Asteroseismology Data analysis and diagnostics

Why do stars oscillate?

- convective outer layers in which stochastic excitation of oscillations takes place
- some outer layers act as a heat engine: partial ionisation zones absorb and accumulate energy generated in the stellar interior (opacity mechanism)
- forced oscillations may occur due to tidal effects in close binaries

Heat engine: opacity (κ) mechanism

How could the opacity increase with compression? Kramers law:

$$\kappa \propto \frac{\rho}{T^{3.5}}$$

compression: ρ , T increase, opacity decrease special circumstances:

partial ionization zones

```
Heat engine: opacity (\kappa) mechanism
```

hot star T_{eff} = 7500 K: He II ionization zone close to the surface \Rightarrow density to low to drive pulsations

 \Rightarrow blue edge instability strip

cool star T_{eff} = 5500 K: He II ionization zone deep enough to drive pulsations, BUT pulsations damped in outer layers due to convection \Rightarrow red edge instability strip

Convective blocking

Convection timescales too slow to respond to pulsations

- → Effective blocking by convection of the luminosity perturbation at the base of the convective zone, leading to heating in phase with compression
- → Heat-engine

Stochastic 'solar-like' oscillations

acoustic energy present in the outer convection zone such that the star resonates in some of its natural oscillation frequencies, i.e., some of the stochastic noise is transferred to energy of global oscillations

⇒ thought to be present in all stars with turbulent outer layers, i.e., the Sun, red giants

Tidal excitation

Resonant excitation of free oscillation modes by the tidal action of a companion can in principle be an effective way to trigger oscillations in binary components. Suitable resonances depend on the properties of the oscillation modes of the star, the period and eccentricity

of the orbit and on the component mass and radius.

Which stars oscillate?

Oscillating stars: solar-like oscillations

Excitation mechanism: Stochastic excitation in convective outer regions

Restoring force: pressure

Typical periods: minutes - days

Evolutionary phase: MS, SG, RG

Mass range: low - intermediate

Solar-like stars

Oscillating stars: γ **Doradus stars**

Excitation mechanism: ? convective blocking of the radiative energy transport due to long convective turn-over times in the stellar envelope

Restoring force: gravity

```
Typical periods: 0.5 - 3 days
```

Evolutionary phase: MS

Mass range: 1.5-1.8 M_{Sun}

Oscillating stars: δ Scuti stars

Excitation mechanism:

 κ - mechanism (He II)

Restoring force: pressure

Typical periods: 0.02 - 0.25 days

Evolutionary phase: MS, SG

Mass range: 1.5-2.5 M_{Sun}

Excitation mechanism: κ mechanism

Restoring force: pressure

Typical periods: 5-20 mins

Evolutionary phase: MS

Mass range: 1.5-2.0 M_{Sun}

Highly magnetic stars

Oscillating stars: slowly pulsating B stars

Excitation mechanism: κ mechanism (Fe)

Restoring force: gravity

Typical periods: 1-3 days

Evolutionary phase: MS

Mass range: 2-7 M_{Sun}

Oscillating stars: β Cep stars

Excitation mechanism: κ mechanism (Fe)

Restoring force: pressure

Typical periods: 2-8 hours

Evolutionary phase: MS,G

Mass range: 8-18 M_{Sun}

Oscillating stars: RR Lyrae stars

Excitation mechanism: κ mechanism (He II)

Restoring force: pressure

Typical periods: 0.3-0.5 days

Evolutionary phase: G

Mass range: 0.6-0.8 M_{Sun}

Blazhko effect

Oscillating stars: Cepheids

Excitation mechanism: κ mechanism (He II)

Restoring force: pressure

Typical periods: 1-50 days

Evolutionary phase: SG

Mass range: 4-20 M_{Sun}

Oscillating stars: Mira

Excitation mechanism: κ mechanism (H I and He II)

Restoring force: pressure

Typical periods: > 80 days

Evolutionary phase: G, SG

Mass range: low - intermediate

Oscillating stars: Semi-regular variables

Excitation mechanism: Stochastic excitation in convective outer region

Restoring force: pressure

Typical periods: > 80 days

Evolutionary phase: G, SG

Mass range: low - intermediate

Oscillating stars: subdwarf B stars (EC14026)

Excitation mechanism: κ mechanism (Fe II)

Restoring force: pressure

Typical periods: 80 - 600 s

Evolutionary phase: SD

Mass range: < 0.5 M_{Sun}

Oscillating stars: subdwarf B stars (Betsy)

Excitation mechanism: κ mechanism (Fe II)

Restoring force: gravity

Typical periods: 1 hour

Evolutionary phase: SD

Mass range: < 0.5 M_{Sun}

Oscillating stars: white dwarfs

Excitation mechanism: κ mechanism (DO C/O & DB He II) convection (DA)

Restoring force: gravity

Typical periods: few minutes

Evolutionary phase: SD

Mass range: $\sim 0.6 M_{Sun}$

Doppler measurements

Saskia Hekker

Mechanism: Doppler shift

Spectroscopy: multi-site campaign

Photometry: CoRoT

- launched December 26, 2006
- 27 cm telescope
- 2 observing modes:
 - seismology: a few 6-9 mag stars, 30 s integration time
 - exo-planets: 200000 11-16 mag stars, 512 / 32 s integration time
- ~150 days observation runs
- centre and anti-centre fields of view

Photometry: NASA/Kepler

- launched March 6, 2009
- 0.95 m telescope
- 105 square degree FOV direction Cygnus-Lyra
- 2 observing modes:
 - long-cadence, 29.4 minute integration time
 - ~ 150 000 stars
 - short-cadence, 58.8
 sec integration time
 512 stars

Important "timescales"

- Frequency resolution in the Fourier power power spectrum is reciprocal of total timespan T of timeseries:

$$\delta v = \frac{1}{T}$$

- Nyquist frequency: highest frequency at which one can reliably obtain results depends on the time sampling δt:

$$v_{Nyq} = \frac{1}{2\delta t}$$

Cancellation effects

Window function

Classical oscillators

Mode identification in classical pulsators

Due to shape of Black Body Radiation: pulsation amplitude will always be larger in blue than in red

Photometric bands

Mode identification in classical pulsators

Mode identification through line profile variations

Divide stellar surface into large number of segment, typically > 5000

Compute for each segment: pulsation and rotation velocity, intensity

Project onto the line-of-sight

Add up all contributions

Mode identification through line profile variations

Mathias et al. 1997

Asteroseismology

Amplitudes and phases across the line profile

Hekker et al. 2006

Solar observations

Asymptotic approximation: high-order p modes

$$v_{nl} \approx \Delta v \left(n + \frac{l}{2} + \varepsilon \right)$$
$$\Delta v = \left(2 \int_{0}^{R} \frac{dr}{c(r)} \right)^{-1}$$
$$\Delta v \propto \sqrt{\frac{M}{R^{3}}} \propto \sqrt{\overline{\rho}}$$

Solar-like oscillations

$$v_{\text{max}} \propto v_{\text{ac}} \propto \frac{g}{\sqrt{T_{\text{eff}}}} \propto \frac{M}{R^2 \sqrt{T_{\text{eff}}}}$$

$$\Delta v = \left(2\int_{0}^{R} \frac{dr}{c(r)}\right)^{-1} \propto \sqrt{\overline{\rho}} \propto \sqrt{\frac{M}{R^3}}$$

not model dependent

not depending on chemical composition

not model dependent

not depending on chemical composition

not model dependent

not depending on chemical composition

$$v_{\text{max}} \propto v_{\text{ac}} \propto \frac{g}{\sqrt{T_{\text{eff}}}} \propto \frac{M}{R^2 \sqrt{T_{\text{eff}}}}$$

$$\Delta v = \left(2\int_{0}^{R} \frac{dr}{c(r)}\right)^{-1} \propto \sqrt{\overline{\rho}} \propto \sqrt{\frac{M}{R^3}}$$

not model dependent

not depending on chemical composition

Reference of scaling relation

Reference of scaling relation

Reference of scaling relation

Solar-like oscillations

Hekker & Mazumdar 2014

Asymptotic approximation: high-order p modes

$$v_{nl} \cong \Delta v \left(n + \frac{l}{2} + \varepsilon \right) + l(l+1) \frac{\Delta v}{4\pi^2 v_{nl}} \int_0^R \frac{dc}{dr} \frac{dr}{c}$$

C-D Diagram

Individual frequencies: surface term

Individual frequencies: surface term

Bellinger et al. submitted

Frequency ratios

Asymptotic approximation: high-order g modes

$$\Pi_{nl} \cong \frac{\Delta \Pi}{\sqrt{l(l+1)}} \left(n + \frac{l}{2} + \varepsilon \right)$$
$$\Delta \Pi = \left(2\pi \right)^2 \left(\int_{0}^{R} \frac{N(r)}{r} dr \right)^{-1}$$
$$N^2 \equiv \frac{Gm}{r^2} \left(\frac{1}{\Gamma_1} \frac{d\ln P}{dr} - \frac{d\ln P}{dr} \right)$$

Subgiant

Asteroseismology

Hekker & Mazumdar 2014

Asteroseismology

-Brunt-Väisälä frequency buoyancy cavity

- Lamb frequency acoustic cavity

Hekker & Mazumdar 2014

Evolution

Asteroseismology

-Brunt-Väisälä frequency buoyancy cavity

- Lamb frequency acoustic cavity

Hekker & Mazumdar 2014

Evolution

Red giant

Hekker & Mazumdar 2014

Asymptotic approximation: high-order g modes

$$\Pi_{nl} \cong \frac{\Delta \Pi}{\sqrt{l(l+1)}} \left(n + \frac{l}{2} + \varepsilon \right)$$
$$\Delta \Pi = \left(2\pi \right)^2 \left(\int_{0}^{R} \frac{N(r)}{r} dr \right)^{-1}$$
$$N^2 \equiv \frac{Gm}{r^2} \left(\frac{1}{\Gamma_1} \frac{d\ln P}{dr} - \frac{d\ln P}{dr} \right)$$

Mixed modes

Bedding et al. 2011

Period spacing

- S: subgiant
- R: red giant branch star
- f: helium subflash stage
- C: red clump
- p2: pre secondary clump
- 2: secondary clump
- A: stars leaving the clump moving towards AGB

Mosser et al. 2014

Brunt-Väisälä frequency

Hekker & Christensen-Dalsgaard 2017

မ္မ

Phase method explained

 $M = 1 M_{sun}$ $M = 1.5 M_{Sun}$ $M = 2 M_{Sun}$

Christensen-Dalsgaard, Silva Aguirre, Elsworth, Hekker 2014

Phase method explained

Stellar internal structures

Saskia Hekker

Individual frequencies: acoustic glitches

Miglio et al. 2010

Individual frequencies: acoustic glitches

- (acoustic) radius and strength of He II ionisation zone
- possible indirect measure of He content

Broomhall et al. 2014

Individual frequencies: buoyancy glitches

Cunha et al. 2015

Individual frequencies: buoyancy glitches

Individual frequencies: buoyancy glitch

