

Quantum dynamics with x-rays

Adriana Pálffy

Max Planck Institute for Nuclear Physics, Heidelberg

palffy@mpi-hd.mpg.de

Graduate Days October 2018

Historical perspective

1960, T. Maiman, first successful laser

Mutual control of LASER LIGHT and ATOMS

Historical perspective

Spectral analysis à la Bundsen & Kirchhoff (1859)

Full quantum control à la Haroche & Wineland (2012)

Mutual control of LASER LIGHT and ATOMS

The electromagnetic spectrum

Mutual control of LASER LIGHT and ATOMS

The electromagnetic spectrum

Mutual control of LASER LIGHT and ATOMS

Novel coherent sources

DESY Hamburg

LCLS Stanford Higher frequencies: x-, gamma-rays

SACLA Japan

ELI NP Bucharest

What are x-rays good for?

Reveal structure and dynamics of matter with highest spatial and temporal resolution!

1896 W. Röntgen starts the "business"

t=-50fs t=0fs

t=50 fs

Potential for biomolecular imaging with femtosecond X-ray pulses

Richard Neutze*, Remco Wouts*, David van der Spoel*, Edgar Weckert $\dagger \ddagger$ & Janos Hajdu*

* Department of Biochemistry, Biomedical Centre, Box 576, Uppsala University, S-75123 Uppsala, Sweden † Institut für Kristallographie, Universität Karlsruhe, Kaiserstrasse 12, D-76128,

† Institut für Kristallographie, Universität Karlsrühe, Kaiserstrasse 12, D-76128 Germany

Nature 406, 752 (2000)

How do they interact with matter?

- **One atom** The atomic form factor
 - dispersion corrections
 - atomic resonances: electronic and nuclear

X-ray lasers are resonant to nuclear transitions

X-rays...

- Robustness, detection
- Deeper penetration
- Focusing- diffraction limit

Match nuclear transitions! Nuclei are very clean high-Q quantum optics systems – new platform!

TIMELY TO CONSIDER:

Are x-ray photons the information carriers of tomorrow? Can we master the mutual control of x-rays and nuclei?

Special nuclear incentives

GAMMA-RAY LASERS FREQUENCY STANDARDS NUCLEAR ISOMERS

Nuclear isomers – metastable states that store energy over long periods of time

 $\tau \simeq 7$ hours

Coherent control of nuclear transitions

population or depletion of the isomer i.e., "triggering"

NUCLEAR ENERGY

STORAGE

Energy/Mass ratio (kWh/kg)

Special nuclear incentives

GAMMA-RAY LASERS FREQUENCY STANDARDS NUCLEAR ISOMERS

660 000

Quantum dynamics with x-rays

Goal: introduce basic concepts and experimental opportunities on quantum dynamics with x-rays

Contents: X-ray sources Imaging, scattering, diffraction Light-matter interaction Resonant interactions Basics of quantum optics Coherence effects Nuclear forward scattering Storing x-ray photons Nanocavities for x-rays

Quantum dynamics with x-rays

Goal: introduce basic concepts and experimental opportunities on quantum dynamics with x-rays

Contents:

X-ray sources Imaging, scattering, diffraction Light-matter interaction Resonant interactions Basics of quantum optics Coherence effects Nuclear forward scattering Storing x-ray photons Nanocavities for x-rays

How to generate x-rays

The beginnings

Wilhelm Conrad Röntgen (1845 – 1923) Nobel Prize 1901

X-ray "Crookes" tube

X-ray tube

bremsstrahlung from acceleration of electrons in anode

characteristic radiation from excitation of anode atoms

Radiation pattern of Hertzian dipole

Every accelerated charge radiates electromagnetic waves

Larmor formula for the radiated power

$$P = \frac{e^2}{6\pi\varepsilon_0 m^2 c^3} \left(\frac{d\vec{p}}{dt}\right)^2$$

 $\vec{p} =$ momentum

Oscillatory motion: No radiation in direction of the oscillation.

The maximum radiated power is observed perpendicular to the oscillation direction

Radiation pattern of accelerated dipole

Wiggler vs undulator

Wiggler regime: $\alpha > 1/\gamma$

Undulator regime: $\alpha < 1/\gamma$

In the undulator regime the radiation cones overlap and the wave trains can interfere constructively

XFEL vs. conventional undulator

Undulator

- Emissions of a single electron in different periods coherent
- Electrons uncorrelated

FEL

- Emissions of a single electron in different periods coherent
- Emission of different electrons coherent

 $I \sim n_e$

 $I \sim n_e^2$

back-action of field on electrons leads to bunching

courtesy Jörg Evers

Microbunching

- Energy exchange depending on relative phase of electron and field
- Oscillation amplitude depends on electron energy
- This leads to to microbunching of electrons at the light wave length
- Therefore coherent emission of all electrons

Images: Nature Photonics 4, 814 (2010);

Some pictures

SLAC undulators (silver)

undulators magnets

Images: SLAC

More pictures

DESY Hamburg

LCLS Stanford Higher frequencies: x-, gamma-rays

SACLA Japan

ELI NP Bucharest

Petra III

P11

Images: DESY

Beam quality - Brilliance

Beam quality - Coherence

temporal coherence: random fluctuations in the *spacing* of the wavefronts

spatial coherence: random fluctuations in the *shape* of the wavefronts

Coherence for XFEL

"longitudinal"

temporal coherence: random fluctuations in the *spacing* of the wavefronts

spatial coherence: random fluctuations in the *shape* of the wavefronts

Some photons on diffraction

X-rays

Ē

Protein crystal: Lysozyme (enzyme from egg white)

Carbon: Grey Nitrogen: Blue Oxygen: Red Sulphur: Yellow

