lower temperatures!

Laser-cooling in a strong magnetic field is now an established technique

Some developments:

- Positron cooling with Beryllium ions
- Hbar+ with Beryllium ions
- Sympathetic antiproton cooling with negative ions (Os-, La-, C2-)

Single particle techniques:

- "Common endcap"-technique
- Coulomb force coupling in separate wells

Courtesy of R. Thompson (ICL)

Precision Physics and Antimatter

Part 3/1 Single Particles in Penning Traps – The Ideal Trap

High-precision measurements in Penning traps

H. G. Dehmelt and P. Ekström, Bull. Am. Phys. Soc. 18, 72 (1973).D. J. Wineland and H. G. Dehmelt, J. Appl. Phys. 46, 919 (1975).

Equations of motions

$$\vec{B} = B_0 \vec{e}_z$$

$$V(z,\rho) = V_0 C_2 (z^2 - {\rho^2}/{2})$$

Newton's equation of motion:

$$m\ddot{\vec{x}} = -q\vec{\nabla}V(r,\rho) + q\dot{\vec{x}}\times\vec{B}$$

z-Direction: Harmonic Oscillator

r-Direction: Coupled DEQ due to Lorentz-force

The Penning trap

Level scheme of the quantized Penning trap

• Some further calculations lead to the quantized Hamiltonian:

$$H = \hbar\omega_{+} \left(A_{+}^{\dagger}(t)A_{+}(t) + \frac{1}{2} \cdot 1\right) - \hbar\omega_{-} \left(A_{-}^{\dagger}(t)A_{-}(t) + \frac{1}{2} \cdot 1\right) + \hbar\omega_{z} \left(A_{3}^{\dagger}(t)A_{3}(t) + \frac{1}{2} \cdot 1\right) \cdot$$
energy
$$\psi_{s,n_{+},n_{-},n_{z}} \psi_{s,n_{+},n_{-},n_{z}}$$

$$\psi_{s,n_{+},n_{-},n_{z}} \psi_{s,n_{+},n_{-},n_{z}}$$

$$\psi_{s,n_{+},n_{-},n_{z}} \psi_{s,n_{+},n_{-},n_{z}}$$

$$\psi_{s,n_{+},n_{-},n_{z}} \psi_{s,n_{+},n_{-},n_{z}}$$

$$\psi_{s,n_{+},n_{-},n_{z}} \psi_{s,n_{+},n_{-},n_{z}}$$