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Abstract
Means to coherently control single x-ray photons in resonant scattering of
light off nuclei by electric or magnetic fields are investigated theoretically. In
order to derive the time response in nuclear forward scattering, we adapt the
Maxwell–Bloch equations known from quantum optics to describe the resonant
light pulse propagation through a nuclear medium. Two types of time-dependent
perturbations of nuclear forward scattering are considered for coherent control
of the resonantly scattered x-ray quanta. Firstly, the simultaneous coherent
propagation of two pulses through the nuclear sample is addressed. We find
that the signal of a weak pulse can be enhanced or suppressed by a stronger
pulse simultaneously propagating through the sample in counter-propagating
geometry. Secondly, the effect of a time-dependent hyperfine splitting is
investigated and we put forward a scheme that allows parts of the spectrum to
be shifted forward in time. This is the inverse effect of coherent photon storage
and may become a valuable technique if single x-ray photon wavepackets are to
become the information carriers in future photonic circuits.

Recent experimental developments of coherent light sources have opened the x-ray parameter
regime for fascinating coherent control concepts originally developed in quantum optics. Thus,
new fields such as x-ray quantum optics [1] and nuclear quantum optics [2] emerge. The interest
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in nuclear systems is sustained by the recent commissioning of x-ray free electron laser (XFEL)
facilities [3–7] and the development of x-ray optics devices [8–14] which bring into play higher
photon frequencies. Nuclei with low-lying collective states therefore become candidates for
nuclear quantum optics [2, 15–18] or nuclear coherent population transfer [19, 20].

Coherent control tools based on nuclear cooperative effects [21–25] are known also
from nuclear forward scattering (NFS) experiments with third-generation light sources. The
underlying physics here relies on the delocalized nature of the nuclear excitation produced
by coherent XFEL or synchrotron radiation (SR) light, i.e. the formation of so-called nuclear
excitons. For instance, a NFS setup in planar thin film waveguides [26] was used for novel
quantum optics experiments in the x-ray regime using nuclei instead of atoms. The excitonic
nature of the nuclear excitation in NFS was exploited to identify the cooperative Lamb shift [24],
or to demonstrate electromagnetically induced transparency (EIT) [25] and spontaneously
generated coherence [27] in a nuclear system. Furthermore, NFS setups also offer a framework
for control of single x-ray photons, which might become a useful tool for optics and quantum
information applications at shorter wavelengths on the way toward more compact photonic
devices [28]. Phase-sensitive storage and π phase modulation for single hard x-ray photons in
a NFS setup have been recently proposed [29], as well as the generation of a nuclear polariton
with two entangled counter-propagating branches [30] comprising a single x-ray photon. Using
Mössbauer sources, the coherent control of the single-photon wavepackets shape has been
recently demonstrated [18].

In this work we focus on advanced field-control means to coherently manipulate the
resonant x-ray pulse propagation through a nuclear medium and the corresponding single-
photon wave packets. In particular, we first consider the case of two resonant pulses
simultaneously propagating through the same nuclear sample. A counter-propagating geometry
is envisaged in order to easily discern between the scattered signal of the individual pulses.
We find that the signal of a weak pulse (potentially a single-photon wavepacket) can be
enhanced or suppressed by the presence of a counter-propagating stronger pulse, depending
on the corresponding time delay. The underlying mechanisms of this behavior are identified and
discussed. The signal enhancement and suppression effects in the interaction between the two
pulses might prove very useful for enhancing detection and control of the single-photon wave
packet. Secondly, we address the effect of time-dependent hyperfine magnetic fields that switch
the nuclear system from the degenerate, two-level system case, to a non-degenerate multi-
hyperfine-level one. External magnetic fields have been used to control the NFS and in particular
to store the nuclear excitation [29, 31–33]. As a new feature, we discuss here a magnetic field
control sequence which allows the shift of the NFS signal forward in time, i.e. toward shorter,
earlier times. This is the inverse effect of coherent photon storage presented in [29] which shifts
the NFS signal toward later times. Using these two magnetic-field switching techniques, one
has efficient time-signal processing tools of single-photon wave packets.

In order to study the field-control effects described above, a versatile theoretical method
is required which allows to easily incorporate perturbations of the NFS signal by means of
time-dependent electric or magnetic fields. There are a number of theoretical approaches to
treat the coherent nuclear excitations induced by SR pulses and calculate the amplitude of the
scattered light [34]. The first time-dependent theory of NFS of SR was developed by Kagan,
et al. [35]. Fourier transformation from the frequency to the time domain as shown in [35]
has been used ever since in many works to consider more complicated cases of interactions of
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nuclei with their environment [34, 36, 37]. Alternatively, the scattering problem can be directly
treated semi-classically in time and space, see [38], leading to a wave equation for the scattered
field to be solved iteratively. In this work we adopt a more general approach from atomic
quantum optics based on the Maxwell–Schrödinger or Maxwell–Bloch equations (MBE) [39].
This allows to determine the field propagation through the nuclear medium easily taking into
account additional perturbation such as time-dependent magnetic fields or the simultaneous
propagation of several light pulses through the same sample. The parameter regime for which
the MBE reproduce the well-known dynamical beat results for a single nuclear transition is
deduced. The case of NFS off multi-level nuclei is discussed and the form of the MBE is
derived taking into account hyperfine splitting for the case of the 57Fe Mössbauer nucleus. Using
a forward–backward decomposition, the MBE can also be generalized to treat the propagation
and medium response of two counter-propagating pulses. For atomic resonant media, two-pulse
propagation in short-pulse EIT scenarios have been previously successfully described using the
MBE formalism [40].

The paper is organized as follows. In section 1 we derive the MBE for the scattering of light
off identical nuclei and discuss the parameter regime for which they describe the NFS spectra.
The case of field-controlled NFS with two pulses simultaneously propagating in the same
nuclear sample is presented in section 2. Section 3 addresses forwarding the nuclear response
in time by means of time-dependent external hyperfine magnetic fields. Finally, section 4
summarizes the results.

1. Theoretical approach

In a typical NFS experiment, monochromatized light pulses shine perpendicular to a sample
containing Mössbauer nuclei, usually 57Fe. The delayed nuclear response is then recorded by
observing the resonantly scattered light in the forward direction, as illustrated schematically in
figure 1(a). The interval between successive light pulses is chosen long enough to facilitate the
nuclear response detection, typically larger than 1/0, where 0 denotes the nuclear spontaneous
decay rate. The driven magnetic dipole (M1) nuclear transition connects the 57Fe ground state
characterized by spin Ig = 1/2 to the first excited state at 14.413 keV with Ie = 3/2. The
hyperfine-split level scheme of 57Fe for the states of interest is depicted in figure 1(b). The
resonant scattering occurs via an excitonic state, i.e. an excitation coherently spread out over
a large number of nuclei. In case of coherent scattering, the nuclei return to their initial state,
such that the scattering path and the number of occurred events are unknown. This leads to
cooperative emission, with scattering only in forward direction (except for the case of Bragg
scattering [34, 35, 41, 42]) and decay rates modified by the formation of sub- and super-radiant
states as key signatures. The observed decay signal is therefore far from being exponential, as
can be seen in the example presented in figure 1(c).

The exciton picture [23, 34, 43] justifies the coherently scattered radiation proceeding
in the forward direction, but does not provide a straightforward manner to correctly derive
the scattering spectrum. This can be rather achieved by means of the wave equation for the
time-dependent field propagation which reveals the field intensity at the exit from the sample.
The ansatz of forward emission of the resonantly scattered light is however related to the exciton
picture and enters the MBE phenomenologically.
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Figure 1. (a) Typical NFS setup. The resonant x-ray pulse shines perpendicularly to the
nuclear sample depicted by the green rectangle. After each pulse, the delayed nuclear
response in the forward direction is recorded by the detector. The blue thick vertical
arrow shows the applied magnetic field B(t). (b) 57Fe ground and first excited state
nuclear hyperfine levels. In this example, the 1m = 0 transitions are driven by linearly
polarized x-rays. (c) Intensity of the coherently scattered light in the forward direction
(red solid line) for an incident field driving the 1m = 0 transitions. The envelope given
by the Bessel function for the degenerate states case is shown by the green long-dashed
line. The hyperfine magnetic field depicted by the blue short-dashed line is kept constant
during the scattering for this example.

In quantum optics, the light–nuclei interaction is typically described by monitoring the
quantum time evolution of the density operator ρ̂, given by the master equation [39]

∂t ρ̂ =
1

ih̄
[Ĥ , ρ̂] + ρ̂s. (1)

Here, Ĥ is the interaction Hamiltonian between the matter and the incident electromagnetic
field and ρ̂s describes decoherence processes such as spontaneous decay. For a two-level system
corresponding to a single nuclear resonance with ground state |g〉 and excited state |e〉, the
interaction Hamiltonian is given by

Ĥ = −
h̄

2

(
0 �∗

p

�p 21p

)
, (2)

where h̄ is the reduced Planck constant, and 1p is the detuning (i.e. mismatch) between the field
and nuclear transition frequencies. Furthermore, �p denotes the Rabi frequency defined as

�p =
1

h̄
〈e|Ĥ |g〉. (3)
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By using the Coulomb gauge for the vector potential EA(z, t) and the rotating wave
approximation, we can obtain a useful expression of the reduced interaction matrix element

〈e|Ĥ |g〉 = −〈e|Êj(Ek)· ÊA(z, t)|g〉 (4)

= E(z, t)
√

2π

√
L + 1

L

kL−1

(2L + 1)!!

√
B(ε/µL , |g〉 → |e〉)

≡ E(z, t)α(ε/µL , |g〉 → |e〉), (5)

where Êj(Ek) is the current density operator in momentum representation, E(z, t) is the
electric field envelope, L is the angular momentum of the transition, ε/µ the transition type
(electric/magnetic) and B(ε/µL , |g〉 → |e〉) the nuclear reduced transition probability [44]. For
the equation above we have considered the case of a single nuclear transition from a degenerate
ground state. Typically, in atomic quantum optics only electric dipole transitions are of interest
and α(ε1, |g〉 → |e〉) stands then for the electric dipole moment. In our case, we have written
in equation (5) the general expression of the Rabi frequency involving the electromagnetic
multipole moment α(ε/µL , |g〉 → |e〉).

With the notation ρmn = 〈m|ρ̂|n〉 with {m, n} ∈ {e, g} we obtain the Bloch equations

∂tρgg = 0ρee −
i

2
(�pρge − �∗

pρeg),

∂tρeg = −

(
i1p +

0

2

)
ρeg −

i

2
�p(ρee − ρgg),

∂tρee = − 0ρee +
i

2
(�pρge − �∗

pρeg), (6)

where the spontaneous decay rate 0 comprises the radiative and the internal conversion channel.
By coupling the equations above for the density matrix to the Maxwell wave equation, we

can describe the dynamics of both matter and radiation field, i.e. the propagation of a light pulse
through the resonant medium taking into account also the sample response. In the following
we consider an electromagnetic wave with the polarization vector Eex , frequency ω and wave
number k0 = ω/c (here c denotes the speed of light) with a slowly varying envelope

EE(z, t) = E(z, t) e−i(ωt−k0z)
Eex . (7)

Considering only unidirectional propagation in the forward direction according to our ansatz,
the wave equation(

∂2

∂z2
−

1

c2

∂2

∂t2

)
EE(z, t) =

4π

c2

∂

∂t
EI (z, t), (8)

for the electric field intensity has as source term the macroscopic current density EI (z, t)
induced by the radiation in the system of resonant nuclei. The induced current density can be
written as

EI (z, t) = I (z, t) e−i(ωt−k0z)
Eex . (9)
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We consider the parameter regime for which |
∂ E(z,t)

∂t |, |c ∂ E(z,t)
∂z | � |ωE(z, t)| holds. In the slowly

varying envelope approximation, the wave equation reduces to

∂ E(z, t)

∂z
+

1

c

∂ E(z, t)

∂t
= −

2π

c
I (z, t). (10)

The crucial step here is to express the current density with the help of the density matrix
in order to couple the Bloch and Maxwell equations. For a two-level system interacting
with the field in atomic quantum optics, the current can be expressed with the help of the
coherence ρeg and the dipole moment α(ε1, |g〉 → |e〉). Following the argument presented
in [38], the current density for a single nuclear resonance is obtained by summing over all

nuclei participating in the coherent scattering and tracing over Êj(Ek) eik0zρ̂. Taking into account
the alternative form of the Hamiltonian with the vector potential written in the Coulomb gauge,

Ĥ = iÊj(Ek) · Eex eik0z E(z, t)/ω, we can relate to the matrix element in equation (5) and express
the current in the simplified form

I (z, t) = N 〈e|Êj(Ek)eik0z
|g〉ρeg (11)

=
ω

i
Nα(ε/µL , |g〉 → |e〉)ρeg, (12)

where N is the particle number density and we take into account all nuclei over which the
excitation is coherently shared. Combining equations (5), (10) and (12) we obtain an additional
equation involving the Rabi frequency

1

c
∂t�p(z, t) + ∂z�p(z, t) = i

2πωN [α(ε/µL , |g〉 → |e〉)]2

h̄c
ρeg. (13)

Together with the three Bloch equations (6), we now have arrived at the MBE for the Rabi
frequency. The scattered field is then proportional to �p and the scattered intensity I ∝ |�p|

2.
We proceed now with some changes of notation in order to facilitate the comparison with
established NFS results. The expression of the radiative nuclear decay rate 0γ is also connected
to the reduced transition probabilities B(ε/µL , |e〉 → |g〉) via

0γ =
8π(L + 1)

L[(2L + 1)!!]2

(
E0

h̄c

)2L+1

B(ε/µL , |e〉 → |g〉), (14)

where E0 denotes the transition energy and

B(ε/µL , |e〉 → |g〉) =
2Ig + 1

2Ie + 1
B(ε/µL , |g〉 → |e〉), (15)

i.e. they are equal when considering the case of a single nuclear resonance. The resonant cross
section can also be expressed as

σ =
2π

k2
0

2Ie + 1

2Ig + 1

0γ

0
= [α(ε/µL , |g〉 → |e〉)]2 8πk

h̄0
. (16)

Introducing the dimensionless effective thickness [38] ξ = Nσ L/4 with L the length of the
sample, we can rewrite the wave equation in the MBE as

1

c
∂t�p(z, t) + ∂z�p(z, t) = iηρeg(z, t) (17)

with η =
ξ0

L .

6
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As initial conditions for the MBE we now consider

ρmn(z, 0) = δmgδng,

�p(z, 0) = 0,

�p(0, t) = �0pδ(t − τ), (18)

where τ marks the arrival of the incident resonant light pulse. In the following we set the
detuning 1p to zero. Taking the incident pulse as a small perturbation such that �p � 0 and
no Rabi oscillations may occur, we obtain in first order perturbation theory from equations (6)
and (17) only two coupled equations for �p,

∂tρeg = −
0

2
ρeg +

i

2
�p,

1

c
∂t�p + ∂z�p = iηρeg. (19)

Performing a change of variable and using the Fourier transform, the dispersion relation of the
system can be obtained [45],

k(ω) =
ω

c
−

η

2ω
− i

0

2c
. (20)

The solution for the Rabi frequency can be found by inverse Fourier transform

�p(z, t) =
1

2π
e−

0
2 [ z

c +(t−τ)]

∫
∞

−∞

e−i[( ω
c −

η
2ω

)z−ω(t−τ)] dω

=

δ
[ z

c
− (t − τ)

]
−

ξ0z

L

J1

[
2
√

( ξ0z
L )(t − τ −

z
c )

]
2
√

( ξ0z
L )(t − τ −

z
c )

 e−
0
2 ( z

c +t−τ), (21)

where J1(z) is the Bessel function of the first kind. The terms z/c are typically negligible
because L/c is much smaller than (t − τ). With this, the result above reproduces the expression
of the dynamical beat [34, 35, 38, 46] known from the time-dependent theory of NFS for a
single nuclear resonance. An illustration of the dynamical beat for a test case is given by the
green dashed line in figure 1(c). We would like to emphasize here that the dynamical beat is a
general feature for the propagation of short weak laser pulses through resonant matter and by
no means limited to NFS, as shown by earlier studies in atomic systems [47–49].

The MBE become more complicated for the case of the resonant driving of several nuclear
resonances in a hyperfine-split, multi-level system. The typical example is 57Fe in a hyperfine
magnetic field which has two ground (Ig = 1/2) and four excited (Ie = 3/2) magnetic sublevels.
The hyperfine levels are coupled by six transitions, depending on the magnetic field geometry
and polarization of the incident SR or XFEL field. Let us first consider the x-ray pulse is linearly
polarized and the direction of polarization is parallel to the x-axis. The magnetic field B(t) that
sets the quantization axis for the nuclear ground and excited state spin projections mg and me

is parallel to the y-axis, as depicted in figure 1(a). In this scenario, the two 1m = me − mg = 0
magnetic dipole transitions will be driven by the incident pulse. The MBE include then a

7
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number of Clebsch–Gordan coefficients that quantify the individual couplings between the
four states:

∂tρ11 = 0(C2
14ρ44 + C2

15ρ55) −
i

2
C15(�pρ15 − �∗

pρ51) ,

∂tρ22 = 0(C2
24ρ44 + C2

25ρ55) −
i

2
C24(�pρ24 − �∗

pρ42) ,

∂tρ42 = −
1

2
(2i1p,4→2 + C2

140 + C2
240)ρ42 −

i

2
C24�p(ρ44 − ρ22) ,

∂tρ44 = − 0(C2
14 + C2

24)ρ44 +
i

2
C24(�pρ24 − �∗

pρ42) ,

∂tρ51 = −
1

2
(2i1p,5→1 + C2

150 + C2
250)ρ51 −

i

2
C15�p(ρ55 − ρ11) ,

∂tρ55 = − 0(C2
15 + C2

25)ρ55 +
i

2
C15(�pρ15 − �∗

pρ51) ,

1

c
∂t�p + ∂z�p = iη′(a51ρ51 + a42ρ42). (22)

In the above equations, the states |1〉 and |2〉 denote the two ground states with mg = 1/2 and
−1/2, respectively, and |3〉, |4〉, |5〉 and |6〉 the four excited states with me = −3/2, −1/2, 1/2
and 3/2, respectively. The shortened notation used for the Clebsch–Gordan coefficients [50] is
Ci j = C(Ig Ie 1; mg me M) where i ∈ {1, 2} sets the value of mg and j ∈ {3, 4, 5, 6} the one of
me. Furthermore, 1p,4→2 = ω42 − ω and 1p,5→1 = ω51 − ω, where ω51 and ω42 are the resonant
frequencies of the |1〉 → |5〉 and |2〉 → |4〉 transitions, respectively. The coefficients η′, a51 and
a42 can be deduced by studying the limiting case when the magnetic field B(t) goes to zero and
equations (22) should resume the form of (6) and (17). The last equation in (22) then becomes

1

c
∂t�p + ∂z�p = iη

(
ρ51

C15
+

ρ42

C24

)
. (23)

The MBE is therefore a very convenient method to treat NFS involving multiple resonances
since the system of equations can be solved numerically. For completion, the corresponding
equations for the case of a circularly polarized pulse driving the four 1m = me − mg = ±1
transitions between the six ground and excited hyperfine levels are given in the appendix.

Comparison of theoretical and experimental NFS results for SR show very good agreement.
This might appear as surprising since most theoretical approaches, including the MBE discussed
here, rely on the classical Maxwell equation for the scattered field. However, in experiments
the produced excitation is very weak, such that typically either no photon or one photon is
resonantly scattered per pulse and the spectra describe the propagation of a single-photon
wavepacket. The legitimate question may arise how come does the classical field correctly
describe the behavior of single photons? This would be the case if the photon state under
investigation were a coherent state [39]. In our case, the weak excitation produced by SR
pulses can be described by the coherent-like state C0|0〉 + C1|1〉 + C2|2〉 + · · · where |n〉 is the
n-photon Fock state and |C0|

2
� |C1|

2
� |C2|

2
� . . .. This relation between the observed

photon number events for small n is verified by typical NFS experiments and justifies our
classical field treatment for single photons. A rigorous quantum treatment of NFS will hopefully
provide more insight in the behavior of single and few x-ray photons in nuclear samples.

8
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Figure 2. (a) Counter-propagating pulses setup with the strong pulse reaching the
sample prior to the weak pulse. (b) NFS time spectra I ∝ |�w|

2 for the weak pulse in
the absence (red solid line) or presence of a stronger counter-propagating pulse �s. The
latter reaches the sample prior to the weak pulse. The time delay 1τ = τs − τw between
the two pulses is −10 ns (green dotted line) and −50 ns (black dashed line). The time
origin is set by the center of the incident weak pulse reaching the sample at z = 0.

2. Two resonantly propagating pulses

Let us consider the case of two resonant pulses interacting simultaneously with a nuclear target
containing 57Fe Mössbauer nuclei. We choose the counter-propagating geometry as shown
schematically in figure 2(a) such that the two signals can be easily separated experimentally. The
recent development of normal-incidence x-ray mirrors [11, 12] is an important step allowing
such more complex setup geometries. For simplicity we assume a single nuclear transition
resonant with the two light pulses which reach the target from opposite directions at z = 0 and L .
We consider the case of two pulses both with zero detuning 1 but of different intensity. A
weak pulse of Rabi frequency �w is perturbed and controlled by the simultaneous passage of
a stronger pulse �s through the sample. The physical case behind such a setup may involve
a weaker pulse which produces a single-photon excitation that can in turn be controlled by a
more intense XFEL pulse. In order to describe the fields in the counter-propagating geometry
we consider a backward–forward decomposition of the radiation field [51]

EE(z, t) = Ew(z, t)e−i(ωt−k0z)
Eex + Es(z, t)e−i[ωt−k0(L−z)]

Eex . (24)

In our case, since for each pulse only the respective forward scattering wave is taken into
account, each term in the equation above represents the contribution of one of the pulses. For
the numerical calculation we use the same decomposition also for the coherence terms

ρeg(z, t) = ρegw(z, t) e−i(ωt−k0z) + ρegs(z, t) e−i[ωt−k0(L−z)], (25)

and the Rabi frequencies

�(z, t) = �w(z, t) + �s(z, t). (26)

9
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A similar decomposition in the MBE was used to describe the coherent propagation of Stokes
light in a 3 three-level amplifier, where the Raman and fluorescence components play the role
of the two counter-propagating in our setup [52]. Writing separately the wave equations for the
forward and backward Rabi frequencies, we obtain the MBE

∂tρee = −0ρee +
i

2

[
(�wρgew − c.c.)+ (�sρges − c.c.)

+(�wρges e−ik0 L+i2k0z
− c.c.) + (�sρgew eik0 L−i2k0z

− c.c.)
]
,

∂tρgg = 0ρee −
i

2
[(�wρgew − c.c.) + (�sρges − c.c.)

(27)

+(�wρgese
−ik0 L+i2k0z

− c.c.) + (�sρgeweik0 L−i2k0z
− c.c.)],

∂tρegw = −

(
i1 +

0

2

)
ρegw −

i

2
�w(ρee − ρgg),

∂tρegs = −

(
i1 +

0

2

)
ρegs −

i

2
�s(ρee − ρgg),

1

c
∂t�w + ∂z�w = iηρegw,

1

c
∂t�s − ∂z�s = iηρegs.

The MBE above can be solved numerically. For numerical efficiency, we consider instead

of incident delta pulses in equation (18) a Gaussian pulse shape �(z, t) = �0e−
(t−τ)2

σ2 with
σ = 1 ns, which is still much shorter than the nuclear decay time scale of hundreds of ns
(the nuclear spontaneous decay rate, including both the radiative and the internal conversion
channels, is 0 = 1/141 GHz). As numerical example, the weak pulse with initial Rabi frequency
�w0 = 0/10 reaches the sample (z = 0) at τw in the presence of a stronger pulse (�s0 = 2000)
arriving at other end of the sample (L = 10 µm) at τs with positive or negative time delay and
propagating through the sample in the opposite direction. The effective thickness of the sample
was chosen ξ = 15. The results for positive and negative time delay are presented in figures 2
and 5.

We see that the presence of the stronger pulse plays an important role on the propagation
of the weaker resonant pulse. We address the two situations of positive and negative pulse delay
separately.

2.1. 1τ < 0

The strong pulse passes the nuclear sample prior to the weak pulse. This situation is depicted
in figure 2. We see that in this case the weak pulse signal can be suppressed by several orders
of magnitude depending on the delay time 1τ . The underlying mechanism for this suppression
relies on two aspects: (i) the diminished nuclear ground state population left available for the
later arriving weaker pulse and (ii) the building up of the weak pulse coherence term ρegw. The
strong pulse produces a significant population of the excited states at t = 0 and the population
dynamics is still ongoing by the time the weaker pulse reaches the sample. This is illustrated
in figure 3 where the contour plot of the time-dependent excited state population produced by
the strong pulse as a function of position in the sample z is presented. We see that at t = 10
and 50 ns after the passing of the strong pulse, a still large amount of excitation is present in
the sample and correspondingly fewer ground states are available for excitation by the weak
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Figure 3. Excited state population ρee produced solely by the strong pulse as a function
of time (here t = 0 denotes the center of the strong pulse entering the sample) and
position z in the sample.

pulse. However, this does not directly explain why the arrival of the weak pulse with 50 ns
delay time leads to a more suppressed signal in figure 2(b) than the case of 10 ns delay, since
the excited state population is higher in the latter case. A study of the MBE for the two counter-
propagating pulses (27) reveals in the equation for the coherence ρegw that it is the population
inversion (ρee − ρgg) which is decisive for the intensity of the scattered signal. Indeed, the weak
pulse itself can produce only a weak excitation such that ρee − ρgg ' −1. The imaginary part
of the coherence at t = 0 is then given by the product between the incident (here Gaussian)
pulse and the difference (ρee − ρgg). However, with the strong pulse arriving prior to the weak
pulse, the nuclear population is first pumped in the excited state and (ρee − ρgg) changes sign.
A contour plot of the population inversion produced by the strong pulse is presented in figure 4.
At t = 10 ns when the weak pulse reaches the sample, the population inversion is approx.
0.8, leading to a smaller absolute value of the imaginary part of the initial coherence ρegw

for the weak pulse and a suppressed signal. If the weak pulse arrival is delayed up to 50 ns,
the population inversion cancels with ρee − ρgg ' 0 over most of the sample. The coherence
Im[ρegw] and consequently the weak pulse signal is even more strongly suppressed. We note
that the change of sign for the coherence term at t = 0 does not play a role here since it only
affects the initial phase of the scattered electric field and not its intensity.

2.2. 1τ > 0

The strong pulse arrives during the weak pulse propagation through the sample as shown in
figure 5(a). Our results for this situation are depicted in figure 5(b). In this case the effect of the
strong pulse arriving with a delay after the weak pulse is a substantial increase of the response
of the latter. Similar arguments related to the strong-pulse-induced population inversion and
coherence hold also in this case. However, the main difference now is that the weak pulse
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Figure 4. Population inversion (ρee − ρgg) produced solely by the strong pulse as a
function of time (here t = 0 denotes the center of the strong pulse entering the sample)
and position z in the sample.
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Figure 5. (a) Counter-propagating pulses setup with the weak pulse reaching the sample
prior to the strong pulse. (b) NFS time spectra I ∝ |�w|

2 for the weak pulse in the
absence (red solid line) or presence of a stronger counter-propagating pulse �s. The
weak pulse reaches the sample first and 1τ = 10 ns (green dotted line) and 50 ns (black
dashed line). The time origin is again set by the center of the incident weak pulse
reaching the sample at z = 0.

evolves first unperturbed and the coherence term ρegw is non-zero and decreasing when the
strong pulse arrives. Thus, unlike in the previous situation discussed above, a sudden change in
the sign of the population inversion will produce now an increase of ρegw and consequently also
an increase of the weaker pulse signal |�w|

2. The population inversion for both 1τ = 10 and

12
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Figure 6. NFS spectra |�w(L , t)|2 unperturbed (solid red line) and in the presence of a
counter-propagating strong pulse with �s0 = 1000 reaching the sample with the pulse
delay 1τ = −10 ns (green dotted line) and 1τ = 10 ns (black dashed line).

50 ns has similar values leading to a comparable enhancements of the weak pulse signal for the
green and the black curves in 5(b).

In order to further test our understanding of the two-pulse propagation dynamics in the
nuclear sample, we have also considered a hypothetical modified setup where the effect of the
strong pulse on the excited state population for the weak pulse vanishes. The concrete example is
a three-level V -type system where the two pulses each couple only to one of the two transitions,
leading to the population of two different excited states. The population inversion relevant for
the weak pulse is therefore never changing sign, since ρeew � ρgg at all times. As expected, we
observe the suppression of the weak pulse signal for all (positive and negative) delay times, with
no enhancement observed.

To summarize, prior arrival of a strong pulse can suppress while a later arrival can
enhance significantly the NFS signal of a weak pulse. This can have exciting applications in
the framework of single-photon signal processing, for instance to enhance detection of single-
photon wave packets. The key phenomenon here is the significant modification of the population
inversion in the sample by the strong pulse. Obviously, in order to achieve the effects under
investigation here, a certain intensity is required for the strong pulse. The value assummed
here of �s0 = 2000 corresponds to a peak intensity of 1.8 × 1022 W cm−2, which is not far
from present XFEL intensity values considering excellent focus [53]. However, a narrower
bandwidth would be required which may be available only at future seeded XFEL facilities.
For comparison, we present here our results also for a �s0 = 1000 for 1τ = ±10 ns in figure 6.
In this case, the suppression and enhancement effects are visible but already less spectacular.

3. Forwarding the nuclear response in time

We now investigate the case when only one pulse propagates resonantly through the sample,
however under the action of a time-dependent magnetic field. In the absence of the magnetic
field, the 57Fe nuclei behave as two-level systems. If the magnetic field is switched on, the
introduced hyperfine splitting renders six transitions possible. We consider in the following a
setup for which the incident pulse polarization and the geometry of the magnetic field, when
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Figure 7. Intensity of the coherent scattered light for a single nuclear transition in the
absence of hyperfine splitting and for an effective thickness of ξ = 40 (solid red line). In
the presence of the magnetic field, the two 1m = 0 transitions interfere and introduce a
quantum beat in the spectrum (green dotted line).

present, allow only for the driving of the two 1m = 0 transitions. As further parameters, the
magnetic field intensity of B = 17.2 T and an effective thickness for the two-level nuclear
system of ξ = 40 are envisaged. The hyperfine splitting effectively produces in this case a
shift to a smaller value of ξ since the ground state population distributes half-half over the
two hyperfine-split ground states with mg = −1/2 and 1/2. This is illustrated by the shapes of
the dynamical beat in the NFS time spectra for the two cases in the presence and absence of
the magnetic field presented in figure 7. The envelope of the quantum beat follows here the
dynamical beat corresponding to ξ = 20.

We now attempt to switch between the degenerate and non-degenerate nuclear level
systems by turning the magnetic field on or off. Coherent storage of nuclear excitation has been
theoretically shown to be possible when the magnetic field present at t = 0 when the incident
SR or XFEL pulse arrived is switched off at certain times. A by-product of the coherent storage
is that the NFS signal appears to be shifted backwards in time. Here, we investigate the opposite
situation. Initially, the incident pulse hits the 57Fe sample in the absence of any hyperfine
magnetic field. The magnetic field is switched on later, in our first example at t0 = 50 ns, when
the minimum of the dynamical beat is reached. Quantum beats then appear in the NFS spectrum
as a result of the two hyperfine transitions that can constructively or destructively interfere. This
situation is illustrated in figure 8(a) by the black line. The signal for t < 50 ns can be described
by ξ [J1(2

√
ξ0t)]2 e−0t/(0t) where ξ = 40. Later on, after the hyperfine magnetic field has

been switched on, the envelope illustrated in figure 8(b) by the red curve can be described as
ξ ′[J1(2

√
ξ ′0(t + t0))]2 e−0t/(0(t + t0)) where ξ ′

= ξ/2. The comparison between the case with
magnetic field at all times and magnetic field only after t = 50 ns is presented for the NFS
spectra and the real and imaginary parts of the coherence term ρ42 in figures 8(a), (c) and (d).

The surprising feature of the two NFS spectra in the presence of magnetic field in figure 8
is that the system dynamics, including both the scattered signal and the coherence terms, is
identical and just shifted in time up to the effect of the exponential spontaneous decay. Indeed, a
numerical comparison of the unperturbed and shifted spectra shows that they coincide when
considering the 50 ns time shift and accounting for the corresponding spontaneous decay.
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Figure 8. NFS time spectra ((a), (b)) and the real (c) and imaginary (d) parts of the
coherence term ρ42. The dashed green line depicts the case of scattering in the presence
of a magnetic field at all times, while the black line presents the case of the magnetic
field being switched on rapidly at t = 50 ns. Correspondingly a 50 ns shift of the signal
can be observed. The red solid line in (b) illustrates for comparison the dynamical beat
envelope for ξ = 20 as discussed in the text.
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Figure 9. NFS time spectra for a hyperfine splitting constant in time (green dashed
line) compared to the switching scheme turning the magnetic field on (t1 = 105 ns), off
(t2 = 145 ns), and on again (t3 = 251 ns), described in the text (black line).

The turning on of the magnetic field after the incident radiation pulse arrived thus displaces the
signal forward by the same time interval 1t = 50 ns compared to the spectrum with constant
hyperfine splitting. This is the opposite effect compared to the coherent photon storage presented
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Figure 10. Sketch of the lighthouse setup for the coherent storage of hard x-ray single
photons. (a) Bird view of the lighthouse setup. Gray area depicts the side view of
the rotor rotating with angular frequency R, the two red wide arrows illustrate the
regions with confined static magnetic field B and the blue arrows the trajectories of
SR and emitted single hard x-ray photons. The light green rectangles depict snapshots
of the rotating 57Fe target attached on the inner surface of the rotor. (b) The geometric
arrangement of the lighthouse scheme.

in [29]. In order to demonstrate this, we design a succession of four manipulations on the
magnetic field in order to produce the forward shift of the signal and the coherent storage.
The results are illustrated in figure 9. The incident pulse reaches the nuclear sample at t0 = 0
when there is no magnetic field present and no hyperfine splitting in the sample. Later on, at
t1 = 105 ns, the magnetic field is switched on rapidly and the quantum beats occur. At a later
time, when a quantum beat minimum is reached (t2 = 145 ns), the magnetic field is switched off
again and coherent storage [29] is achieved. The effect of the coherent storage is to shift now the
signal backwards, i.e. toward longer scattering times, thus canceling the effect of the first signal
shift forward in time. Finally, at t3 = 251 ns the magnetic field is switched on and we retrieve
the NFS signal which matches exactly the situation when the magnetic field was on during the
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whole scattering period, as shown in figure 9. The shifts forwards and backwards in time cancel
each other since t0 − t1 ' t3 − t2. We would like to emphasize here that, just as in the case of
coherent photon storage [29], shifting the signal forwards in time occurs preserving the phase
information, i.e. we witness the phase-sensitive shift of the signal in time.

Thus, temporal signal control can be achieved via fast switching on and off of the magnetic
field. The experimental challenges for the control on ns time scale of strong magnetic fields
have been first addressed in [29]. The most promising solution involves a material with no
intrinsic nuclear Zeeman splitting like stainless steel Fe55Cr25Ni20 [42, 54]. The challenge is
to turn off and on the external magnetic fields of few Tesla on the ns time scale. According
to the calculations presented in [29], the raising time of the B field should be shorter than
50 ns (the raising time was considered 4 ns for all presented cases). This could be achieved
by using small single- or few-turn coils and a moderate pulse current of approx. 15 kA from
low-inductive high-voltage ‘snapper’ capacitors [55]. Another mechanical solution, e.g. the
lighthouse setup [56] could be used to move the excited target out of and into a region with
confined static B field. The nuclear lighthouse setup is based on a rotating sample. This changes
the direction of the coherently emitted photon which is always in the forward direction with
respect to the sample, thus explaning the name ‘lighthouse effect’. The rotation can be used to
bring the sample in and outside a region with confined static magnetic field. The switching time
is then given by the time needed for the rotation of the sample from the edge of the confined
magnetic field region to the outside, magnetic-field free region. With the setup illustrated in
figure 10, we estimate that a rotor with rotational frequencies R of up to 70 kHz and a diameter
of few mm [56] is fast enough to rotate the sample out a depth of few µm in a few tens of
ns. If mastered, this fast magnetic-field switching would allow elaborated coherent control over
the nuclear excitation in NFS and accordingly over the dynamics of single x-ray photon wave
packets.

4. Conclusions

Nuclei, although typically difficult to drive with electromagnetic fields, may be the key to
coherently control single x-ray photons in a NFS setup. Accordingly, means to coherently
control the x-ray quanta may have a great potential for exciting quantum applications. Here,
we have investigated theoretically two advanced field-control schemes to enhance, suppress or
shift in time the single x-ray photon signal. Our theoretical approach relies on the MBE, which
are computationally advantageous and allow the straightforward treatment of time-dependent
perturbations in the resonant propagation of light through the nuclear medium. We have shown
that the simultaneous propagation of two pulses through the same nuclear sample can lead to
the transfer of signal intensity between the two, depending on the corresponding intensities and
time delay between the pulses. Thus, the presence of a strong pulse, for instance produced by
the XFEL, can lead to the enhancement or suppression of the signal of a weaker excitation,
potentially comprising a single resonant x-ray photon. Furthermore, the signal of such a weak
excitation can be shifted forward in time by the alternation between scattering intervals in
the presence and absence of a hyperfine magnetic field. This is the inverse effect of coherent
photon storage and may become a valuable technique if single x-ray photons are to become the
information carriers in future photonic devices.
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Appendix. The MBE for circular polarization

A circularly polarized incident pulse will drive either the 1m = me − mg = 1 (this field is
denoted below by �+) or the 1m = me − mg = −1 (respectively �−) transitions between the
two ground state and four excited state hyperfine levels. Using the level notations defined in the
text in section 1, we obtain the Bloch equations

∂tρ11 = 0(C2
14ρ44 + C2

15ρ55 + C2
16ρ66) −

i

2
[C14(�

−

p ρ14 − c.c.) + C16(�
+
pρ16 − c.c.)] ,

∂tρ22 = 0(C2
23ρ33 + C2

24ρ44 + C2
25ρ55) −

i

2
[C23(�
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pρ25 − c.c.)] ,
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2
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2
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−
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2
C25�

+
pρ35 ,

∂tρ33 = −C2
230ρ33 +

i

2
C23(�

−

p ρ23 − c.c.) ,

∂tρ41 = −
1

2
(2i1p,4→1 + C2

140 + C2
240)ρ41 −

i

2
C14�

−

p (ρ44 − ρ11) −
i

2
C16�

+
pρ46 ,

∂tρ44 = −(C2
14 + C2

24)0ρ44 +
i

2
C14(�

−

p ρ14 − c.c.) , (A.1)
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