# Asteroseismology Solar-like oscillators and synergies



### Inclination $= 90^{\circ}$



time

© Andrea Miglio University of Birmingham, UK

### Rotation in red giants



### Rotation in red giants



### **Observed core rotation**



Mosser et al. 2012

### Predicted core rotation



Cantiello et al. 2014

### Suppressed dipole modes



Mosser et al. 2011

### Suppressed dipole modes



Stello et al. 2016

### Suppressed modes: magnetic greenhouse



Fuller et al. 2015

## Testing asteroseismology

### Testing asteroseismic radii



Huber et al. 2012

### **Testing scaling relations**



### **Testing asteroseismic densities**



$$\rho_{\star,\text{transit}} = \frac{3\pi}{GP^2} \left(\frac{a}{R_{\star}}\right)^3$$

Circular orbit!

Huber et al. 2015

### Halo stars



Epstein et al. 2014

### C-D Diagram



### Stellar parameters with Machine Learning



# What is the intrinsic accuracy of age determinations?

| Parameters                   |                                 | $\mu(\epsilon)  [{ m Gyr}]$ |
|------------------------------|---------------------------------|-----------------------------|
| $\langle r_{02}  angle$      | $ u_{ m max}$                   | 0.642                       |
| $\langle r_{02} \rangle$     | $\log g$                        | 0.683                       |
| $\langle r_{13} \rangle$     | $ u_{ m max}$                   | 0.711                       |
| $\langle r_{02} \rangle$     | $\langle \Delta  u_0 \rangle$   | 0.694                       |
| $\langle \Delta  u_0  angle$ | $\langle \delta  u_{02}  angle$ | 0.701                       |
| $\langle r_{02} \rangle$     | $\langle \delta  u_{02}  angle$ | 0.701                       |
| $PC_2$                       | $PC_8$                          | 0.767                       |
| $PC_2$                       | $PC_4$                          | 0.762                       |
| $\log g$                     | $\langle \Delta  u_0  angle$    | 1.29                        |
| log g                        | $T_{ m eff}$                    | 1.53                        |

Angelou et al. (2017)

### **Stellar inversion**



Bellinger et al. submitted

Saskia Hekker

### **Stellar inversion**



Bellinger et al. submitted

### Stellar inversions

The problem of deducing small differences in structure between a star and a sufficiently close model by comparison of their mode frequencies.

Saskia Hekker

### **Stellar inversion**



Bellinger et al. submitted

### **Stellar inversion**



Bellinger et al. submitted

## SYNERGIES

### Hale cycle



Created by E. Forgacs-Dajka



Bohm-Vitense 2007, ApJ 657, 486

### Effects on stellar properties

- Perturbations induced by the magnetic fields in the outer parts of the star influence the oscillation cavity and thus the frequencies with high upper-turning points.
- Magnetic structures are strong absorbers of p-mode oscillations by diminishing the turbulent velocities in a convective unstable layer affecting the driving of the modes.

Asteroseismology

Saskia Hekker

Sun



Saskia Hekker

### Sun: second dynamo...?



Broomhall et al. 2012, MNRAS 420, 1405

HD 49933



### Exoplanets





### **Planet radius**



### **Planet composition**



### Kepler 444



Teff ~ 5000K, [Fe/H] ~ -0.6, high proper motion!Asteroseismology + Spectroscopy: $R = 0.75 + /-0.01 R_{\odot}$ Campante et al. 2015 $M = 0.76 + /-0.04 M_{\odot}$ Age = 11.2 + /-0.9 Gyr

### Kepler 444













Mercury Mars

Earth

# 11.2 Gyr



### Obliquity

### Angle between the **spin** and **orbital** vectors




# Inclination $= 90^{\circ}$



time

© Andrea Miglio University of Birmingham, UK

## Obliquity



#### Asteroseismology

### Obliquity



#### **Obliquity: Kepler 56**



~50 individual frequencies detected

mixed l=1modes are split into triplets by rotation

#### Asteroseismology

# Obliquity





Asteroseismology

Saskia Hekker

### Galactic Archeology

"the study of the formation and evolution of the Milky Way by reconstructing its past from its current constituents"

important parameters:

- position
- distance
- velocity
- chemical composition
- age / evolutionary phase

#### red giants

- many
- intrinsically luminous
- present in all parts of MW
- "direct" probes of M and R through scaling relations



Mathur et al. 2016

#### Ensemble / population studies



# Note of caution: selection effects / observational biases

Selection effects: which fraction of stars are chosen to be observed out of the total number of stars available

Observational biases: to what parameter space the observations are limited due to limitations of instrumentation / observing strategy

#### **Ensemble / population studies**



model

### α-rich young stars



adapted from Martig et al. 2015

Asteroseismology





Miglio et al. 2014

#### **Plato fields**



# SUMMARY

Saskia Hekker

#### Asteroseismology

aster: star seismology: oscillations logos: reasoning

Study of stellar interiors through the analysis of stellar oscillations



Modelling stars: main equations dr  $\frac{1}{dm} - \frac{1}{4\pi r^2 \rho}$ Gm dP $\frac{dm}{dm} - \frac{d\pi r^4}{4\pi r^4}$  $\frac{dL}{dm} = \varepsilon - \left[\frac{du}{dt} - \frac{P}{\rho^2}\frac{d\rho}{dt}\right]$  $\nabla^2 \Phi = 4\pi G\rho$ 

#### Modelling stars: ingredients

- Select EOS
- Select nuclear reactions
- Select opacity tables
- Choose stability criterion (Ledoux or Schwarzschild)
- Define mixing length parameter
- Select appropriate composition
- Choose any additional mixing processes

#### Modelling stars: solar abundance problem



#### **Stellar evolution**

- We know the main equations
- We know the constitutive equations
- We know about the mass, composition and additional mixing processes
- Now we can evolve a star....

#### **Stellar evolution**



#### **Stellar evolution**



Hekker & Christensen-Dalsgaard 2017

# **Theory of Stellar Oscillations**

# Asteroseismology How does it work?

Wave: propagation of information (a perturbation) in space and time

Wave in a supporting medium: material does not need to move from one point of the space to the other to propagate the information



# Asteroseismology How does it work?

Waves propagate within stars

Wave properties (e.g. frequencies) depend on properties of the medium where they propagate (density, pressure, etc.)

Properties = f (interior)

# Asteroseismology How does it work?



One mode  $\Leftrightarrow$  one piece of information

Average information on propagation cavity

With several modes one can hope to get localized information

# **Hydrodynamics**

Following the fluid - Lagrangian description

#### Continuity equation (conservation of mass)





#### Equation of motion (inviscid fluid) (conservation of linear momentum)





- pressure  $\phi$  - Gravitational potential

#### **Energy** equation

(conservation of energy)





-heat supplied /mass *F* -internal energy /mass



 $\Gamma_1; \Gamma_3$  - adiabatic exponents

+ Equation of state

$$\frac{\mathrm{D}\rho}{\mathrm{D}t} + \rho \,\nabla \cdot \,\vec{\mathrm{v}} = 0$$

$$\rho \frac{\mathrm{D}\vec{\mathrm{v}}}{\mathrm{D}t} = -\nabla p - \rho \nabla \phi$$

$$\nabla^2 \phi = 4\pi G\rho$$

 $\Gamma_{1} = \left(\frac{\partial \ln p}{\partial \ln \rho}\right)_{ad} \qquad \qquad \frac{\mathrm{D}q}{\mathrm{D}t} = \frac{\mathrm{D}E}{\mathrm{D}t} + p\frac{\mathrm{D}(1/\rho)}{\mathrm{D}t} =$  $=\frac{1}{\rho(\Gamma_{2}-1)}\left(\frac{Dp}{Dt}-\frac{\Gamma_{1}p}{\rho}\frac{D\rho}{Dt}\right)$ 

#### Summary of perturbed equations

Linear adiabatic pulsation about a static, spherically symmetric equilibrium

$$\rho' + \nabla \cdot (\rho_0 \delta \vec{r}) = 0$$

$$\rho_0 \frac{\partial^2 \delta \vec{r}}{\partial t^2} = -\nabla p' - \rho_0 \nabla \phi' + \rho' \nabla \phi_0$$

$$\nabla^2 \phi' = 4\pi G \rho'$$

$$p' + \delta \vec{r} \cdot \nabla p_0 = \frac{\Gamma_{1,0} p_0}{\rho_0} (\rho' + \delta \vec{r} \cdot \nabla \rho_0)$$

Variables: 4 ( $\varrho$ ', p',  $\phi$ ',  $\delta \mathbf{r}$ )

**Equations:** 4

Thus: system of equation is closed, so far as equilibrium quantities are known.

=> can solve it to get solutions for the 4 variables.

### Equations for the depth dependent amplitudes

$$\begin{aligned} \frac{d\xi_r}{dr} &= -\left(\frac{1}{\Gamma_{1,0}p_0}\frac{dp_0}{dr} + \frac{2}{r}\right)\xi_r + \left(\frac{S_l^2}{\omega^2} - 1\right)\frac{1}{c_0^2\rho_0}p' + \frac{l(l+1)}{r^2\omega^2}\phi' \\ \frac{dp'}{dr} &= \rho_0(\omega^2 - N_0^2)\xi_r - \rho_0\frac{d\phi'}{dr} + \frac{1}{\Gamma_{1,0}p_0}\frac{dp_0}{dr}p' \\ \frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d\phi'}{dr}\right) &= 4\pi G\left(\frac{p'}{c_0^2} + \frac{\rho_0N_0^2}{g_0}\xi_r\right) + \frac{l(l+1)}{r^2}\phi' \end{aligned}$$

Equations depend on l, but not on m

 $\Rightarrow$  In a spherically symmetric star, the eigenvalues are independent of *m* 

$$ω = ω(n, I, \varkappa)$$

Note: That is not the case if the star rotates or has a magnetic field, braking the symmetry.

# Spherical Harmonics $Y_l^m$

l – angular degree: the number of nodes on the sphere

*|m|*=2



|m|=5

Note:  $|m| \leq l$ 

m - azimuthal order: |m| =number of nodes along the equator => orientation on the sphere

#### adapted from Aerts et al. 2010

m=0



|m|=2

# Trapping of oscillations



### Trapping of oscillations

The case of an evolved star

Propagation diagram for the sun and a subgiant star



#### Why do stars oscillate?

- convective outer layers in which stochastic excitation of oscillations takes place
- some outer layers act as a heat engine: partial ionisation zones absorb and accumulate energy generated in the stellar interior (opacity mechanism)
- forced oscillations may occur due to tidal effects in close binaries





Excitation mechanism: κ mechanism

Restoring force: pressure

Typical periods: 5-20 mins

**Evolutionary phase: MS** 

Mass range: 1.5-2.0 M<sub>Sun</sub>

Highly magnetic stars





• Frequency resolution in the Fourier power power spectrum is reciprocal of total timespan T of timeseries:

$$\delta v = \frac{1}{T}$$

- Nyquist frequency: highest frequency at which one can reliably obtain results depends on the time sampling δt:

$$v_{Nyq} = \frac{1}{2\delta t}$$
# Mode identification through line profile variations



# **Solar-like oscillations**



Hekker & Mazumdar 2014

Red giant



Hekker & Mazumdar 2014

# **Period spacing**



Bedding.. Hekker et al. 2011, Nature

### Rotation in red giants



## Suppressed dipole modes



Stello et al. 2016

# **Testing scaling relations**



# What is the intrinsic accuracy of age determinations?

| Parameters                   |                                 | $\mu(\epsilon)  [{ m Gyr}]$ |
|------------------------------|---------------------------------|-----------------------------|
| $\langle r_{02}  angle$      | $ u_{ m max}$                   | 0.642                       |
| $\langle r_{02} \rangle$     | $\log g$                        | 0.683                       |
| $\langle r_{13} \rangle$     | $ u_{ m max}$                   | 0.711                       |
| $\langle r_{02} \rangle$     | $\langle \Delta  u_0 \rangle$   | 0.694                       |
| $\langle \Delta  u_0  angle$ | $\langle \delta  u_{02}  angle$ | 0.701                       |
| $\langle r_{02} \rangle$     | $\langle \delta  u_{02}  angle$ | 0.701                       |
| $PC_2$                       | $PC_8$                          | 0.767                       |
| $PC_2$                       | $PC_4$                          | 0.762                       |
| $\log g$                     | $\langle \Delta  u_0  angle$    | 1.29                        |
| log g                        | $T_{ m eff}$                    | 1.53                        |

Angelou et al. (2017)

#### **Stellar inversion**



Bellinger et al. submitted

Saskia Hekker

# Sun: second dynamo...?



Broomhall et al. 2012, MNRAS 420, 1405

#### **Planet radius**



# Galactic Archeology

"the study of the formation and evolution of the Milky Way by reconstructing its past from its current constituents"

important parameters:

- position
- distance
- velocity
- chemical composition
- age / evolutionary phase

# Impact of asteroseismology





