X-ray interaction with Mössbauer nuclei

?

Superradiance in atoms

Many atoms are in the excited state, we don't know which one decays ...

Internuclear distance comparable to the wavelength

 $\lambda \simeq d$

Only one nucleus excited throughout the sample, but we do not know which one!

Privileged directions

$$|\Psi\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} e^{i\vec{k}\vec{r}_{i}} |g_{1},\dots,g_{i-1},e_{i},g_{i+1},\dots,g_{N}\rangle$$

$$e^{-N\gamma t}$$

The phases add up constructively for

the Bragg direction in single crystals

 $\lambda = 2d\sin\theta$

Thin vs. thick

Forward scattering on thick target

- Many eigenmodes are excited
- Complicated time spectra

Grazing incidence on thin target

- Structured target effective Bragg case
- Selective excitation of a single eigenmode
- Purely exponential decay

Nuclear forward scattering - thick samples

Synchrotron radiation

Nuclear Forward Scattering (NFS) of Synchrotron Radiation

nuclear condensed matter physics based on the Mössbauer effect

```
MHz repetition rate
10<sup>9</sup> photons/s after monochromator
meV pulse width
nuclear width approx. 5 neV
```

WEAK EXCITATION – A SINGLE RESONANT PHOTON PER PULSE AT MOST!

Maxwell-Bloch equations

In both cases, classical fields although single photons! Theory describes surprisingly well the experiments!

W.-T. Liao, AP and C. H. Keitel, Phys. Rev. Lett. 109, 197403 (2012) X. Kong, W.-T. Liao and AP, New J. Phys. 16, 013049 (2014)

rotation of the nuclear hyperfine magnetic field

rotation of the nuclear hyperfine magnetic field

y′.

- redistribution of nuclear state population
- the new transition currents interfere

switching at the minima, complete suppression of dominant first order scattering is achieved

Experimental verification:

Control of coherent NFS possible

- The coherent decay is (almost) fully suppressed after switching
- Revival of coherent decay after switching back
- Primary limitation: incoherent decay with natural lifetime

Yu. V. Shvyd'ko et al., Phys. Rev. Lett. 77, 3232 (1996)

No switching

Apply switching Switch back Decay with natural life time

Unary logical operations

Destructive C-NOT

if $C = \pi$: apply IDENTITY if $C = \sigma$: apply NEGATION

- all unary gates can be operated within a single setup
- switching time determines the nature of the gate
- detection of temporally synchronized control photon can be used as triggering signal
- arrival time needs to become polarization-dependent

Gunst, Keitel, Palffy, Sci. Rep. 6, 25136 (2016)

Destructive C-NOT

switching at $t_0 = 22.3$ ns but only if $C = \sigma$ **Grazing incidence off thin-film nanocavities**

Thin-film x-ray cavities

- Grazing incidence, detect reflectivity
- "resonant angle" from rocking curve
- Nuclear resonances interact with cavity field

Experiments at Petra III or ESRF

courtesy Jörg Evers

R. Röhlsberger et al., Science 328, 1248 (2010)

Collective Lamb shift

Lamb shift – interaction with virtual photons

Collective Lamb shift – interaction with virtual photons between identical nuclei

R. Röhlsberger et al., Science 328, 1248 (2010)

Spontaneously generated coherence

interaction with vacuum modes creates decoherece – spontaneous decay

Spontaneously generated coherence

in very special cases, interaction with vacuum can bring coherence!

$$\vec{d_1} \cdot \vec{d_2} \neq 0$$

 $E_1 \approx E_2$

non-orthogonal dipole moments

approx. same transition energy

K. P. Heeg *et al.*, Phys. Rev. Lett. 111, 073601 (2013)

Spontaneously generated coherence

in very special cases, interaction with vacuum can bring coherence!

$$\vec{d_1} \cdot \vec{d_2} \neq 0$$

$$E_1 \approx E_2$$

non-orthogonal dipole moments

approx. same transition energy

K. P. Heeg *et al.*, Phys. Rev. Lett. 111, 073601 (2013)

Additional coupling between upper levels

Coherent storage of single x-ray photons

* electromagnetically induced transparency (EIT)

Two iron layers

R. Röhlsberger et al., Nature 482, 199 (2012)

Changing the incidence angle

weaker coupling, EIT

Resonance angle

Autler-Townes splitting Off-resonance angle

Changing the incidence angle

stronger coupling, Autler-Townes splitting

Off-resonance angle

Mimicking the strong coupling regime

Mimicking the strong coupling regime

Adiabatical elimination of the cavity modes

Mimicking the strong coupling regime

Coupling between the two layers is stronger than decay rates at a particular angle!

Strong coupling: the interaction between field and system is larger than the system decay rates.

Rabi oscillations of the system, photon is absorbed and re-emitted several times.

Experimental results

The resonance line is split and one can observe Rabi oscillations as known from the strong coupling regime!

Haber, Kong, ... Palffy, Röhlsberger, Nature Photon. 11, 720 (2017)

Summary

very successful quantum optics at a single-photon level

"clean" systems

- unperturbed by environment
- Q factor ratio transition energy/width

Pioneers of x-ray quantum optics

Successful control at single-photon level

- Goal: design and establish new x-ray devices for quantum technologies, also beyond single x-ray photon regime
 Goal: develop such devices for sensing potentially
 - for biological or medical samples

Quantum dynamics with x-rays

MONDAY

Introduction
 X-ray sources
 The XFEL
 Diffraction, form factors

WEDNESDAY

X-ray quiz
 2-level system in semiclassical approximation
 Density matrix formalism
 X-ray atomic laser

FRIDAY

Maxwell-Bloch equations

Examples in nuclear forward scattering

TUESDAY

Index of refraction
 Nonlinear Compton scattering
 Introduction to quantum optics

THURSDAY

Reload 2-level system
 Coherence and interference effects
 EIT, STIRAP
 Nuclear quantum optics examples

THANK YOU FOR YOUR ATTENTION!