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Historical perspective

1960, T. Maiman, first successful laser Optical, IR

Mutual control of LASER LIGHT and ATOMS

Revolutionized atomic physics, technology and metrology!



Historical perspective

Spectral analysis
a la Bundsen & Kirchhoff
(1859)

Full quantum control
a la Haroche & Wineland
(2012)

Mutual control of LASER LIGHT and ATOMS

Revolutionized atomic physics, technology and metrology!



The electromagnetic spectrum
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Novel coherent sources

LCLS Stanford

Higher frequencies:
X-, gamma-rays

CLA Japan o ELI NP Bucharest




What are x-rays good for?

Reveal structure and dynamics of matter with highest spatial and temporal resolution!

t=-50fs t=0fs t=50fs

1896 W. Rontgen
starts the “business”

Potential for hiomolecular imaging
with femtosecond X-ray pulses

Richard Neutze*, Remco Wouts*, David van der Spoel*, Edgar Weckerti{
& Janos Hajdu*

* Department of Biochemistry, Biomedical Centre, Box 576, Uppsala University,
§-75123 Uppsala, Sweden
T Institut fiir Kristallographie, Universitiit Karlsruhe, Kaiserstrasse 12, D-76128 ,

Germany

Nature 406, 752 (2000)
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How do they interact with matter?

A free electron

;

One atom

The atomic form factor
» dispersion corrections
e atomic resonances: electronic and nuclear

A Optical laser fields
Electron ¢ eV — Control dynamics of outer electrons
shells
keV Hard x-rays
- Excite/ionize core electrons
v

MeV Very hard x-rays/y-rays
—> Excite nucleus

Nucleus .. .
: keV » Mossbauer isotopes




X-ray lasers are resonant to nuclear transitions

X-rays...

@ Robustness, detection

@ Deeper penetration

@ Focusing- diffraction limit X-Ray

X-Ray

Match nuclear transitions!
Nuclei are very clean high-Q quantum optics systems — new platform!

TIMELY TO CONSIDER:

Are x-ray photons the information carriers of tomorrow?
Can we master the mutual control of x-rays and nuclei?



: : : GAMMA-RAY LASERS
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Quantum dynamics with x-rays

Goal: introduce basic concepts and experimental
opportunities on quantum dynamics with x-rays

Contents:

X-ray sources

Imaging, scattering, diffraction
Light-matter interaction
Resonant interactions

Basics of quantum optics
Coherence effects

Nuclear forward scattering
Storing x-ray photons

Nanocavities for x-rays
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How to generate x-rays



The beginnings

X-ray “Crookes” tube

(1845 — 1923)
Nobel Prize 1901




X-ray tube

bremsstrahlung from acceleration
of electrons in anode

characteristic radiation from
excitation of anode atoms
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Radiation pattern of Hertzian dipole
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Every accelerated charge radiates
electromagnetic waves

Larmor formula for the radiated power

2
P e (4P
6re,m’c’ \ di

p = momentum

Oscillatory motion:
No radiation in direction of the

oscillation.

The maximum radiated power is
observed perpendicular to the
oscillation direction



Radiation pattern of accelerated dipole

Lorentz transformation
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Wiggler vs undulator

Wiggler regime: o> 1/y

Undulator regime: a < 1/y

In the undulator regime the radiation
cones overlap and the wave trains can
interfere constructively

Top view
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XFEL vs. conventional undulator

Undulator FEL
> Emi.ssions of a.single electron P Emissions of a single electron
in different periods coberent in different periods coherent
P Electrons uncorrelated P Emission of different electrons
coherent

VA AVAVAVAVA

¢ have random phase with light

electrons “bunch” to same phase
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€

courtesy Jorg Evers



Microbunching

P Energy exchange depending
on relative phase of electron
and field

P Oscillation amplitude
depends on electron energy

P This leads to to microbunching
of electrons at the light wave
length

P Therefore coherent emission
of all electrons

Incoherent emission: Coherent emission:
electrons randomly phased electrons bunched at
radiation wavelength

Images: Nature Photonics 4, 814 (2010);



Some pictures

undulators magnets

Images: SLAC



More pictures

LCLS Stanford

Higher frequencies:
X-, gamma-rays
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Images: DESY
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Beam quality - Brilliance

Peak brilliance [Photons/(s mrad” mm- 0.1% BW)]
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Beam quality - Coherence

<111 >
temporal coherence: random fluctuations spatial coherence: random fluctuations
in the spacing of the wavefronts in the shape of the wavefronts
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Coherence for XFEL
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longitudinal “transversal”
temporal coherence: random fluctuations spatial coherence: random fluctuations
in the spacing of the wavefronts in the shape of the wavefronts
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Some photons on diffraction

X-rays

Protein crystal:
Lysozyme
(enzyme from
egg white)

Carbon: Grey
Nitrogen: Blue
Oxygen: Red
Sulphur: Yellow
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