Few slides on Form Factor (courtesy Jörg Evers)

What is the form factor good for?

- ▶ In an experiment, the scattered light intensity is recorded
- This intensity is proportional to |form factor|²
- Thus the scattered light contains information on the Fourier transformation of the structure of the object
- Goal: Obtain 3D structural information with high resolution

Images: Kevin Cowtan's Book of Fourier, Uni York (UK)

Example: Scattering from complex structures

Single helix

Pauling 1951: Proteins form helix Cochran 1952: Calculation of helix diffraction pattern

From "Elements of Modern X-Ray Physics" by J. Als-Nielsen and D. McMorrow

Example: Scattering from complex structures

Double helix

Structure

Experiment

Theory

Watson and Crick 1953: DNA forms double helix Wilkins, Franklin, Gosling, ... 1953: X-ray diffraction experiments

From "Elements of Modern X-Ray Physics" by J. Als-Nielsen and D. McMorrow

How does the structure retrieval work?

I∔

R

Example: Atom

Example: Molecule

Examples from Kevin Cowtan's Book of Fourier, Uni York (UK) http://www.ysbl.york.ac.uk/~cowtan/fourier

Fourier properties

The phase problem

Combine Fourier magnitude of duck with Fourier phase of cat

Measurement gives mostly cat!

The phase problem

Combine Fourier magnitude of cat with Fourier phase of duck

Measurement gives mostly duck!

The phase problem

- After the Fourier-backtransform, the image which contributed the phase dominates the result
- In general: Phases contain most of structural information
- Problem: Diffraction experiments only provide magnitudes, not the phases
- \blacktriangleright \rightarrow Need method to reconstruct phases. This is the phase problem.

One solution: Use reference data

Idea

- Often, part of a structure e.g., half of a molecule are known
- Then, the known part can be used as a model

Combine measured magnitude of cat with phase from model:

Iterative phase retrieval

Make use of constraints in Fourier and real space

- Mathematical properties (e.g. real non-negative density, symmetries)
- Object support / aperture as well-defined area of zero signal
- Oversampling (obtain more data in Fourier space to compensate for loss in phase information)

Basic algorithm

