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Why do stars oscillate? 

•  convective outer layers in which stochastic excitation of 
oscillations takes place 

•  some outer layers act as a heat engine: 
    partial ionisation zones absorb and accumulate 
    energy generated in the stellar interior 
    (opacity mechanism) 
•  forced oscillations may occur due to tidal effects 
    in close binaries 
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Heat engine: opacity (κ) mechanism 

How could the opacity increase with compression? 
Kramers law:  
 
 
 
compression: ρ, T increase, opacity decrease 
special circumstances:  

    
partial ionization zones 

 
€ 

κ ∝
ρ
T 3.5
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Heat engine: opacity (κ) mechanism 

hot star Teff = 7500 K: 
He II ionization zone close to the surface ⇒ density to low to 
drive pulsations  
⇒ blue edge instability strip 
 
cool star Teff = 5500 K:  
He II ionization zone deep enough to drive pulsations, BUT 
pulsations damped in outer layers due to convection  
⇒ red edge instability strip 
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Convective blocking 

Convection timescales too slow to respond to pulsations 
! Effective blocking by convection of the luminosity 

perturbation at the base of the convective zone, leading 
to heating in phase with compression 

! Heat-engine 
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Stochastic 'solar-like' oscillations 

  
acoustic energy present in the outer convection zone 
such that the star resonates in some of its natural 
oscillation frequencies, i.e., some of the stochastic  
noise is transferred to energy of global oscillations 
     
⇒ thought to be present in all stars with turbulent outer 

layers, i.e., the Sun, red giants 
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Tidal excitation 

Resonant excitation of free oscillation modes by the tidal 
action of a companion can in principle be an effective 
way to trigger oscillations in binary components. 

Suitable resonances depend on the properties of the 
oscillation modes of the star, the period and eccentricity 
of the orbit and on the component mass and radius. 
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Which stars oscillate? 
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Oscillating stars: solar-like oscillations 
Excitation mechanism: 
Stochastic excitation in 
convective outer regions 
 
Restoring force: pressure 
 
Typical periods: minutes - days 
 
Evolutionary phase: MS, SG, RG 
 
Mass range: low - intermediate 
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Solar-like stars 
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Oscillating stars: γ Doradus stars 
Excitation mechanism: ? 
convective blocking of the radiative 
energy transport due to long 
convective turn-over times in the  
stellar envelope 
 
Restoring force: gravity 
 
Typical periods: 0.5 - 3 days 
 
Evolutionary phase: MS  
 
Mass range: 1.5-1.8 MSun 
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Oscillating stars: δ Scuti stars 

Excitation mechanism: 
κ - mechanism (He II) 
 
Restoring force: pressure 
 
Typical periods: 0.02 - 0.25 days 
 
Evolutionary phase: MS, SG 
 
Mass range: 1.5-2.5 MSun 
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Oscillating stars: rapidly oscillating Ap stars 
Excitation mechanism: 
κ mechanism 
 
Restoring force: pressure 
 
Typical periods: 5-20 mins 
 
Evolutionary phase: MS 
 
Mass range: 1.5-2.0 MSun 
 
Highly magnetic stars 



Saskia Hekker Asteroseismology

Graduate days Heidelberg, 2017 

Oscillating stars: slowly pulsating B stars 

Excitation mechanism: 
κ mechanism (Fe) 
 
Restoring force: gravity 
 
Typical periods: 1-3 days 
 
Evolutionary phase: MS 
 
Mass range: 2-7 MSun 
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Oscillating stars: β Cep stars 

Excitation mechanism: 
κ mechanism (Fe) 
 
Restoring force: pressure 
 
Typical periods: 2-8 hours 
 
Evolutionary phase: MS,G 
 
Mass range: 8-18 MSun 
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Oscillating stars: RR Lyrae stars 

Excitation mechanism: 
κ mechanism (He II) 
 
Restoring force: pressure 
 
Typical periods: 0.3-0.5 days 
 
Evolutionary phase: G 
 
Mass range: 0.6-0.8 MSun 
 
Blazhko effect 
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Oscillating stars: Cepheids 

Excitation mechanism: 
κ mechanism (He II) 
 
Restoring force: pressure 
 
Typical periods: 1-50 days 
 
Evolutionary phase: SG 
 
Mass range: 4-20 MSun 
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Oscillating stars: Mira 

Excitation mechanism: 
κ  mechanism (H I and He II) 
 
Restoring force: pressure 
 
Typical periods: > 80 days 
 
Evolutionary phase: G, SG 
 
Mass range: low - intermediate 
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Oscillating stars: Semi-regular variables 

Excitation mechanism: 
Stochastic excitation in  
convective outer region 
 
Restoring force: pressure 
 
Typical periods: > 80 days 
 
Evolutionary phase: G, SG 
 
Mass range: low - intermediate 
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Oscillating stars: subdwarf B stars (EC14026) 

Excitation mechanism: 
κ mechanism (Fe II) 
 
Restoring force: pressure 
 
Typical periods: 80 - 600 s 
 
Evolutionary phase: SD 
 
Mass range: < 0.5 MSun 
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Oscillating stars: subdwarf B stars (Betsy) 

Excitation mechanism: 
κ mechanism (Fe II) 
 
Restoring force: gravity 
 
Typical periods: 1 hour 
 
Evolutionary phase: SD 
 
Mass range: < 0.5 MSun 
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Oscillating stars: white dwarfs 

Excitation mechanism: 
κ mechanism (DO C/O & DB He 

II) 
convection (DA) 
 
Restoring force: gravity 
 
Typical periods: few minutes 
 
Evolutionary phase: SD 
 
Mass range: ~ 0.6 MSun 
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Doppler measurements 

La Palma                                                                                    
Chili 
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Mechanism: Doppler shift 
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Mechanism: pulsation 
Protatie << Ppulsation  
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Spectroscopy: multi-site campaign 

 
 
 
 

Arentoft et al. 2008 
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Photometry: CoRoT 

•  launched December 26, 2006 
•  27 cm telescope 
•  2 observing modes: 
   - seismology: a few 6-9 mag 
     stars, 30 s integration time 
   - exo-planets: 200000 11-16 
     mag stars, 512 / 32 s inte- 
     gration time 
•  ~150 days observation runs 
•  centre and anti-centre fields 
    of view 
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Photometry: NASA/Kepler 

•  launched March 6, 2009 
•  0.95 m telescope 
•  105 square degree FOV  
      direction Cygnus-Lyra 
•  2 observing modes: 
    - long-cadence, 29.4 
      minute integration time 
      ~ 150 000 stars 
    - short-cadence, 58.8 
      sec integration time 
      512 stars 
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Time series 
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Important “timescales” 

-  Frequency resolution in the Fourier power power spectrum 
is reciprocal of total timespan T of timeseries:  

 

-  Nyquist frequency: highest frequency at which one can 
reliably obtain results depends on the time sampling δt: 

δν =
1
T

νNyq =
1
2δt
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Cancellation effects 

Partial cancellation due to bl,λ:

bl,λ for different l. Lower 3 curves: Teff = 6000 K, log g = 4.0 at U
(full), B (dotted) and V (dashed-dot); 2 upper curves: Teff = 25000 K,
log g = 4.0 at U and B (indistinguishable, dashed) and V (dashed-dot-
dot-dot).
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Fig. 1. The radial velocity time series computed with the optimum-weight technique with one reference spectrum per night. The circles and
crosses denote the observations made with CORALIE and ELODIE respectively.

these stars because both are slowly rotating and thus narrow-
lined red giant stars near the celestial equator. This paper con-
centrates on ε Oph; the results for η Ser will be discussed in
Carrier et al. (2006, in preparation). With the fiber-fed echelle
spectrographs CORALIE on the Swiss 1.2 m Euler telescope
at La Silla, and ELODIE on the French 1.93 m telescope at
the Observatoire de Haute-Provence, we obtained a total of
839 spectra of ε Oph, during 54 nights, and ranging in wave-
length from 388 nm to 682 nm. The exposure time was adapted
from 180 s to 200 s, depending on the air mass, to get a S/N ra-
tio at 550 nm of at least 100 without averaging out a too
large fraction of the pulsation phase. The thorium calibration
spectra were recorded simultaneously with the stellar spectrum
through a second fibre, in order to guarantee a highly accurate
wavelength calibration.

We considered two options to precisely compute the ra-
dial velocity variations. The first option is to cross-correlate
each stellar spectrum with a mask, i.e. a template spectrum
with box-shaped emission lines at the wavelengths of the ab-
sorption lines of interest (see e.g. Baranne et al. 1996). The
second option is the more precise optimum-weight method de-
scribed by Bouchy et al. (2001), which uses a weighted differ-
ence between the stellar spectrum and a reference spectrum to
compute the Doppler velocities. We found, however, that us-
ing only one reference spectrum for the entire dataset did not
yield a lower noise level in the power spectrum than with the
cross-correlation technique. The reason is that the optimum-
weight method assumes no non-linear line-intensity variations
as a function of the Doppler shift. This means that for too
large Doppler velocity variations, such as the one introduced
by the changing motion of the Earth during an observing run,
the quality of the resulting time series degrades. As for the red
giant ξ Hya (Frandsen et al. 2002), we did find a significant
improvement of the noise level when we used one reference
spectrum per night, for which we took the highest S/N spec-
trum of that night. Changing the velocity zero point each night
implies of course a high-pass filter in the frequency domain:
information on long-term variations is unavoidably lost. The
time series computed with the optimum-weight method with
one reference spectrum per night is shown in Fig. 1. In what
follows we will refer to this time series simply as “the” time
series.

3. Global stellar parameters

We first give an overview of the basic stellar parameters
of ε Oph. This will allow us to locate the star in the
HR-diagram. This position and its error box will be useful for
the theoretical modeling in Sect. 5 and can be used as an addi-
tional constraint for further asteroseismic investigations.

In his catalogue of evolved G and K stars, Taylor (1999)
lists the effective temperature Teff = 4855±28 K for ε Oph. On
the other hand, the Teff value estimated from the infrared flux
method by Blackwell & Lynas-Gray (1998), is 4882± 44 K. In
the literature we found the Johnson colours V−K = 2.24±0.03
(Taylor 1999) and B − V = 0.96 ± 0.01 (Simbad, CDS). Using
the former colour with the calibration of Bessell et al. (1998)
leads to Teff = 4847 ± 29 K. The latter colour in combination
with the calibration of Flower (1996) gives Teff = 4920± 25 K.
Using the same colour with the calibration of Houdashelt
et al. (2000) gives the very similar value Teff = 4933 ± 20 K.
Note that all quoted values deviate less than 50 K from the
mean value, which indicates that the random errors are quite
small. The final Teff value we adopt is the mean value Teff =
4887±100 K. The uncertainty quoted is more conservative than
the ones mentioned before, and tries to incorporate a possible
systematic error because of inaccurate stellar atmosphere mod-
els. In addition, it is more in agreement with uncertainties of ef-
fective temperatures of red giants derived from micro-modeling
of ISO-SWS infrared spectra (Decin et al. 2003).

The luminosity can be estimated using the Hipparcos
parallax π = 30.34 ± 0.79 mas, which leads to a dis-
tance of d = 33.0 ± 0.9 pc. Given the visual magnitude
of mV = 3.24 ± 0.02 (e.g. Blackwell et al. 1990), the ab-
solute visual magnitude is therefore MV = 0.65 ± 0.06.
We estimated the bolometric correction BCV in four dif-
ferent ways. The Teff − BCV calibration of Flower (1996)
gives BCV = −0.35 ± 0.07. Interpolation in the the-
oretical tables of Lejeune & Schaerer (2001) leads to
BCV = −0.33± 0.04. Interpolation in the theoretical Teff − BCK

tables of Houdashelt et al. (2000) gives BCK = 1.91± 0.06 and
thus BCV = BCK − (V − K) = −0.33 ± 0.07. The theoretical
BCK − (V − K) calibration of Bessel et al. (1998) implies
BCK = 1.93 ± 0.03 and therefore BCV = −0.31 ± 0.04.
The final value we adopt is BCV = −0.33 ± 0.07 giving a
lower weight to the older calibration of Flower (1996) but
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Fig. 2. Radial velocity time series of two particularly good nights,
clearly showing the oscillations in ε Oph. The circles and crosses de-
note the observations made with CORALIE and ELODIE. The error
bars shown relate to the photon noise, and are therefore lower limits
for the true uncertainty.

being nevertheless conservative. The absolute bolometric
magnitude is therefore Mbol = MV + BCV = 0.32 ± 0.09.
Adopting Mbol,⊙ = 4.746, we thus obtain L/L⊙ = 59 ± 5.

From our CORALIE spectra, we derive v sin i = 3.4 ±
0.5 km s−1.

4. Data analysis

Our dataset is the first high-precision radial velocity time series
of ε Oph, and is also the first dataset to clearly show oscilla-
tions. We only know of two other time series: the photomet-
ric time series of ε Oph of Percy & Shepherd (1992) and the
Hipparcos time series (Perryman et al. 1997). Neither of those
two datasets reveal variations. As we will show later, the ampli-
tudes of the oscillations are so small that for both photometric
datasets the oscillations were likely hidden in the noise.

The most convincing proof of the presence of oscilla-
tions in ε Oph can be seen in the time series themselves.
Figure 2 shows the radial velocity variations on two particularly
good nights (in the sense of S/N and number of data points),
which clearly shows oscillatory behaviour with a frequency
around 60 µHz. These oscillations are also seen in the power
spectrum, as is shown in Fig. 3. Note that the power spectrum
drops to zero at low frequencies. This is a consequence of using
a different reference point for each night which implies high-
pass filtering, as discussed in Sect. 2. For brevity we do not
show the power spectrum of the time series obtained by simple
cross-correlation, but it also clearly shows the same oscillation
bump around 60 µHz.

A noticeable difference between the power spectrum
of ξ Hya presented by Frandsen et al. (2002) and the power
spectrum of ε Oph presented in this paper is the presence of a
dominant peak in the latter.
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Fig. 3. The power spectrum of the time series of εOph shown in Fig. 1.
The power excess around 60 µHz is caused by stellar oscillations.
Note that the drop in power towards low frequencies is a consequence
of choosing a different reference point for each night to compute the
time series. The Fourier transform was normalised with a factor 2/N
where N is the number of data points.

In a first analysis we focus on the auto-correlation of the
power spectrum to search for a large frequency separation. The
auto-correlation of the full power spectrum turns out to be too
noisy to reliably extract any frequency spacing apart from the
11.57 µHz caused by the day-night rhythm of the observations.
This is shown at the top of Fig. 4. We therefore apply thresh-
olding which implies removing all peaks in the power spectrum
lower than a specified threshold T , and computing the auto-
correlation with the remaining N peaks. In Fig. 4 we show
the auto-correlation for different thresholds in the left panel,
and the corresponding thresholded power spectra in the right
panel. Changing the threshold from 7 (m/s)2 to 5 (m/s)2 we
see 5 groups of frequency peaks appear which we have la-
beled (a) to (e). These peaks gradually merge into each other
due to the noise, when the threshold is lowered further to zero.
Peak (e) at ∆νe ≈ 11.6 µHz, obviously represents the frequency
spacing due to one-day aliasing. The other peaks in the auto-
correlation (∆νa ≈ 2 µHz, ∆νb ≈ 4.8 µHz, ∆νc ≈ 6.5 µHz and
∆νd ≈ 9.6 µHz) can be related to each other:

∆νa ≈ ∆νe − ∆νd
∆νb ≈ ∆νe − ∆νc
∆νd ≈ 2∆νb.

This implies that the auto-correlation does not give clear evi-
dence for more than one large frequency separation. Although
the frequency separations at ∆νa ≈ 2.0 µHz and ∆νd ≈ 9.6 µHz
appear “first” in Fig. 4, and they are always more pronounced
than the peaks at ∆νb ≈ 4.8 µHz and∆νc ≈ 6.5 µHz, the follow-
ing simple simulation indicates that they are likely not genuine

De Ridder et al. 2006 
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Classical oscillators 

Nijmegen  University  2008p. 54

First case study: HD 129929 First case study: HD 129929 

Aerts et al. 2003 
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Mode identification in classical pulsators 
Variation as function of wavelength:

Due to shape of Black Body Radiation:
pulsation amplitude will always be larger in blue than in red

Determine the monochromatic amount of energy radiated by the star as
measured by a distant observer: E(λ, t) = A(λ) exp(−iωt),
where the equilibrium value is defined as

E(λ) =
R2

2πd2

∫ 1

0

∫ 2π

0

F+
λ hλ(µ

′)µ′dµ′dφ′

4
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Photometric bands 
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Mode identification in classical pulsators 

Examples of observed amplitude ratios:

Amplitude ratios depend on the kind of mode, but more importantly also on
the effective temperature of the star (strong flux dependence!)

6
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Mode identification through line profile variations 

Leuven and Nijmegen Universitiesp. 9

Theoretical computation of LPVsTheoretical computation of LPVs

Divide stellar surface into 
large number of segment,
typically > 5000

Compute for each 
segment: pulsation and 
rotation velocity, intensity

Project onto the 
line-of-sight

Add up all contributions
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Mode identification through line profile variations 
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β Cephei 

Mathias et al. 2004 



δ Scuti 

Mathias et al. 1997 
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line shape fits 
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Amplitudes and phases across the line profile 

 
 
 
 
 
 
 
 

 l=2,m=0      l=2,m=1               l=2,m=2 
Hekker et al. 2006  
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Application to Beta CepheiApplication to Beta Cephei
Beta Cephei has:

dominant radial mode

with amplitude

 ~ 20 km/s

second low-amplitude 

mode: discrimination

between l=1,2 is difficult

but m=+1

Veq ~ 25 to 30 km/s

(Telting et al. 1997)

Telting et al. 1997 
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Solar observations 
3

Figure 1: Comparison of data from VIRGO (green channel) and GOLF. The power is
normalized such that the p-mode amplitude for l = 1 at peak power (near 3.1 mHz)
is one for both VIRGO and GOLF. The background is dominated by granulation
and activity. A simple Harvey model is used to describe the background (the different
components shown as dashed curves). The diagram also contains the smoothed power
for both VIRGO and GOLF. At high and low frequencies the p-mode signal-to-noise
ratio (SNR) is almost the same for GOLF and VIRGO. One should also note that the
intensity background at frequencies above 3–4 mHz is decreasing with frequency to
the fourth power (which is not included in the Harvey model).

the other hand, observations over several months of a given star will allow very
detailed investigations of stellar internal properties, utilizing also the expected
reasonable SNR for even relatively low-order p modes whose frequency can be
determined with very high accuracy. For many of the SONG targets it will also
be possible to determine radii from interferometric observations which is a great
help in the asteroseismic analysis.

Network baseline

To investigate whether a network such as SONG is realistic a conceptual design
study has been carried out during 2006 at the University of Aarhus. Here we
briefly describe the current (autumn 2006) baseline for SONG. One of the main
risks associated with the construction of a network is the running costs and up-
time of the instruments, and thus it is necessary to pay close attention to these

Grundahl et al. 2007 
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Asymptotic approximation: high-order p modes 
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Solar-like oscillations 

large frequency separation 

small 
frequency 
separation 

νmax 
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Scaling relations 
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Scaling relations 
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Reference of scaling relation 
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Guggenberger et al. 2016 
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Solar-like oscillations 

large frequency separation 

small 
frequency 
separation 

νmax 

Hekker & Mazumdar 2014 
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Asymptotic approximation: high-order p modes 
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C-D Diagram 
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BiSON - Model S
δν = a-1ν

-1/I
δν = a3ν

3/I  (eqn 2)
δν = (a-1ν

-1+a3ν
3)/I  (eqn 3)

δν = aνb (Kjeldsen et al. 2008)
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Fig. 1. Frequency di↵erences between a standard solar model (Model
S, Christensen-Dalsgaard et al. 1996) and observations of low-degree
modes (`  3) by BiSON. The lines show fits made using an inverse
term (dashed), cubic term (dotted) or both terms (solid). The fit with the
inverse term is quite poor, with the cubic term much better and with both
terms somewhat better still. The dot-dashed lines show a power law, fit
to nine radial orders about ⌫max = 3090 µHz, as is used in the frequency
correction proposed by Kjeldsen et al. (2008).

of frequency di↵erences. Otí Floranes et al. (2005) computed the
structural sensitivity kernels for these ratios and demonstrated
that they are indeed more sensitive to the stellar core. Because
this method uses di↵erences and ratios, there is some loss of
information, but the advantage is that stellar model parameters
should not be biased by uncertainty at the surface.

Third, Gruberbauer et al. (2012) proposed a Bayesian method
in which an additional frequency o↵set parameter is introduced
for each oscillation mode and then marginalized against some
prior. They used their method to compare the statistical evidence
for solar models with di↵erent input physics (Gruberbauer &
Guenther 2013), and to model a number of Kepler targets (Gru-
berbauer et al. 2013). The method appears successful in solar
modelling, but, as noted by Gruberbauer et al. (2012) in their
closing sections, the results appear biased towards larger masses
when too few low-frequency modes are available.

Motivated by a lack of a leading method for modelling surface
e↵ects, we propose here a new method in which the surface e↵ects
are modelled by one or both of terms proportional to ⌫�1/I and
⌫3/I, where ⌫ is the frequency of an oscillation mode and I its
corresponding inertia, normalized by the total displacement at the
photosphere. In Section 2, we motivate these parametrizations and
demonstrate the quality of fits to the di↵erences between modelled
and observed low-degree oscillations in the Sun. In Section 3, we
test the robustness of the parametrizations against both synthetic
and real solar data. In Section 4, we apply the method to the planet-
hosting CoRoT target HD 52265, with promising results, given
the quality of the fit and consistency with previous results. Finally,
we discuss the performance of the method and its potential flaws.

BiSON - MESA
δν = a-1ν

-1/I
δν = a3ν

3/I (eqn 2)
δν = (a-1ν

-1+a3ν
3)/I  (eqn 3)

δν = aνb (Kjeldsen et al. 2008)
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Fig. 2. Frequency di↵erences between a solar model calibrated with
MESA and observations of low-degree modes (`  3) by BiSON. The
lines show fits made using an inverse term (dashed), cubic term (dotted)
or both terms (solid). The relative performances of the fits is the same as
Fig. 1. The dot-dashed lines show a power law, fit to nine radial orders
about ⌫max = 3090 µHz, as is used in the frequency correction proposed
by Kjeldsen et al. (2008).

2. Modelling and fitting of surface effects

2.1. Parametrizations

Gough (1990) discussed potential asymptotic forms for the fre-
quency shifts observed by Libbrecht & Woodard (1990) over the
solar activity cycle. By considering perturbations near the surface
under a variational principle and taking the asymptotic form of
the displacement eigenfunctions in the evanescent layer, Gough
(1990) concluded that the frequency shifts should generally take
the form (equation 9.3 of Gough 1990)

�⌫ / Q(⌫2)
⌫I , (1)

where Q(x) is a quadratic function in x; ⌫ is the cyclic frequency
of an oscillation mode; and �⌫ is the frequency shift induced by a
perturbation near the stellar surface. The normalized mode inertia
I is defined by (e.g. Aerts et al. 2010, equation 3.140)

I =
4⇡
R

R

0

h
|⇠r(r)|2 + `(` + 1)|⇠h(r)|2

i
⇢r2

dr

M

⇥|⇠r(R)|2 + `(` + 1)|⇠h(R)|2⇤ , (2)

where ⇠r and ⇠h are the radial and horizontal components of the
displacement eigenvector, R the photospheric radius, ⇢ the unper-
turbed stellar density, M the total stellar mass, and ` the degree
of the mode. In the solar models, the mode inertia decreases
rapidly with frequency below about 2000 µHz before levelling
out and reaching a minimum around 4000 µHz. This behaviour
suppresses the magnitude of the frequency shifts at low frequency.

Gough (1990) further argued that a perturbation caused by a
magnetic field concentrated into filaments, which would mostly
modify the sound speed without much a↵ecting the gas density,
would cause a shift proportional to ⌫3/I. This is the same form

Article number, page 2 of 10
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Figure 1: Échelle diagrams comparing GOE evolutionary models of 16 Cyg A (left) and B (center) to

frequencies extracted from Kepler data. For reference, the right panel shows the solar model Model S

(Christensen-Dalsgaard et al. 1996) in comparison with low-degree frequencies of the quiet Sun from BiSON

data (Davies et al. 2014). The dashed line indicates the large frequency separation (�⌫). Open symbols are

model frequencies and filled symbols are observed frequencies. Spherical degrees ` are indicated with color

and shape: 0 (blue squares), 1 (black triangles), 2 (yellow diamonds), and 3 (red circles). Error bars show

1� uncertainties, which in most cases are not visible. Model frequencies significantly differ from observed

frequencies in nearly all cases.

Dalsgaard 1984) as well as neglected treatment of pulsation-convection interaction

(Houdek et al. 2017). These are collectively known as “surface effects,” and the offset

they produce is usually called the “surface term.” For modes of low spherical degree `,

the surface term is a function of frequency alone. There are a number of methods for

correcting the disparities imposed by surface effects, such as those given by Kjeldsen

et al. (2008), Ball & Gizon (2014, hereinafter BG14), and Sonoi et al. (2015). Each of

these methods work by assuming that the frequency offset due to the surface term has

a particular form that can be fitted to the frequency differences and subtracted off.

Even after correction for the surface term, however, differences remain. Figure 2 shows

the remaining discrepancies between mode frequencies of models and observations of

16 Cygni after subtracting off the two-term “BG14-2” surface effect. More than half

of the surface-term corrected mode frequencies still have significant differences with

the observed values. Moreover, the disparities are most significant in the radial and

Bellinger et al. submitted 
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S:  subgiant 
R:  red giant branch star 
f:    helium subflash stage 
C:  red clump 
p2: pre secondary clump 
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•  (acoustic) radius and strength of He II ionisation zone 
•  possible indirect measure of He content 
 

Broomhall et al. 2014 
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FIG. 1.— One solar mass red-giant models considered for a detailed anal-
ysis. (a) Position in the HR diagram: model 1a is on the red-giant branch
just below the luminosity bump and model 1b is between helium flashes.; (b)
and (c) show, respectively, the helium profile and buoyancy frequency in the
inner region of model 1a (solid curve) and model 1b (dashed curve). The
sudden decrease of the buoyancy frequency, at r/R ∼ 0.055 for model 1a
and r/R ∼ 0.135 for model 1b, marks the lower boundary of the convective
envelope in the corresponding model.

most promising from the observational point of view.

2. STRUCTURE OF THE G-MODE CAVITY
Internal gravity waves have frequencies below the buoy-

ancy (or Brunt-Väisälä) frequency and propagate only where
there is no convection. While on the red-giant branch a star
is powered by hydrogen burning in a shell surrounding an in-
nert radiative helium core. The g-mode propagation cavity
extends essentially from the stellar center to the bottom of the
convective envelope. Once stable core-helium burning starts,
the central part of the core becomes convective, reducing the
size of the g-mode cavity. For massive stars the transition
between these two phases is smooth. However, according to
current standard 1D stellar models, in lower-mass stars with a
degenerate helium core, this transition involves a succession
of off-centered helium flashes (Bildsten et al. 2012) (see also
Salaris et al. 2002, for a general overview of red-giant evolu-

tion).
The propagation speed of the gravity waves depends on the

buoyancy frequency. Consequently, variations in the buoy-
ancy frequency inside the g-mode cavity may perturb the pe-
riods of high-radial-order modes away from their asymptotic
value. Sharp variations in the buoyancy frequency during
the red-giant phase usually result from local changes in the
chemical composition. Examples of these variations are il-
lustrated in Figure 1 where we show two red-giant models
at different evolution stages (panel a), prior to and during
the helium-flash phase, respectively, and their corresponding
helium abundances (panel b) and buoyancy frequencies, N
(panel c), for the core region, whereN is defined by the rela-
tion,

N2 = g

(

1

γ1

d ln p

dr
− d ln ρ

dr

)

. (1)

Here, r is the distance from the stellar center in a spher-
ical coordinate system (r,θ,ϕ) and g, γ1, p and ρ are,
respectively, the gravitational acceleration, the first adi-
abatic exponent, the pressure, and the density in the
model. The models were computed with the evolu-
tion codes ASTEC (Christensen-Dalsgaard 2008b) and
MESA (Paxton et al. 2013), respectively. Two spikes are vis-
ible in the buoyancy frequencies. The spikes located at rela-
tive radii of ≈ 0.003 (model 1a) and ≈ 0.005 (model 1b) re-
sult from the chemical-composition variation at the hydrogen-
burning shell. The spike furthest out in model 1a, at a rela-
tive radius of ≈ 0.02, results from strong chemical gradients
left behind by the retreating convective envelope which, dur-
ing the first dredge-up, extended to the region where the gas
had previously been processed by nuclear burning.6 As the
convective envelope retreats, the g-mode cavity expands to
include the sharp variation in the chemical composition; this
eventually disappears, when reached by the hydrogen-burning
shell which is moving out in mass as the helium core grows.
In the case of low-mass stars, this takes place while the star
is still on its way up the red-giant branch, when it reaches
the well-known luminosity bump. The bump shows itself as a
temporary decrease in luminosity when the hydrogen-burning
shell gets close to the sharp variation in the chemical compo-
sition. As a result of the decrease in the average mean molec-
ular weight in the region just above the shell, the luminosity
of the hydrogen-burning shell decreases. This is followed by
a return to increasing luminosity when the hydrogen-burning
shell reaches the sharp variation.7 (Hekker and Christensen-
Dalsgaard, in preparation). Finally, the innermost spike in
model 1b, at a relative radius of ≈ 0.0008, results from
the chemical composition variation caused by a helium flash.
Spikes in the buoyancy frequencymay have yet a different ori-
gin from those discussed above. In particular, they can result
from sharp variations in chemical composition left by retreat-
ing convective cores that were active either during the main
sequence or during the helium-core-burningphase. These will
be illustrated in section 5 where we look at sharp buoyancy
variations along the red-giant evolution more broadly.
6 Since the model does not include diffusion, the dredge-up should leave

behind a discontinuity in composition. However, the numerical treatment of
the mesh in the ASTEC calculation causes numerical diffusion which leads
to some smoothing of the composition profile and hence broadening and low-
ering of the buoyancy-frequency spike, as is evident in Fig. 1. A similar but
less pronounced effect appears to be present in the MESA models.
7 For stars more massive than 2.2M⊙ helium burning is ignited before the

hydrogen-burning shell reaches the discontinuity and no bump occurs on the
red-giant branch.
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FIG. 2.— Asymptotic eigenfunction (solid curve) and the buoyancy frequency (dashed curve) for: (a) model 1a and (b) model 1b. The eigenfunctions have
arbitrary amplitude and are for characteristic eigenfrequencies of these models. The arrows mark the positions of the buoyancy frequency spikes discussed in the
text and seen also in Figure 1c.
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FIG. 3.— Normalized eigenfunction, as function of relative radius,
for the dipole mode with frequency ν = 51.20 µHz, computed with
the pulsation code ADIPLS for our model 1a. The chosen eigenfunction
(r3gρf)1/2Ψ = r3δp has the dimensions of energy and is normalized to
be 1 at its maximum value. The vertical, blue dashed lines show the position
of r2 and r3, the two turning points bounding the evanescent region. The
outermost turning point, r4, is also shown, while the innermost turning point,
r1, is outside the plotted range. The g-mode cavity is located between the
unseen r1 and r2 and the p-mode cavity is located between r3 and r4. The
close-up shows a comparison between the numerical (in black) and analytical
(in yellow) eigenfunctions in a particular region, well inside the g-mode cav-
ity. The continuous yellow curve represents the inner solution derived from
equation (4), while the dashed yellow curve represents the outer solution de-
rived from equation (5).

Since equations (4) and (5) are both valid well inside the
g-mode cavity, they must be the same. The requirement that
they be the same provides the eigenvalue condition (the condi-
tion that determines which oscillation (eigen)frequencies are
allowed by the above boundary conditions). In this case, the
eigenvalue condition translates to

∫ r2

r1

K0dr = π

(

n− 1

2

)

, (6)

where n is a positive integer. Hence, it is this condition that
ensures the two yellow curves match (Figure 3 (inset)). The
phase shift that these solutions show in relation to the full

ADIPLS solution (solid, black curve) is due to their not in-
cluding the coupling to the p modes.
Next, we include the effect from a glitch in the buoyancy

frequency. To keep the toy model simple we will initially
assume that the glitch appears at a single position in radius,
r = r⋆, well inside the g-mode cavity, such that the asymp-
totic solutions (4) and (5) are still valid on either side of it (this
assumption will be relaxed in section 3.2.3). Accordingly, we
represent the glitch by a Dirac delta function, δ, such that the
buoyancy frequency becomes,

N2 = N2
0 [1 +Aδ (r − r⋆)] , (7)

where A has dimensions of length and is a measure of the
strength of the glitch, and N0 is the glitch-free buoyancy fre-
quency. By imposing continuity of the solutions 8 given by
equations (4) and (5) at r = r⋆ we find,

Ψ̃in =
sin

(

∫ r2
r⋆

K0dr +
π
4

)

sin
(

∫ r⋆
r1

K0dr + π
4

) Ψ̃out. (8)

Because under the approximation considered here the glitch
is infinitely narrow, the first derivative of the solution is not
continuous at r = r⋆. The condition to be imposed on the
derivative can be found by integrating the wave equation (2)
once in a finite region of width 2ϵ across the glitch and then
taking the limit when ϵ goes to zero. Accordingly, we have,

∫ r⋆+ϵ

r⋆−ϵ

d2Ψ

dr2
+

∫ r⋆+ϵ

r⋆−ϵ
K2Ψ = 0, (9)

where nowK takes the glitch into account, differing fromK0
only at r = r⋆, where N differs from N0. Well inside the
g-mode cavityK (equation (3), with N replaced by N ) may
be approximated by,

K ≈ LN

ω r
, (10)

and, thus, we find,
∣

∣

∣

∣

dΨout

dr
− dΨin

dr

∣

∣

∣

∣

r⋆

= −AK2
0 (r⋆)Ψ (r⋆) , (11)

8 Strictly speaking, the continuity condition is satisfied by δp. However,
we have verified from the numerical solutions computed with ADIPLS that
this condition is also very closely satisfied byΨ.
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