Theory of Stellar Oscillations

LINEAR ADIABATIC STELLAR PULSATION

Douglas O. Gough
Institute of Astronomy and
University of Cambridge, CB3 OHA, UK and
Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder CO 80309, USA

Asteroseismology

ASTRONOMY AND ASTROPHYSICS LIBRARY

C. Aerts

J.Christensen-Dalsgaard
D.W. Kurtz

Springer

Brief introduction

Asteroseismology How does it work?

How would you describe a wave?

Asteroseismology How does it work?

Wave: propagation of information (a perturbation) in space and time
Wave in a supporting medium: material does not need to move from one point of the space to the other to propagate the information

Asteroseismology How does it work?

Wave: propagation of information (a perturbation) in space and time
Wave in a supporting medium: material does not need to move from one point of the space to the other to propagate the information

Asteroseismology How does it work?

Waves propagate within stars

Asteroseismology How does it work?

Waves propagate within stars

$$
1
$$

Wave properties (e.g. frequencies) depend on properties of the medium where they propagate (density, pressure, etc.)

Asteroseismology How does it work?

Waves propagate within stars

$$
1
$$

Wave properties (e.g. frequencies) depend on properties of the medium where they propagate (density, pressure, etc.)

$$
】
$$

Properties $=f$ (interior)

Asteroseismology How does it work?

Waves propagate within stars

$$
1
$$

Wave properties (e.g. frequencies) depend on properties of the medium where they propagate (density, pressure, etc.)

$$
\stackrel{\downarrow}{\text { Properties }=f \text { (interior) }}
$$

ᄂ \uparrow \uparrow

Asteroseismology How does it work?

Asteroseismology How does it work?

One mode \Leftrightarrow one piece of information
$>$ Average information on propagation cavity
$>$ With several modes one can hope to get localized information

Asteroseismology: Across the HR diagram

Kurtz 2010 adapted from Aerts et al. 2010

Asteroseismology: Classification

Origin $\left\{\begin{array}{c}\text { Intrinsically unstable } \\ \text { Classical } \\ \text { Intrinsically stable } \\ \text { Solar-like }\end{array}\right.$
Nature $\left\{\begin{array}{c}\text { Acoustic waves } \\ \text { p modes } \\ \text { Internal Gravity waves } \\ \mathrm{g} \text { modes }\end{array}\right.$

Kurtz 2010 adapted from Aerts et al. 2010

Hydrodynamics

Hydrodynamics

Assume that the gas can be treated as a continuum; Thermodynamic properties well defined at each position $\overrightarrow{\mathrm{r}}$

Let ϕ be a scalar property of the gas.

Hydrodynamics

Assume that the gas can be treated as a continuum; Thermodynamic properties well defined at each position $\overrightarrow{\mathrm{r}}$

Let ϕ be a scalar property of the gas.
Two ways to look at time evolution of ϕ :

1. At fixed position $=>$ Eulerian description
2. Following the motion $=>$ Lagrangian description

$$
\begin{aligned}
\frac{D \phi}{D t} & =\frac{\partial \phi}{\partial t}+\nabla \phi \cdot \frac{d \vec{r}}{d t} \\
& =\frac{\partial \phi}{\partial t}+\overrightarrow{\mathrm{v}} \cdot \nabla \phi
\end{aligned}
$$

Hydrodynamics

Continuity equation : The mass variation within a given volume V must equal, with opposite sign, the mass crossing the surface S that encloses the volume V .

Hydrodynamics

Continuity equation : The mass variation within a given volume V must equal, with opposite sign, the mass crossing the surface S that encloses the volume V .

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho \overrightarrow{\mathrm{v}}) \\
& \rho \text { - density }^{\overrightarrow{\mathrm{V}}} \text { - velocity }
\end{aligned}
$$

Hydrodynamics

Continuity equation
(conservation of mass)

$$
\frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho \overrightarrow{\mathrm{v}})
$$

$\boldsymbol{\rho}$ - density $\quad \overrightarrow{\mathbf{v}}$ - velocity

Hydrodynamics

Following the fluid - Lagrangian description
Continuity equation
(conservation of mass)

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \overrightarrow{\mathrm{v}}=0
$$

ρ - density $\quad \overrightarrow{\mathrm{V}}$ - velocity

Hydrodynamics

Following the fluid - Lagrangian description

Continuity equation
(conservation of mass)
ρ - density

- velocity
$\frac{1}{\rho} \frac{\mathrm{D} \rho}{\mathrm{D} t}=-\nabla \cdot \overrightarrow{\mathrm{v}} \Leftrightarrow \frac{1}{V} \frac{\mathrm{DV}}{\mathrm{D} t}=\nabla \cdot \overrightarrow{\mathrm{v}}$
V -volume
\uparrow
Rate of expansion of the fluid

Hydrodynamics

Following the fluid - Lagrangian description
Continuity equation (conservation of mass)
\boldsymbol{O} - density $\quad \overrightarrow{\mathbf{V}}$ - velocity $\quad \mathbf{V}$ - volume $\frac{1}{\rho} \frac{\mathrm{D} \rho}{\mathrm{D} t}=-\nabla \cdot \overrightarrow{\mathrm{v}} \Leftrightarrow \frac{1}{V} \frac{\mathrm{DV}}{\mathrm{D} t}=\nabla \cdot \overrightarrow{\mathrm{v}}$
$\uparrow_{\text {Rate of }}^{\substack{\text { pansion of } \\ \text { he fluid }}}$
=> Acoustic waves require $\operatorname{div} \overrightarrow{\mathrm{v}} \neq 0$

Hydrodynamics

Following the fluid - Lagrangian description
Continuity equation
(conservation of mass)

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \overrightarrow{\mathrm{v}}=0
$$

ρ - density $\quad \overrightarrow{\mathrm{V}}$ - velocity

Hydrodynamics

Following the fluid - Lagrangian description

Continuity equation
(conservation of mass)

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \overrightarrow{\mathrm{v}}=0
$$

$\boldsymbol{\rho}$ - density $\quad \overrightarrow{\mathrm{V}}$ - velocity

Equation of motion: The change in linear momentum of an element of fluid must equal the force acting on it by its surroundings.

Hydrodynamics

Following the fluid - Lagrangian description
Continuity equation
(conservation of mass)

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \overrightarrow{\mathrm{v}}=0
$$

ρ - density $\quad \overrightarrow{\mathbf{V}}$ - velocity

Equation of motion: The change in linear momentum of an element of fluid must equal the force acting on it by its surroundings.

$$
\rho \frac{\mathrm{D} \overrightarrow{\mathrm{v}}}{\mathrm{D} t}=-\nabla p+\rho \vec{g}+\vec{F}
$$

$\bar{g}=-\nabla \phi$

- acceleration of gravity
\vec{F}-other body forces

Hydrodynamics

Following the fluid - Lagrangian description

Continuity equation
(conservation of mass)

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \overrightarrow{\mathrm{v}}=0
$$

\boldsymbol{O} - density $\quad \overrightarrow{\mathbf{V}}$ - velocity

Equation of motion (inviscid fluid) (conservation of linear momentum)

$$
\rho \frac{\mathrm{D} \overrightarrow{\mathrm{v}}}{\mathrm{D} t}=-\nabla p+\rho \vec{g}+\vec{F}
$$

p

- pressure

$$
\vec{g}=-\nabla \phi-\text { acceleration of gravity }
$$

\vec{F}-other body forces

Hydrodynamics

Following the fluid - Lagrangian description

Continuity equation
(conservation of mass)

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \overrightarrow{\mathrm{v}}=0
$$

\boldsymbol{O} - density $\quad \overrightarrow{\mathbf{V}}$ - velocity

Equation of motion (inviscid fluid) (conservation of linear momentum)

$$
\rho \frac{\mathrm{D} \overrightarrow{\mathrm{v}}}{\mathrm{D} t}=-\nabla p+\rho \vec{g}+\vec{F}
$$

p - pressure
$\vec{g}=-\nabla \phi-$ acceleration of gravity
\vec{F}-other body forces

+ Poisson equation

$$
\nabla^{2} \phi=4 \pi G \rho
$$

Hydrodynamics

Following the fluid - Lagrangian description

Continuity equation
(conservation of mass)

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \overrightarrow{\mathrm{v}}=0
$$

ρ - density $\quad \overrightarrow{\mathbf{V}}$ - velocity

Equation of motion (inviscid fluid) (conservation of linear momentum)

$$
\rho \frac{\mathrm{D} \overrightarrow{\mathrm{v}}}{\mathrm{D} t}=-\nabla p+\rho \vec{g}+\vec{X}
$$

P - pressure
$\vec{g}=-\nabla \phi-$ acceleration of gravity
\vec{F}-other body forces

+ Poisson equation

$$
\nabla^{2} \phi=4 \pi G \rho
$$

Hydrodynamics

Following the fluid - Lagrangian description

Continuity equation
(conservation of mass)
\boldsymbol{O} - density $\quad \overrightarrow{\mathbf{V}}$ - velocity

Equation of motion (inviscid fluid) (conservation of linear momentum)
p

- pressure
ϕ - Gravitational potential

$$
\begin{aligned}
& \rho \frac{\mathrm{D} \overrightarrow{\mathrm{v}}}{\mathrm{D} t}=-\nabla p-\rho \nabla \phi \\
& \nabla^{2} \phi=4 \pi G \rho
\end{aligned}
$$

Hydrodynamics

Following the fluid - Lagrangian description
Continuity equation
(conservation of mass)
\boldsymbol{P} - density $\quad \overrightarrow{\mathbf{V}}$ - velocity

Equation of motion (inviscid fluid) (conservation of linear momentum)

Textext

- Gravitational potential

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \overrightarrow{\mathrm{v}}=0
$$

$$
\begin{aligned}
& \rho \frac{\mathrm{D} \overrightarrow{\mathrm{v}}}{\mathrm{D} t}=-\nabla p-\rho \nabla \phi \\
& \nabla^{2} \phi=4 \pi G \rho
\end{aligned}
$$

Energy equation (first law of thermodynamics): the change in the internal energy of a system equals the heat supplied to the system minus the work done by the system on its surroundings.

Hydrodynamics

Following the fluid - Lagrangian description

Continuity equation
(conservation of mass)
\boldsymbol{P} - density $\quad \overrightarrow{\mathbf{V}}$ - velocity

Equation of motion (inviscid fluid) (conservation of linear momentum)

D

- pressure
ϕ - Gravitational potential

$$
\begin{aligned}
& \rho \frac{\mathrm{D} \overrightarrow{\mathrm{v}}}{\mathrm{D} t}=-\nabla p-\rho \nabla \phi \\
& \nabla^{2} \phi=4 \pi G \rho
\end{aligned}
$$

Energy equation (first law of thermodynamics): the change in the internal energy of a system equals the heat supplied to the system minus the work done by the system on its surroundings.

$$
\frac{\mathrm{D} q}{\mathrm{D} t}=\frac{\mathrm{D} E}{\mathrm{D} t}+p \frac{\mathrm{D}(1 / \rho)}{\mathrm{D} t}
$$

q-heat supplied /mass $\quad E$-internal energy /mass

Hydrodynamics

Following the fluid - Lagrangian description

Continuity equation
(conservation of mass)

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \overrightarrow{\mathrm{v}}=0
$$

$\boldsymbol{\rho}$ - density $\quad \overrightarrow{\mathbf{V}}$ - velocity

Equation of motion (inviscid fluid) (conservation of linear momentum)

- pressure
ϕ - Gravitational potential

Energy equation
(conservation of energy)
q -heat supplied /mass
E -internal energy /mass

$$
\begin{aligned}
& \rho \frac{\mathrm{D} \overrightarrow{\mathrm{v}}}{\mathrm{D} t}=-\nabla p-\rho \nabla \phi \\
& \nabla^{2} \phi=4 \pi G \rho
\end{aligned}
$$

$$
\frac{\mathrm{D} q}{\mathrm{D} t}=\frac{\mathrm{D} E}{\mathrm{D} t}+p \frac{\mathrm{D}(1 / \rho)}{\mathrm{D} t}
$$

Hydrodynamics

Following the fluid - Lagrangian description

Continuity equation
(conservation of mass)

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \overrightarrow{\mathrm{v}}=0
$$

$\boldsymbol{\rho}$ - density $\quad \overrightarrow{\mathrm{V}}$ - velocity

Equation of motion (inviscid fluid) (conservation of linear momentum)

- pressure
ϕ - Gravitational potential

Energy equation
(conservation of energy)
q-heat supplied /mass $\quad E$-internal energy /mass
$\Gamma_{1} ; \Gamma_{3}$ - adiabatic exponents

$$
\begin{aligned}
& \rho \frac{\mathrm{D} \overrightarrow{\mathrm{v}}}{\mathrm{D} t}=-\nabla p-\rho \nabla \phi \\
& \nabla^{2} \phi=4 \pi G \rho
\end{aligned}
$$

$$
\begin{aligned}
\frac{\mathrm{D} q}{\mathrm{D} t} & =\frac{\mathrm{D} E}{\mathrm{D} t}+p \frac{\mathrm{D}(1 / \rho)}{\mathrm{D} t}= \\
& =\frac{1}{\rho\left(\Gamma_{3}-1\right)}\left(\frac{\mathrm{D} p}{\mathrm{D} t}-\frac{\Gamma_{1} p}{\rho} \frac{\mathrm{D} \rho}{\mathrm{D} t}\right)
\end{aligned}
$$

Hydrodynamics

Following the fluid - Lagrangian description

Continuity equation
(conservation of mass)

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \overrightarrow{\mathrm{v}}=0
$$

$\boldsymbol{\rho}$ - density $\quad \overrightarrow{\mathrm{V}}$ - velocity

Equation of motion (inviscid fluid) (conservation of linear momentum)

D

- pressure
ϕ - Gravitational potential

$$
\begin{aligned}
& \rho \frac{\mathrm{D} \overrightarrow{\mathrm{v}}}{\mathrm{D} t}=-\nabla p-\rho \nabla \phi \\
& \nabla^{2} \phi=4 \pi G \rho
\end{aligned}
$$

Energy equation (conservation of energy)

$$
\Gamma_{1}=\left(\frac{\partial \ln p}{\partial \ln \rho}\right)_{a d}
$$

q -heat supplied /mass
E-internal energy /mass
$\Gamma_{1} ; \Gamma_{3}$ - adiabatic exponents

$$
\begin{aligned}
\frac{\mathrm{D} q}{\mathrm{D} t} & =\frac{\mathrm{D} E}{\mathrm{D} t}+p \frac{\mathrm{D}(1 / \rho)}{\mathrm{D} t}= \\
& =\frac{1}{\rho\left(\Gamma_{3}-1\right)}\left(\frac{\mathrm{D} p}{\mathrm{D} t}-\frac{\Gamma_{1} p}{\rho} \frac{\mathrm{D} \rho}{\mathrm{D} t}\right)
\end{aligned}
$$

Hydrodynamics

Following the fluid - Lagrangian description

Continuity equation
(conservation of mass)

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \overrightarrow{\mathrm{v}}=0
$$

ρ - density

- velocity

Equation of motion (inviscid fluid) (conservation of linear momentum)

D

- pressure
ϕ - Gravitational potential

$$
\begin{aligned}
& \rho \frac{\mathrm{D} \overrightarrow{\mathrm{v}}}{\mathrm{D} t}=-\nabla p-\rho \nabla \phi \\
& \nabla^{2} \phi=4 \pi G \rho
\end{aligned}
$$

Energy equation (conservation of energy)

$$
\Gamma_{1}=\left(\frac{\partial \ln p}{\partial \ln \rho}\right)_{a d}
$$

q -heat supplied /mass
E-internal energy /mass
$\Gamma_{1} ; \Gamma_{3}$ - adiabatic exponents

$$
\begin{aligned}
\frac{\mathrm{D} q}{\mathrm{D} t} & =\frac{\mathrm{D} E}{\mathrm{D} t}+p \frac{\mathrm{D}(1 / \rho)}{\mathrm{D} t}= \\
& =\frac{1}{\rho\left(\Gamma_{3}-1\right)}\left(\frac{\mathrm{D} p}{\mathrm{D} t}-\frac{\Gamma_{1} p}{\rho} \frac{\mathrm{D} \rho}{\mathrm{D} t}\right)
\end{aligned}
$$

+ Equation of state

Perturbations

Perturbations

Equilibrium state:
$>$ In static equilibrium
$>$ Spherically symmetric

Perturbations

Equilibrium state:
$>$ In static equilibrium
$>$ Spherically symmetric

Small perturbations about equilibrium:
$f=f_{0}+f$ ' - where f^{\prime} is the Eulerian perturbation
δf - is the Lagrangian perturbation

Perturbations

Equilibrium state:
$>$ In static equilibrium
$>$ Spherically symmetric

Small perturbations about equilibrium:
$f=f_{0}+f$ ' - where f^{\prime} is the Eulerian perturbation
δf - is the Lagrangian perturbation

$$
\begin{aligned}
& \frac{\partial \rho^{\prime}}{\partial t}+\nabla \cdot\left(\rho_{0} \overrightarrow{\mathrm{v}}\right)=0 \\
& \rho_{0} \frac{\partial \overrightarrow{\mathrm{v}}}{\partial t}=-\nabla p^{\prime}-\rho_{0} \nabla \phi^{\prime}+\rho^{\prime} \nabla \phi_{0} \\
& \nabla^{2} \phi^{\prime}=4 \pi G \rho^{\prime} \\
& \frac{\partial \delta q}{\partial t}=\frac{1}{\rho\left(\Gamma_{3,0}-1\right)}\left(\frac{\partial \delta p}{\partial t}-\frac{\Gamma_{1,0} p_{0}}{\rho_{0}} \frac{\partial \delta \rho}{\partial t}\right)
\end{aligned}
$$

Perturbations

Equilibrium state:
$>$ In static equilibrium
$>$ Spherically symmetric

Small perturbations about equilibrium:
$f=f_{0}+f$ ' - where f^{\prime} is the Eulerian perturbation
δf - is the Lagrangian perturbation

$$
\begin{aligned}
& \frac{\partial \rho^{\prime}}{\partial t}+\nabla \cdot\left(\rho_{0} \overrightarrow{\mathrm{v}}\right)=0 \\
& \rho_{0} \frac{\partial \overrightarrow{\mathrm{v}}}{\partial t}=-\nabla p^{\prime}-\rho_{0} \nabla \phi^{\prime}+\rho^{\prime} \nabla \phi_{0} \\
& \nabla^{2} \phi^{\prime}=4 \pi G \rho^{\prime} \\
& \frac{\partial \delta q}{\partial t}=\frac{1}{\rho\left(\Gamma_{3,0}-1\right)}\left(\frac{\partial \delta p}{\partial t}-\frac{\Gamma_{1,0} p_{0}}{\rho_{0}} \frac{\partial \delta \rho}{\partial t}\right)
\end{aligned}
$$

Perturbations

Equilibrium state:
$>$ In static equilibrium
$>$ Spherically symmetric

Small perturbations about equilibrium:
$f=f_{0}+f$ ' - where f^{\prime} is the Eulerian perturbation
δf - is the Lagrangian perturbation

$$
\begin{aligned}
& \frac{\partial \rho^{\prime}}{\partial t}+\nabla \cdot\left(\rho_{0} \overrightarrow{\mathrm{v}}\right)=0 \\
& \rho_{0} \frac{\partial \overrightarrow{\mathrm{v}}}{\partial t}=-\nabla p^{\prime}-\rho_{0} \nabla \phi^{\prime}+\rho^{\prime} \nabla \phi_{0} \\
& \nabla^{2} \phi^{\prime}=4 \pi G \rho^{\prime} \\
& \frac{\partial \delta q}{\partial t}=\frac{1}{\rho\left(\Gamma_{3,0}-1\right)}\left(\frac{\partial \delta p}{\partial t}-\frac{\Gamma_{1,0} p_{0}}{\rho_{0}} \frac{\partial \delta \rho}{\partial t}\right)
\end{aligned}
$$

Adiabatic approximation
Characteristic time scale for radiation: Sun as a whole: 10^{7} years Solar convection zone: 10^{3} years

Perturbations

Equilibrium state:
$>$ In static equilibrium
$>$ Spherically symmetric

Small perturbations about equilibrium:
$f=f_{0}+f$ ' - where f^{\prime} is the Eulerian perturbation
δf - is the Lagrangian perturbation

$$
\begin{aligned}
& \frac{\partial \rho^{\prime}}{\partial t}+\nabla \cdot\left(\rho_{0} \overrightarrow{\mathrm{v}}\right)=0 \\
& \rho_{0} \frac{\partial \overrightarrow{\mathrm{v}}}{\partial t}=-\nabla p^{\prime}-\rho_{0} \nabla \phi^{\prime}+\rho^{\prime} \nabla \phi_{0} \\
& \nabla^{2} \phi^{\prime}=4 \pi G \rho^{\prime} \\
& \frac{\partial \delta p}{\partial t}=\frac{\Gamma_{1,0} p_{0}}{\rho_{0}} \frac{\partial \delta \rho}{\partial t}
\end{aligned}
$$

Adiabatic approximation
Characteristic time scale for radiation:
Sun as a whole: 10^{7} years
Solar convection zone: 10^{3} years

Perturbations

Equilibrium state:
$>$ In static equilibrium
$>$ Spherically symmetric

Small perturbations about equilibrium:
$f=f_{0}+f$ ' - where f^{\prime} is the Eulerian perturbation
$\delta f-$ is the Lagrangian perturbation

$$
\begin{aligned}
& \frac{\partial \rho^{\prime}}{\partial t}+\nabla \cdot\left(\rho_{0} \overrightarrow{\mathrm{v}}\right)=0 \\
& \rho_{0} \frac{\partial \overrightarrow{\mathrm{v}}}{\partial t}=-\nabla p^{\prime}-\rho_{0} \nabla \phi^{\prime}+\rho^{\prime} \nabla \phi_{0} \\
& \nabla^{2} \phi^{\prime}=4 \pi G \rho^{\prime} \\
& \frac{\partial \delta p}{\partial t}=\frac{\Gamma_{1,0} p_{0}}{\rho_{0}} \frac{\partial \delta \rho}{\partial t}
\end{aligned}
$$

$$
\overrightarrow{\mathrm{v}}=\frac{\partial \delta \overrightarrow{\mathrm{r}}}{\partial t}
$$

Perturbations

Equilibrium state:
$>$ In static equilibrium
$>$ Spherically symmetric

Small perturbations about equilibrium:
$f=f_{0}+f$ ' - where f^{\prime} is the Eulerian perturbation
δf - is the Lagrangian perturbation

$$
\begin{aligned}
& \frac{\partial \rho^{\prime}}{\partial t}+\nabla \cdot\left(\rho_{0} \overrightarrow{\mathrm{v}}\right)=0 \\
& \rho_{0} \frac{\partial \overrightarrow{\mathrm{v}}}{\partial t}=-\nabla p^{\prime}-\rho_{0} \nabla \phi^{\prime}+\rho^{\prime} \nabla \phi_{0} \\
& \nabla^{2} \phi^{\prime}=4 \pi G \rho^{\prime} \\
& \frac{\partial \delta p}{\partial t}=\frac{\Gamma_{1,0} p_{0}}{\rho_{0}} \frac{\partial \delta \rho}{\partial t}
\end{aligned}
$$

$$
\overrightarrow{\mathrm{v}}=\frac{\partial \delta \overrightarrow{\mathrm{r}}}{\partial t}
$$

$$
\delta f=f^{\prime}+\delta \overrightarrow{\mathrm{r}} . \nabla f_{0}
$$

Summary of perturbed equations

Linear adiabatic pulsation about a static, spherically symmetric equilibrium

$$
\begin{aligned}
& \rho^{\prime}+\nabla \cdot\left(\rho_{0} \delta \overrightarrow{\mathrm{r}}\right)=0 \\
& \rho_{0} \frac{\partial^{2} \delta \overrightarrow{\mathrm{r}}}{\partial t^{2}}=-\nabla p^{\prime}-\rho_{0} \nabla \phi^{\prime}+\rho^{\prime} \nabla \phi_{0} \\
& \nabla^{2} \phi^{\prime}=4 \pi G \rho^{\prime} \\
& p^{\prime}+\delta \vec{r} \cdot \nabla p_{0}=\frac{\Gamma_{1,0} p_{0}}{\rho_{0}}\left(\rho^{\prime}+\delta \vec{r} \cdot \nabla \rho_{0}\right)
\end{aligned}
$$

Summary of perturbed equations

Linear adiabatic pulsation about a static, spherically symmetric equilibrium

$$
\begin{aligned}
& \rho^{\prime}+\nabla \cdot\left(\rho_{0} \delta \overrightarrow{\mathrm{r}}\right)=0 \\
& \rho_{0} \frac{\partial^{2} \delta \overrightarrow{\mathrm{r}}}{\partial t^{2}}=-\nabla p^{\prime}-\rho_{0} \nabla \phi^{\prime}+\rho^{\prime} \nabla \phi_{0} \\
& \nabla^{2} \phi^{\prime}=4 \pi G \rho^{\prime} \\
& p^{\prime}+\delta \vec{r} \cdot \nabla p_{0}=\frac{\Gamma_{1,0} p_{0}}{\rho_{0}}\left(\rho^{\prime}+\delta \vec{r} \cdot \nabla \rho_{0}\right)
\end{aligned}
$$

Variables: $4\left(\varrho^{\prime}, p^{\prime}, \phi^{\prime}, \delta \mathrm{r}\right)$
Equations: 4

Thus: system of equation is closed, so far as equilibrium quantities are known.
=> can solve it to get solutions for the 4 variables.

Solutions on a sphere

Solutions on a sphere

Consider the spherical coordinates (r, θ, φ)
Variables ($\left.\varrho^{\prime}, p^{\prime}, \phi^{\prime}, \delta \overrightarrow{\mathrm{r}}\right)$ are function of: r, θ, φ, t

Solutions on a sphere

Consider the spherical coordinates (r, θ, φ)
Variables ($\varrho^{\prime}, p^{\prime}, \phi^{\prime}, \delta \overrightarrow{\mathrm{r}}$) are function of: r, θ, φ, t
The equations admit solutions of the type:
$p^{\prime}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left[p^{\prime}(r) Y_{l}^{m}(\theta, \varphi) \mathrm{e}^{-i \omega t}\right]$

$\rho^{\prime}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left[\rho^{\prime}(r) Y_{l}^{m}(\theta, \varphi) \mathrm{e}^{-i \omega t}\right]$
$\phi^{\prime}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left[\phi^{\prime}(r) Y_{l}^{m}(\theta, \varphi) \mathrm{e}^{-i \omega t}\right]$
$\delta \overrightarrow{\mathrm{r}}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left\{\left[\xi_{r}(r) Y_{l}^{m} \hat{\mathrm{a}}_{\mathrm{r}}+\xi_{h}(r)\left(\frac{\partial Y_{l}^{m}}{\partial \theta} \hat{\mathrm{a}}_{\theta}+\frac{1}{\sin \theta} \frac{\partial Y_{l}^{m}}{\partial \phi} \hat{\mathrm{a}}_{\phi}\right)\right] \mathrm{e}^{-i \omega t}\right\}$

Solutions on a sphere

Consider the spherical coordinates (r, θ, φ)
Variables ($\left.\varrho^{\prime}, p^{\prime}, \phi^{\prime}, \delta \overrightarrow{\mathrm{r}}\right)$ are function of: r, θ, φ, t
The equations admit solutions of the type:

$$
\begin{aligned}
& p^{\prime}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left[p^{\prime}(r) Y_{l}^{m}(\theta, \varphi) \mathrm{e}^{-i \omega t}\right] \\
& \rho^{\prime}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left[\rho^{\prime}(r) Y_{l}^{m}(\theta, \varphi) \mathrm{e}^{-i \omega t}\right] \\
& \phi^{\prime}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left[\phi^{\prime}(r) Y_{l}^{m}(\theta, \varphi) \mathrm{e}^{-i \omega t}\right]
\end{aligned}
$$

$$
\delta \overrightarrow{\mathrm{r}}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left\{\left[\xi_{r}(r) Y_{l}^{m} \hat{\mathrm{a}}_{\mathrm{r}}+\xi_{h}(r)\left(\frac{\partial Y_{l}^{m}}{\partial \theta} \hat{\mathrm{a}}_{\theta}+\frac{1}{\sin \theta} \frac{\partial Y_{l}^{m}}{\partial \phi} \hat{\mathrm{a}}_{\phi}\right)\right] \mathrm{e}^{-i \omega t}\right\}
$$

Solutions on a sphere

Consider the spherical coordinates (r, θ, φ)
Variables ($\left.\varrho^{\prime}, p^{\prime}, \phi^{\prime}, \delta \overrightarrow{\mathrm{r}}\right)$ are function of: r, θ, φ, t
The equations admit solutions of the type:

$$
\begin{aligned}
& p^{\prime}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left[p^{\prime}(r) Y_{l}^{m}(\theta, \varphi) \mathrm{e}^{-i \omega t}\right] \\
& \rho^{\prime}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left[\rho^{\prime}(r) Y_{l}^{m}(\theta, \varphi) \mathrm{e}^{-i \omega t}\right] \\
& \phi^{\prime}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left[\phi^{\prime}(r) Y_{l}^{m}(\theta, \varphi) \mathrm{e}^{-i \omega t}\right]
\end{aligned}
$$

$$
\delta \overrightarrow{\mathrm{r}}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left\{\left[\xi_{r}(r) Y_{l}^{m} \hat{\mathrm{a}}_{\mathrm{r}}+\xi_{h}(r)\left(\frac{\partial Y_{l}^{m}}{\partial \theta} \hat{\mathrm{a}}_{\theta}+\frac{1}{\sin \theta} \frac{\partial Y_{l}^{m}}{\partial \phi} \hat{\mathrm{a}}_{\phi}\right)\right] \mathrm{e}^{-i \omega t}\right\}
$$

Spherical Harmonics Y_{l}^{m}

l - angular degree: the number of nodes on the sphere
m - azimuthal order: $|m|=$ number of nodes along the equator \Rightarrow orientation on the sphere

Spherical Harmonics Y_{l}^{m}

l - angular degree: the number of nodes on the sphere

$$
\mathrm{k}_{h}=\frac{\sqrt{l(l+1)}}{R}
$$

m - azimuthal order: $|m|=$ number of nodes along the equator

$$
=>\text { orientation on the sphere }
$$

$l=0$

$l=1$
$m=0$

$l=1$
$m=-1$

Spherical Harmonics Y_{l}^{m}

l - angular degree: the number of nodes on the sphere

$$
\mathrm{k}_{h}=\frac{\sqrt{l(l+1)}}{R}
$$

m - azimuthal order: $|m|=$ number of nodes along the equator

$$
=>\text { orientation on the sphere }
$$

adapted from Aerts et al. 2010

Spherical Harmonics Y_{l}^{m}

l - angular degree: the number of nodes on the sphere

$$
\mathrm{k}_{h}=\frac{\sqrt{l(l+1)}}{R}
$$

m - azimuthal order: $|m|=$ number of nodes along the equator $=>$ orientation on the sphere

Note: $|m| \leq l$
adapted from Aerts et al. 2010

$l=2$
$m=0$

$l=2$
$|m|=2$

$l=4$
$|m|=2$

$l=10$
$|m|=5$

Solutions on a sphere

Consider the spherical coordinates (r, θ, φ)
Variables ($\left.\varrho^{\prime}, p^{\prime}, \phi^{\prime}, \delta \overrightarrow{\mathrm{r}}\right)$ are function of: r, θ, φ, t
The equations admit solutions of the type:
$p^{\prime}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left[p^{\prime}(r) Y_{l}^{m}(\theta, \varphi) \mathrm{e}^{-i \omega t}\right]$
$\rho^{\prime}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left[\rho^{\prime}(r) Y_{l}^{m}(\theta, \varphi) \mathrm{e}^{-i \omega t}\right]$
$\phi^{\prime}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left[\phi^{\prime}(r) Y_{l}^{m}(\theta, \varphi) \mathrm{e}^{-i \omega t}\right]$
$\delta \overrightarrow{\mathrm{r}}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left\{\left[\xi_{r}(r) Y_{l}^{m} \hat{\mathrm{a}}_{\mathrm{r}}+\xi_{h}(r)\left(\frac{\partial Y_{l}^{m}}{\partial \theta} \hat{\mathrm{a}}_{\theta}+\frac{1}{\sin \theta} \frac{\partial Y_{l}^{m}}{\partial \phi} \hat{\mathrm{a}}_{\phi}\right)\right] \mathrm{e}^{-i \omega t}\right\}$

Solutions on a sphere

Consider the spherical coordinates (r, θ, φ)
Variables ($\left.\varrho^{\prime}, p^{\prime}, \phi^{\prime}, \delta \overrightarrow{\mathrm{r}}\right)$ are function of: r, θ, φ, t
The equations admit solutions of the type:
$p^{\prime}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left[p^{\prime}(r) Y_{l}^{m}(\theta, \varphi) \mathrm{e}^{-i \omega t}\right]$
$\left.\rho^{\prime}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re} \rho^{\prime}(r) Y_{l}^{m}(\theta, \varphi) \mathrm{e}^{-i \omega t}\right]$
$\phi^{\prime}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left[\phi^{\prime}(r) Y_{l}^{m}(\theta, \varphi) \mathrm{e}^{-i \omega t}\right]$
$\delta \overrightarrow{\mathrm{r}}(\mathrm{r}, \theta, \varphi, t)=\operatorname{Re}\left\{\left[\xi_{r}(r) Y_{l}^{m} \hat{\mathrm{a}}_{\mathrm{r}}+\xi_{h}(r)\left(\frac{\partial Y_{l}^{m}}{\partial \theta} \hat{\mathrm{a}}_{\theta}+\frac{1}{\sin \theta} \frac{\partial Y_{l}^{m}}{\partial \phi} \hat{\mathrm{a}}_{\phi}\right)\right] \mathrm{e}^{-i \omega t}\right\}$

Equations for the depth dependent amplitudes

Substituting the solutions on the perturbed equations
... and after significant algebra

$$
\begin{aligned}
& \frac{d \xi_{r}}{d r}=-\left(\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r}+\frac{2}{r}\right) \xi_{r}+\left(\frac{S_{l}^{2}}{\omega^{2}}-1\right) \frac{1}{c_{0}^{2} \rho_{0}} p^{\prime}+\frac{l(l+1)}{r^{2} \omega^{2}} \phi^{\prime} \\
& \frac{d p^{\prime}}{d r}=\rho_{0}\left(\omega^{2}-N_{0}^{2}\right) \xi_{r}-\rho_{0} \frac{d \phi^{\prime}}{d r}+\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r} p^{\prime} \\
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi^{\prime}}{d r}\right)=4 \pi G\left(\frac{p^{\prime}}{c_{0}^{2}}+\frac{\rho_{0} N_{0}^{2}}{g_{0}} \xi_{r}\right)+\frac{l(l+1)}{r^{2}} \phi^{\prime}
\end{aligned}
$$

Equations for the depth dependent amplitudes

Substituting the solutions on the perturbed equations
... and after significant algebra

$$
\begin{aligned}
& \frac{d \xi_{r}}{d r}=-\left(\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r}+\frac{2}{r}\right) \xi_{r}+\left(\frac{S_{l}^{2}}{\omega^{2}}-1\right) \frac{1}{c_{0}^{2} \rho_{0}} p^{\prime}+\frac{l(l+1)}{r^{2} \omega^{2}} \phi^{\prime} \\
& \frac{d p^{\prime}}{d r}=\rho_{0}\left(\omega^{2}-N_{0}^{2}\right) \xi_{r}-\rho_{0} \frac{d \phi^{\prime}}{d r}+\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r} p^{\prime} \\
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi^{\prime}}{d r}\right)=4 \pi G\left(\frac{p^{\prime}}{c_{0}^{2}}+\frac{\rho_{0} N_{0}^{2}}{g_{0}} \xi_{r}\right)+\frac{l(l+1)}{r^{2}} \phi^{\prime}
\end{aligned}
$$

4 variables: $\xi_{\mathrm{r}}, \mathrm{p}^{\prime}, \phi^{\prime}, \mathrm{d} \phi^{\prime} / \mathrm{dr}$ $4^{\text {th }}$ order system

Equations for the depth dependent amplitudes

Substituting the solutions on the perturbed equations
... and after significant algebra

$$
\begin{aligned}
& \frac{d \xi_{r}}{d r}=-\left(\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r}+\frac{2}{r}\right) \xi_{r}+\left(\frac{S_{l}^{2}}{\omega^{2}}-1\right) \frac{1}{c_{0}^{2} \rho_{0}} p^{\prime}+\frac{l(l+1)}{r^{2} \omega^{2}} \phi^{\prime} \\
& \frac{d p^{\prime}}{d r}=\rho_{0}\left(\omega^{2}-N_{0}^{2}\right) \xi_{r}-\rho_{0} \frac{d \phi^{\prime}}{d r}+\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r} p^{\prime} \\
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi^{\prime}}{d r}\right)=4 \pi G\left(\frac{p^{\prime}}{c_{0}^{2}}+\frac{\rho_{0} N_{0}^{2}}{g_{0}} \xi_{r}\right)+\frac{l(l+1)}{r^{2}} \phi^{\prime}
\end{aligned}
$$

4 variables: $\xi_{r}, \mathrm{p}^{\prime}, \phi^{\prime}, \mathrm{d} \phi^{\prime} / \mathrm{dr}$
$4^{\text {th }}$ order system
This system, together with the boundary conditions, forms an eigenvalue problem \Rightarrow Solving it provide the eigenvalues, ω, and eigenfunctions, $\xi_{\mathrm{r}}, \mathrm{p}^{\prime}, \phi^{\prime}, \mathrm{d} \phi^{\prime} / \mathrm{dr}$.

Equations for the depth dependent amplitudes

Substituting the solutions on the perturbed equations
... and after significant algebra

$$
\begin{aligned}
& \frac{d \xi_{r}}{d r}=-\left(\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r}+\frac{2}{r}\right) \xi_{r}+\left(\frac{S_{l}^{2}}{\omega^{2}}-1\right) \frac{1}{c_{0}^{2} \rho_{0}} p^{\prime}+\frac{l(l+1)}{r^{2} \omega^{2}} \phi^{\prime} \\
& \frac{d p^{\prime}}{d r}=\rho_{0}\left(\omega^{2}-N_{0}^{2}\right) \xi_{r}-\rho_{0} \frac{d \phi^{\prime}}{d r}+\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r} p^{\prime} \\
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi^{\prime}}{d r}\right)=4 \pi G\left(\frac{p^{\prime}}{c_{0}^{2}}+\frac{\rho_{0} N_{0}^{2}}{g_{0}} \xi_{r}\right)+\frac{l(l+1)}{r^{2}} \phi^{\prime}
\end{aligned}
$$

$S_{l}:$ Lamb frequency

$$
S_{l}^{2}=\frac{l(l+1)}{r^{2}} c_{0}^{2}
$$

N_{0} : Buoyancy frequency

$$
N_{0}^{2}=g_{0}\left[\frac{1}{\Gamma_{1,0}} \frac{d \ln p_{0}}{d r}-\frac{d \ln \rho_{0}}{d r}\right]
$$

Equations for the depth dependent amplitudes

Substituting the solutions on the perturbed equations
... and after significant algebra

$$
\begin{aligned}
& \frac{d \xi_{r}}{d r}=-\left(\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r}+\frac{2}{r}\right) \xi_{r}+\left(\frac{S_{l}^{2}}{\omega^{2}}-1\right) \frac{1}{c_{0}^{2} \rho_{0}} p^{\prime}+\frac{l(l+1)}{r^{2} \omega^{2}} \phi^{\prime} \\
& \frac{d p^{\prime}}{d r}=\rho_{0}\left(\omega^{2}-N_{0}^{2}\right) \xi_{r}-\rho_{0} \frac{d \phi^{\prime}}{d r}+\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r} p^{\prime} \\
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi^{\prime}}{d r}\right)=4 \pi G\left(\frac{p^{\prime}}{c_{0}^{2}}+\frac{\rho_{0} N_{0}^{2}}{g_{0}} \xi_{r}\right)+\frac{l(l+1)}{r^{2}} \phi^{\prime}
\end{aligned}
$$

$S_{l}:$ Lamb frequency

$$
S_{l}^{2}=\frac{l(l+1)}{r^{2}} c_{0}^{2}
$$

$$
N_{0}^{2}>0=>\varrho_{2}^{*}>\varrho_{2}
$$

N_{0} : Buoyancy frequency

$$
N_{0}^{2}=g_{0}\left[\frac{1}{\Gamma_{1,0}} \frac{d \ln p_{0}}{d r}-\frac{d \ln \rho_{0}}{d r}\right]
$$

$$
N_{0}{ }^{2}<0 \Rightarrow \varrho_{2}{ }^{*}<\varrho_{2}
$$

Equations for the depth dependent amplitudes

Substituting the solutions on the perturbed equations
... and after significant algebra

$$
\begin{aligned}
& \frac{d \xi_{r}}{d r}=-\left(\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r}+\frac{2}{r}\right) \xi_{r}+\left(\frac{S_{l}^{2}}{\omega^{2}}-1\right) \frac{1}{c_{0}^{2} \rho_{0}} p^{\prime}+\frac{l(l+1)}{r^{2} \omega^{2}} \phi^{\prime} \\
& \frac{d p^{\prime}}{d r}=\rho_{0}\left(\omega^{2}-N_{5}^{2}\right) \xi_{r}-\rho_{0} \frac{d \phi^{\prime}}{d r}+\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r} p^{\prime}
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi^{\prime}}{d r}\right)=4 \pi G\left(\frac{p^{1}}{c_{0}^{2}}+\frac{\rho_{0} N_{0}^{2}}{g_{0}} \xi_{r}\right)+\frac{l(l}{r} \\
S_{l}: \text { Lamb frequency } \\
S_{l}^{2}=\frac{l(l+1)}{r^{2}} c_{0}^{2} \\
N_{0}
\end{gathered}
$$

Boundary conditions

Fourth order system => 4 boundary conditions required
>2 conditions at $r=0$
>2 condition at $r=\mathrm{R}$

Boundary conditions

Fourth order system => 4 boundary conditions required
>2 conditions at $r=0$
>2 condition at $r=\mathrm{R}$
Conditions at $r=0$
Obtained by imposing regularity of the solutions at the centre
displacement must vanish in the centre

Boundary conditions

Fourth order system => 4 boundary conditions required
>2 conditions at $r=0$
>2 condition at $r=\mathrm{R}$
Conditions at $r=0$ gravitational force must be finite displacement must vanish in the centre

Conditions at $r=\mathrm{R}$
$1^{\text {st }}$ condition: matching ϕ^{\prime} and its derivative to solution for vacuum field

$$
\boldsymbol{\phi}^{\prime} \sim \mathrm{O}\left(r^{-l-1}\right)
$$

Boundary conditions

Fourth order system $=>4$ boundary conditions required
>2 conditions at $r=0$
>2 condition at $r=\mathrm{R}$

Conditions at $r=0$
gravitational force must be finite displacement must vanish in the centre

Conditions at $r=\mathrm{R}$
$1^{\text {st }}$ condition: matching $\boldsymbol{\phi}^{\prime}$ and its derivative to solution for vacuum field

$$
\phi^{\prime} \sim \mathrm{O}\left(r^{-l-1}\right)
$$

$$
\frac{d \phi^{\prime}}{d r}=-\frac{(l+1)}{r} \phi^{\prime}
$$

Boundary conditions

Fourth order system => 4 boundary conditions required
>2 conditions at $r=0$
>2 condition at $r=\mathrm{R}$
Conditions at $r=0$
gravitational force must be finite displacement must vanish in the centre

Conditions at $r=\mathrm{R}$
$1^{\text {st }}$ condition: matching ϕ^{\prime} and its derivative to solution for vacuum field
$\phi^{\prime} \sim \mathrm{O}\left(r^{-l-1}\right)$

$2^{\text {nd }}$ condition: depends on how the atmosphere is treated
$\begin{aligned} & \text { e.g. assuming free surface } \Rightarrow \delta p^{\prime}=0 \\ & \text { (But this is not adequate for a real star!) }\end{aligned} p^{\prime}+\xi_{r} \frac{d p_{0}}{d r}=0$
(But this is not adequate for a real star!)
A better option is to make the numerical solutions match onto the analytical solutions for an isothermal atmosphere.

Eigenvalue problem

We reduced the problem to 1D
Equations + boundary conditions
=> admit non-trivial solutions only for a discrete values of frequencies

This set of frequencies is numbered by an integer n, the radial order

Eigenvalue problem

In summary: eigenfrequencies are discrete and characterized by three quantum numbers:

$$
\omega=\omega(n, l, m)
$$

n-radial order: $|n|$ related to the number of nodes along the radial direction
l - angular degree: the number of nodes on the sphere
m - azimuthal order: $|m|=$ number of nodes along the equator $=>$ orientation on the sphere

Eigenvalue problem

In summary: eigenfrequencies are discrete and characterized by three quantum numbers:
Adapted from Cunha et al 2007 (Bison data)

$$
\omega=\omega(n, l, m)
$$

Equations for the depth dependent amplitudes

$$
\begin{aligned}
& \frac{d \xi_{r}}{d r}=-\left(\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r}+\frac{2}{r}\right) \xi_{r}+\left(\frac{S_{l}^{2}}{\omega^{2}}-1\right) \frac{1}{c_{0}^{2} \rho_{0}} p^{\prime}+\frac{l(l+1)}{r^{2} \omega^{2}} \phi^{\prime} \\
& \frac{d p^{\prime}}{d r}=\rho_{0}\left(\omega^{2}-N_{0}^{2}\right) \xi_{r}-\rho_{0} \frac{d \phi^{\prime}}{d r}+\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r} p^{\prime} \\
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi^{\prime}}{d r}\right)=4 \pi G\left(\frac{p^{\prime}}{c_{0}^{2}}+\frac{\rho_{0} N_{0}^{2}}{g_{0}} \xi_{r}\right)+\frac{l(l+1)}{r^{2}} \phi^{\prime}
\end{aligned}
$$

Equations depend on l, but not on m
\Rightarrow In a spherically symmetric star, the eigenvalues are independent of m

Equations for the depth dependent amplitudes

$$
\begin{aligned}
& \frac{d \xi_{r}}{d r}=-\left(\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r}+\frac{2}{r}\right) \xi_{r}+\left(\frac{S_{l}^{2}}{\omega^{2}}-1\right) \frac{1}{c_{0}^{2} \rho_{0}} p^{\prime}+\frac{l(l+1)}{r^{2} \omega^{2}} \phi^{\prime} \\
& \frac{d p^{\prime}}{d r}=\rho_{0}\left(\omega^{2}-N_{0}^{2}\right) \xi_{r}-\rho_{0} \frac{d \phi^{\prime}}{d r}+\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r} p^{\prime} \\
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi^{\prime}}{d r}\right)=4 \pi G\left(\frac{p^{\prime}}{c_{0}^{2}}+\frac{\rho_{0} N_{0}^{2}}{g_{0}} \xi_{r}\right)+\frac{l(l+1)}{r^{2}} \phi^{\prime}
\end{aligned}
$$

Equations depend on l, but not on m
$=>$ In a spherically symmetric star, the eigenvalues are independent of m

$$
\omega=\omega(n, l, \hat{n})
$$

Note: That is not the case if the star rotates or has a magnetic field, braking the symmetry.

Trapping of the oscillations

Trapping of oscillations

The full solutions must be obtained numerically. However, under particular approximations, approximate analytical solutions can be derived.

Trapping of oscillations

The full solutions must be obtained numerically. However, under particular approximations, approximate analytical solutions can be derived.

The Cowling approximation
Neglect the perturbation to the gravitational potential, $\boldsymbol{\phi}$,
$=>$ reduces the system to $2^{\text {nd }}$ order
Valid when l is large or $\ln l$ is large

Trapping of oscillations

The full solutions must be obtained numerically. However, under particular approximations, approximate analytical solutions can be derived.

The Cowling approximation
Neglect the perturbation to the gravitational potential, $\boldsymbol{\phi}$ '
$=>$ reduces the system to $2^{\text {nd }}$ order
Valid when l is large or Inl is large

$$
\begin{aligned}
& \frac{d \xi_{r}}{d r}=-\left(\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r}+\frac{2}{r}\right) \xi_{r}+\left(\frac{S_{l}^{2}}{\omega^{2}}-1\right) \frac{1}{c_{0}^{2} \rho_{0}} p^{\prime}+\frac{l\left(l+1 /{ }^{2}\right.}{r^{2} \omega^{2}} \phi^{\prime} \\
& \frac{d p^{\prime}}{d r}=\rho_{0}\left(\omega^{2}-N_{0}^{2}\right) \xi_{r}-\rho_{r} \frac{d^{\prime}}{d r}+\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r} p^{\prime} \\
& \left.\frac{1}{r^{2}} \frac{d\left(, \frac{d \phi^{\prime}}{d r}\right)=4 \pi G\left(\frac{P}{c_{0}^{2}}+\frac{r^{\prime}}{g_{0}} \xi_{r}\right)^{+} r^{2}}{d r}+1\right)
\end{aligned}
$$

Trapping of oscillations

The full solutions must be obtained numerically. However, under particular approximations, approximate analytical solutions can be derived.

The Cowling approximation
Neglect the perturbation to the gravitational potential, $\boldsymbol{\phi}^{\prime}$
\Rightarrow reduces the system to $2^{\text {nd }}$ order
Valid when l is large or Inl is large

$$
\begin{aligned}
& \frac{d \xi_{r}}{d r}=-\left(\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r}+\frac{2}{r}\right) \xi_{r}+\left(\frac{S_{l}^{2}}{\omega^{2}}-1\right) \frac{1}{c_{0}^{2} \rho_{0}} p^{\prime} \\
& \frac{d p^{\prime}}{d r}=\rho_{0}\left(\omega^{2}-N_{0}^{2}\right) \xi_{r}+\frac{1}{\Gamma_{1,0} p_{0}} \frac{d p_{0}}{d r} p^{\prime}
\end{aligned}
$$

2 variables: $\xi_{\mathrm{r}}, \mathrm{p}$,
$2^{\text {nd }}$ order system

Trapping of oscillations

Following Deubner and Gough 1984
$>$ Work under Cowling approximation
$>$ Assume that locally oscillations can be treated as in a plane-parallel layer under constant gravity (i.e., neglect derivatives of g and r)

Trapping of oscillations

Following Deubner and Gough 1984
$>$ Work under Cowling approximation
$>$ Assume that locally oscillations can be treated as in a plane-parallel layer under constant gravity (i.e., neglect derivatives of g and r)
$>$ Define the new variable:

$$
X=c_{0}^{2} \rho_{0}^{1 / 2} \nabla \cdot \delta \vec{r}
$$

Trapping of oscillations

Following Deubner and Gough 1984
$>$ Work under Cowling approximation
$>$ Assume that locally oscillations can be treated as in a plane-parallel layer under constant gravity (i.e., neglect derivatives of g and r)
$>$ Define the new variable:

$$
X=c_{0}^{2} \rho_{0}^{1 / 2} \nabla \cdot \delta \bar{r}
$$

In terms of the new variable the $2^{\text {nd }}$ order system of equations can be reduced to a single $2^{\text {nd }}$ order wave equation:

$$
\frac{d^{2} X}{d r^{2}}+k_{r}^{2} X=0
$$

Where k_{r} is the local radial wavenember

Trapping of oscillations

Recall the solutions of the wave equation with constant k

$$
\frac{d^{2} y}{d x^{2}}+k^{2} y=0
$$

Trapping of oscillations

Recall the solutions of the wave equation with constant k

$$
\frac{d^{2} y}{d x^{2}}+k^{2} y=0
$$

General solution is:

$$
y=A e^{i k x}+B e^{-i k x}
$$

where A and B are complex constants

Trapping of oscillations

Recall the solutions of the wave equation with constant k

$$
\frac{d^{2} y}{d x^{2}}+k^{2} y=0
$$

General solution is:

$$
y=A e^{i k x}+B e^{-i k x}
$$

where A and B are complex constants
$>k^{2}>0 \Rightarrow k$ is real $; \operatorname{Re}\{y\}=a \cos k x+b \sin k x$ => oscillatory behaviour
$>k^{2}<0 \Rightarrow k=i|k| ; \operatorname{Re}\{y\}=a e^{-|k| x}+b e^{|k| x}$
=> exponential grow or decay

Trapping of oscillations

In the star k_{r} is not constant! $\frac{d^{2} X}{d r^{2}}+k_{r}^{2} X=0$

Trapping of oscillations

In the star k_{r} is not constant! $\frac{d^{2} X}{d r^{2}}+k_{r}^{2} X=0$

$$
\begin{aligned}
& k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right] \\
& \omega_{c}^{2}=\frac{c_{0}^{2}}{4 H^{2}}\left(1-2 \frac{d H}{d r}\right) \\
& H^{-1}=-\frac{d \ln \rho}{d r}
\end{aligned}
$$

Trapping of oscillations

In the star k_{r} is not constant! $\frac{d^{2} X}{d r^{2}}+k_{r}^{2} X=0$

$$
\begin{aligned}
& k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{c}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right] \\
& \omega_{c}^{2}=\frac{c_{0}^{2}}{4 H^{2}}\left(1-2 \frac{d H}{d r}\right) \\
& H^{-1}=-\frac{d \ln \rho}{d r}
\end{aligned}
$$

Trapping of oscillations

In the star k_{r} is not constant!

$$
\frac{d^{2} X}{d r^{2}}+k_{r}^{2} X=0
$$

$$
\begin{aligned}
& k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right] \\
& \omega_{c}^{2}=\frac{c_{0}^{2}}{4 H^{2}}\left(1-2 \frac{d H}{d r}\right) \\
& H^{-1}=-\frac{d \ln \rho}{d r}
\end{aligned}
$$

Trapping of oscillations

In the star k_{r} is not constant!

$$
\frac{d^{2} X}{d r^{2}}+k_{r}^{2} X=0
$$

$$
\begin{aligned}
& k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{0}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right] \\
& \omega_{c}^{2}=\frac{c_{0}^{2}}{4 H^{2}}\left(1-2 \frac{d H}{d r}\right) \\
& H^{-1}=-\frac{d \ln \rho}{d r}
\end{aligned}
$$

Trapping of oscillations

$$
\frac{d^{2} X}{d r^{2}}+k_{r}^{2} X=0
$$

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

What are the regions where: $k_{r}^{2}>0$ (oscillatory behaviour) ?

$$
k_{r}^{2}<0 \text { (exponentially decaying)? }
$$

Trapping of oscillations

$$
\frac{d^{2} X}{d r^{2}}+k_{r}^{2} X=0
$$

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

What are the regions where: $k_{r}^{2}>0$ (oscillatory behaviour) ?

$$
k_{r}^{2}<0 \text { (exponentially decaying)? }
$$

Find the turning points of the equation, where $k_{r}^{2}=0$

$$
\omega_{l \pm}^{2}=\frac{1}{2}\left(S_{l}^{2}+\omega_{c}^{2}\right) \pm \frac{1}{2} \sqrt{\left(S_{l}^{2}+\omega_{c}^{2}\right)^{2}-4 S_{l}^{2} N_{0}^{2}}
$$

Trapping of oscillations

$$
\frac{d^{2} X}{d r^{2}}+k_{r}^{2} X=0
$$

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

What are the regions where: $k_{r}^{2}>0$ (oscillatory behaviour) ?

$$
k_{r}^{2}<0 \text { (exponentially decaying)? }
$$

Find the turning points of the equation, where $k_{r}{ }^{2}=0$

$$
\omega_{l \pm}^{2}=\frac{1}{2}\left(S_{l}^{2}+\omega_{c}^{2}\right) \pm \frac{1}{2} \sqrt{\left(S_{l}^{2}+\omega_{c}^{2}\right)^{2}-4 S_{l}^{2} N_{0}^{2}}
$$

Thus, we can rewrite: $k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[\omega^{2}-\omega_{l_{+}}^{2}\right]\left[\omega^{2}-\omega_{l_{-}}^{2}\right]$

Trapping of oscillations

$$
\frac{d^{2} X}{d r^{2}}+k_{r}^{2} X=0
$$

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

What are the regions where: $k_{r}^{2}>0$ (oscillatory behaviour) ?

$$
k_{r}^{2}<0 \text { (exponentially decaying)? }
$$

Find the turning points of the equation, where $k_{r}{ }^{2}=0$

$$
\omega_{l \pm}^{2}=\frac{1}{2}\left(S_{l}^{2}+\omega_{c}^{2}\right) \pm \frac{1}{2} \sqrt{\left(S_{l}^{2}+\omega_{c}^{2}\right)^{2}-4 S_{l}^{2} N_{o}^{2}}
$$

Thus, we can rewrite: $k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[\omega^{2}-\omega_{l+}^{2}\right]\left[\omega^{2}-\omega_{l_{-}}^{2}\right]$
$>$ Modes propagate where $k_{r}^{2}>0 \quad \Rightarrow \quad \omega>\omega_{l_{+}}$or $\omega<\omega_{l-}$
$>$ Modes are evanescent where $k_{r}^{2}<0 \quad \Rightarrow \quad \omega_{l_{-}}<\omega<\omega_{l_{+}}$

Trapping of oscillations

$>$ Modes propagate where $k_{r}^{2}>0 \quad \Rightarrow \quad \omega>\omega_{l_{+}}$or $\omega<\omega_{l_{-}}$
$>$ Modes are evanescent where $k_{r}^{2}<0 \quad \Rightarrow \quad \omega_{l_{-}}<\omega<\omega_{l_{+}}$

Trapping of oscillations

$>$ Modes are evanescent where $k_{r}^{2}<0 \quad \Rightarrow \quad \omega_{l_{-}}<\omega<\omega_{l_{+}}$

Trapping of oscillations

$>$ Modes propagate where $k_{r}^{2}>0 \quad \Rightarrow \quad \omega>\omega_{l_{+}}$or $\omega<\omega_{l_{-}}$
$>$ Modes are evanescent where $k_{r}^{2}<0 \quad \Rightarrow \quad \omega_{l_{-}}<\omega<\omega_{l_{+}}$

Trapping of oscillations

$>$ Modes propagate where $k_{r}^{2}>0 \quad \Rightarrow \quad \omega>\omega_{l_{+}}$or $\omega<\omega_{l_{-}}$
$>$ Modes are evanescent where $k_{r}^{2}<0 \quad \Rightarrow \quad \omega_{l_{-}}<\omega<\omega_{l_{+}}$

Trapping of oscillations

$>$ Modes propagate where $k_{r}^{2}>0 \quad \Rightarrow \quad \omega>\omega_{l_{+}}$or $\omega<\omega_{l_{-}}$
$>$ Modes are evanescent where $k_{r}^{2}<0 \quad \Rightarrow \quad \omega_{l_{-}}<\omega<\omega_{l_{+}}$

Trapping of oscillations

$>$ Modes propagate where $k_{r}^{2}>0 \quad \Rightarrow \quad \omega>\omega_{l_{+}}$or $\omega<\omega_{l_{-}}$
$>$ Modes are evanescent where $k_{r}^{2}<0 \quad \Rightarrow \quad \omega_{l_{-}}<\omega<\omega_{l_{+}}$

A closer look at the solutions

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

$>$ High frequency modes $\omega^{2} \gg N_{0}{ }^{2}$

Trapping of oscillations

A closer look at the two families of solutions
$k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]$
$>$ High frequency modes $\omega^{2} \gg N_{0}{ }^{2}$
$\begin{aligned} & \text { Except } \\ & \text { near the } \\ & \text { surface }\end{aligned} k_{r}^{2} \approx \frac{\omega^{2}-S_{l}^{2}}{c_{0}^{2}}=\frac{\omega^{2}}{c_{0}^{2}}-\frac{l(l+1)}{r^{2}}$

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

$>$ High frequency modes $\omega^{2} \gg N_{0}{ }^{2}$
$\left.\begin{array}{l}\text { Except } \\ \begin{array}{l}\text { near the } \\ \text { surface }\end{array}\end{array} k_{r}^{2} \approx \frac{\omega^{2}-S_{l}^{2}}{c_{0}{ }^{2}}=\frac{\omega^{2}}{c_{0}{ }^{2}}-\frac{l(l+1)}{r^{2}}\right)<k_{\mathrm{h}}{ }^{2}$

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

$>$ High frequency modes $\omega^{2} \gg N_{0}{ }^{2}$
$\left.\begin{array}{l}\text { Except } \\ \text { near the } \\ \text { surface }\end{array} k_{r}^{2} \approx \frac{\omega^{2}-S_{l}^{2}}{c_{0}{ }^{2}}=\frac{\omega^{2}}{c_{0}{ }^{2}}-\frac{(l(+1)}{r^{2}}\right) \pi k_{\mathrm{h}}{ }^{2}$

$$
k^{2} \equiv k_{r}^{2}+k_{h}^{2} \approx \frac{\omega^{2}}{c_{0}^{2}}
$$

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

$>$ High frequency modes $\omega^{2} \gg N_{0}{ }^{2}$
$\left.\begin{array}{l}\text { Except } \\ \text { near the } \\ \text { surface }\end{array} k_{r}^{2} \approx \frac{\omega^{2}-S_{l}^{2}}{c_{0}{ }^{2}}=\frac{\omega^{2}}{c_{0}{ }^{2}}-\frac{((l+1)}{r^{2}}\right) \pi k_{\mathrm{h}}{ }^{2}$

$$
\begin{aligned}
& k^{2} \equiv k_{r}^{2}+k_{h}^{2} \approx \frac{\omega^{2}}{c_{0}^{2}} \\
& \omega \approx c_{0} k
\end{aligned}
$$

Dispersion relation for acoustic wave!

Trapping of oscillations

A closer look at the two families of solutions
$k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]$
$>$ High frequency modes $\omega^{2} \gg N_{0}{ }^{2}$
Except near the surface

$$
\begin{aligned}
& \left.k_{r}^{2} \approx \frac{\omega^{2}-S_{l}^{2}}{c_{0}^{2}}=\frac{\omega^{2}}{c_{0}^{2}}-\frac{l(l+1)}{r^{2}}\right) k_{\mathrm{h}}{ }^{2} \\
& k^{2} \equiv k_{r}^{2}+k_{h}^{2} \approx \frac{\omega^{2}}{c_{0}^{2}} \\
& \cdots \approx C_{0} k
\end{aligned}
$$

Dispersion relation for acoustic wave!
ω increases as k increases
$\Rightarrow>$ the radial order n increases with the frequency

Trapping of oscillations

A closer look at the two families of solutions
$k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]$
$>$ High frequency modes $\omega^{2} \gg N_{0}{ }^{2}$
$\begin{aligned} & \text { Except } \\ & \text { near the } \\ & \text { surface }\end{aligned} k_{r}^{2} \approx \frac{\omega^{2}-S_{l}^{2}}{c_{0}^{2}}=\frac{\omega^{2}}{c_{0}^{2}}-\frac{l(l+1)}{r^{2}}$
Lower turning point

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

$>$ High frequency modes $\omega^{2} \gg N_{0}{ }^{2}$
$\begin{aligned} & \text { Except } \\ & \text { near the } \\ & \text { surface }\end{aligned} k_{r}^{2} \approx \frac{\omega^{2}-S_{l}^{2}}{c_{0}^{2}}=\frac{\omega^{2}}{c_{0}^{2}}-\frac{l(l+1)}{r^{2}}$ surface

Lower turning point $\omega^{2}=S_{l}^{2}$

$$
r_{1, l}=\frac{\sqrt{l(l+1)} c_{0}}{\omega}
$$

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

$>$ High frequency modes $\omega^{2} \gg N_{0}{ }^{2}$
Except near the surface

$$
k_{r}^{2} \approx \frac{\omega^{2}-S_{l}^{2}}{c_{0}^{2}}=\frac{\omega^{2}}{c_{0}^{2}}-\frac{l(l+1)}{r^{2}}
$$

Lower turning point $\omega^{2}=S_{l}^{2}$

$$
r_{1, l}=\frac{\sqrt{l(l+1)} c_{0}}{\omega}
$$

$r_{1, l}$ increases as l increases
$\Rightarrow>$ larger degree modes have shallower cavities
For fixed $l: r_{1, l}$ increases as ω increases
=> higher frequency modes propagate deeper, for fixed degree

Trapping of oscillations

A closer look at the two families of solutions
$>$ High frequency modes $\omega^{2} \gg N_{0}{ }^{2}$
Except near the
 surface

Lower turning point $\omega^{2}=S_{l}^{2}$

$$
r_{1, l}=\frac{\sqrt{l(l+1)} c_{0}}{\omega}
$$

$r_{l, l}$ increases as l increases
\Rightarrow larger degree modes have shallower cavities
For fixed l : $r_{1, l}$ increases as ω increases
=> higher frequency modes propagate deeper, for fixed degree

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

$>$ High frequency modes $\omega^{2} \gg N_{0}{ }^{2}$
Near the
surface

$$
k_{r}^{2} \approx \frac{\omega^{2}-\omega_{c}^{2}}{c_{0}^{2}}
$$

Upper turning point

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

$>$ High frequency modes $\omega^{2} \gg N_{0}{ }^{2}$
Near the surface

$$
k_{r}^{2} \approx \frac{\omega^{2}-\omega_{c}^{2}}{c_{0}^{2}}
$$

Upper turning point $\omega^{2}=\omega_{c}{ }^{2}$

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

$>$ High frequency modes $\omega^{2} \gg N_{0}{ }^{2}$
Near the surface

$$
k_{r}^{2} \approx \frac{\omega^{2}-\omega_{c}^{2}}{c_{0}^{2}}
$$

Upper turning point $\omega^{2}=\omega_{c}{ }^{2}$

$$
\omega \approx \frac{c_{0}}{2 H}\left[1-2 \frac{d H}{d r}\right]
$$

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

$>$ High frequency modes $\omega^{2} \gg N_{0}{ }^{2}$
Near the surface

$$
k_{r}^{2} \approx \frac{\omega^{2}-\omega_{c}^{2}}{c_{0}^{2}}
$$

Upper turning point $\omega^{2}=\omega_{c}{ }^{2}$

$$
\omega \approx \frac{c_{0}}{2 H}\left[1-2 \frac{d H}{d r}\right]
$$

Trapping of modes occurs up to $\sim 5.3 \mathrm{mHz}$ in the sun
... but partial reflection occurs at even higher frequencies

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

High frequency modes $\omega^{2} \gg N_{0}{ }^{2}$
Near the surface

$$
k_{r}^{2} \approx \frac{\omega^{2}-\omega_{c}^{2}}{c_{0}^{2}}
$$

Upper turning point $\omega^{2}=\omega_{c}{ }^{2}$

$$
\omega \approx \frac{c_{0}}{2 H}\left[1-2 \frac{d H}{d r}\right]
$$

Trapping of modes occurs up to $\sim 5.3 \mathrm{mHz}$ in the sun
... but partial reflection occurs at even higher frequencies
Modes with frequencies lower than $\sim 2 \mathrm{mHz}$ in the sun are reflected below the photosphere
$=>$ not so affected by the details of the outermost layers

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

$>$ Low frequency modes $\omega^{2} \ll S_{l}^{2}$

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

$>$ Low frequency modes $\omega^{2} \ll S_{l}^{2}$

$$
k_{r}^{2} \approx \frac{S_{l}^{2}}{c_{0}^{2}}\left[\frac{N_{0}^{2}}{\omega^{2}}-1+\frac{\omega^{2}}{S_{l}^{2}}-\frac{\omega_{c}^{2}}{S_{l}^{2}}\right]
$$

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

$>$ Low frequency modes $\omega^{2} \ll S_{l}^{2}$

$$
k_{r}^{2} \approx \frac{S_{l}^{2}}{c_{0}^{2}}\left[\frac{N_{0}^{2}}{\omega^{2}}-1+\frac{\omega^{2}}{S_{l}^{2}}-\frac{\omega_{c}^{2}}{S_{l}^{2}}\right] \approx \frac{l(l+1)}{r^{2}}\left[N_{0}^{2}-\omega^{2}\right] \frac{1}{\omega^{2}}
$$

Trapping of oscillations

A closer look at the two families of solutions
$k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]$
$>$ Low frequency modes $\omega^{2} \ll S_{l}^{2}$

$$
\begin{aligned}
k_{r}^{2} \approx \frac{S_{l}^{2}}{c_{0}^{2}}\left[\frac{N_{0}^{2}}{\omega^{2}}-1+\frac{\omega^{2}}{S_{l}^{2}}-\frac{\omega_{c}^{2}}{S_{l}^{2}}\right] & \approx \frac{(l+1)}{r^{2}}\left[N_{0}^{2}-\omega^{2}\right] \frac{1}{\omega^{2}} \\
\omega^{2} & \approx \frac{N_{0}^{2}}{1+\frac{k_{r}^{2}}{k_{h}^{2}}}
\end{aligned}
$$

Dispersion relation for gravity wave.

Trapping of oscillations

A closer look at the two families of solutions
$k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]$
$>$ Low frequency modes $\omega^{2} \ll S_{l}^{2}$

$$
\begin{aligned}
k_{r}^{2} \approx \frac{S_{l}^{2}}{c_{0}^{2}}\left[\frac{N_{0}^{2}}{\omega^{2}}-1+\frac{\omega^{2}}{S_{l}^{2}}-\frac{\omega_{c}^{2}}{S_{l}^{2}}\right] & \approx \frac{(l+1)}{r^{2}}\left[N_{0}^{2}-\omega^{2}\right] \frac{1}{\omega^{2}} \\
\omega^{2} & \approx \frac{N_{0}^{2}}{1+\frac{k_{r}^{2}}{k_{h}^{2}}}
\end{aligned}
$$

Dispersion relation for gravity wave.
$\omega<N_{0}$
ω decreases as k_{r} increases
=> $|n|$ increases as frequency decreases

Trapping of oscillations

A closer look at the two families of solutions
$k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]$
$>$ Low frequency modes $\omega^{2} \ll S_{l}^{2}$

$$
\begin{aligned}
k_{r}^{2} \approx \frac{S_{l}^{2}}{c_{0}^{2}}\left[\frac{N_{0}^{2}}{\omega^{2}}-1+\frac{\omega^{2}}{S_{l}^{2}}-\frac{\omega_{c}^{2}}{S_{l}^{2}}\right] & \approx \frac{(l+1)}{r^{2}}\left[N_{0}^{2}-\omega^{2}\right] \frac{1}{\omega^{2}} \\
\omega^{2} & \approx \frac{N_{0}^{2}}{1+\frac{k_{r}^{2}}{k_{h}^{2}}}
\end{aligned}
$$

Dispersion relation for gravity wave.
Smaller $k_{\mathrm{r}} / k_{\mathrm{h}} \Rightarrow$ Larger $\lambda_{\mathrm{r}} \lambda_{\mathrm{h}} \Rightarrow$ larger ω
\Rightarrow larger frequencies for "needle-like" motion
The frequency of a gravity wave is always smaller that N_{0}

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

$>$ Low frequency modes $\omega^{2} \ll S_{l}^{2}$

$$
\begin{aligned}
& k_{r}^{2} \approx \frac{S_{l}^{2}}{c_{0}^{2}}\left[\frac{N_{0}^{2}}{\omega^{2}}-1+\frac{\omega^{2}}{S_{l}^{2}}-\frac{\omega_{c}^{2}}{S_{l}^{2}}\right] \approx \frac{I(l+1)}{r^{2}}\left[N_{0}^{2}-\omega^{2}\right] \frac{1}{\omega^{2}} \\
& \text { Turning points }
\end{aligned}
$$

Trapping of oscillations

A closer look at the two families of solutions

$$
k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]
$$

$>$ Low frequency modes $\omega^{2} \ll S_{l}^{2}$

$$
\begin{aligned}
& k_{r}^{2} \approx \frac{S_{l}^{2}}{c_{0}^{2}}\left[\frac{N_{0}^{2}}{\omega^{2}}-1+\frac{\omega^{2}}{S_{l}^{2}}-\frac{\omega_{c}^{2}}{S_{l}^{2}}\right] \approx \frac{l(l+1)}{r^{2}}\left[N_{0}^{2}-\omega^{2}\right] \frac{1}{\omega^{2}} \\
& \text { Turning points } \omega^{2}=N_{0}{ }^{2} \\
& k_{\mathrm{h}}{ }^{2}
\end{aligned}
$$

Gravity waves propagate only in convectively stable regions!

Trapping of oscillations

A closer look at the two families of solutions
$k_{r}^{2}=\frac{1}{c_{0}^{2}}\left[S_{l}^{2}\left(\frac{N_{0}^{2}}{\omega^{2}}-1\right)+\omega^{2}-\omega_{c}^{2}\right]$
$>$ Low frequency modes $\omega^{2} \ll S_{l}^{2}$

$$
\begin{aligned}
& k_{r}^{2} \approx \frac{S_{l}^{2}}{c_{0}^{2}}\left[\frac{N_{0}^{2}}{\omega^{2}}-1+\frac{\omega^{2}}{S_{l}^{2}}-\frac{\omega_{c}^{2}}{S_{l}^{2}}\right] \approx \frac{l(l+1)}{r^{2}}\left[N_{0}^{2}-\omega^{2}\right] \frac{1}{\omega^{2}} \\
& \text { Turning points } \omega^{2}=N_{0}{ }^{2}
\end{aligned}
$$

The case of an evolved star

Trapping of oscillations

The case of an evolved star
$>$ Propagation diagram for the sun and a subgiant star

Cunha et al. 2007

Trapping of oscillations

The case of an evolved star
$>$ Propagation diagram for the sun and a subgiant star

Cunha et al. 2007

Acoustic and internal gravity waves

Acoustic and gravity waves

Summary

Acoustic waves
$>$ Maintained by gradient of pressure fluctuation;
$>$ Radial or non-radial;
$>$ Propagate in convectively stable or non-stable regions

Internal gravity waves
$>$ Maintained by gravity acting on density fluctuation;
> Always non-radial;
$>$ Propagate in convectively stable regions only

Numerical solutions

Numerical results

Eigenfrequencies

Numerical results

Eigenfrequencies
Aerts et al. 2010

MDI observations

Numerical results

Eigenfrequencies

Aerts et al. 2010

Acoustic modes: $n>0$
Gravity modes: $n<0$

Numerical results

Eigenfrequencies

Remember

Acoustic waves

$$
\omega \approx c_{0} k
$$

$$
\omega^{2} \approx \frac{N_{0}^{2}}{1+\frac{k_{r}^{2}}{k_{h}^{2}}}
$$

Gravity waves
Aerts et al. 2010

Numerical results

Eigenfunctions
Aerts et al. 2010

Numerical results

Eigenfunctions
Cunha et al. 2015

A number of important things that were left out

$>$ The actual asymptotic analysis:
=> analytical solutions for the eigenfunctions and eigenfrequencies
$>$ Frequency combinations (large separation, small separations, ratios, etc)
$>$ Inference methodologies (forward modelling, inverse modelling, glitches, etc)
$>$ Deviations from spherical symmetry (rotation, magnetic effects, application of the variational principle)
$>$ Mode excitation (stochastic, coherent)
$>$ etc...

Asymptotic analysis

Linear, adiabatic oscillations in the Cowling approximation. High n, low l, acoustic oscillations:

$$
\begin{aligned}
& v_{n l} \approx\left(n+\frac{l}{2}+\alpha\right) \Delta v_{0}+\text { higher order terms } \\
& \text { where } \Delta v_{0}=\left(2 \int_{0}^{R} \frac{d r}{c}\right)^{-1}
\end{aligned}
$$

- $\Delta \mathrm{v}_{0} \operatorname{prop}\left(\mathrm{M} / \mathrm{R}^{3}\right)^{1 / 2}$
- α function of v and is due to surface effects
- Note: $v=\omega / 2 \pi$

Asymptotic analysis

Adiabatic oscillations in the Cowling approximation.
High n, low l, acoustic oscillations:

$$
v_{n l} \approx\left(n+\frac{l}{2}+\alpha\right) \Delta v_{0}+\ldots
$$

$\Delta v_{0} \operatorname{prop}\left(\mathrm{M} / \mathrm{R}^{3}\right)^{1 / 2}$

Asymptotic analysis

Large separations $\Delta \mathrm{v}_{n l}$

$$
v_{n l} \approx\left(n+\frac{l}{2}+\alpha\right) \Delta v_{0}+\text { higher order terms }
$$

Asymptotic analysis

Large separations $\Delta v_{n l}$

$$
v_{n l} \approx\left(n+\frac{l}{2}+\alpha\right) \Delta v_{0}+\text { higher order terms }
$$

$$
\Delta v_{n l}=\nu_{n+1, l}-v_{n, l} \approx \Delta v_{0} \quad \alpha\left(\mathrm{M} / \mathrm{R}^{3}\right)^{1 / 2}
$$

Schematic
Power
Spectrum

Asymptotic analysis

Adiabatic oscillations in the Cowling approximation.
High n, low l, acoustic oscillations:
$v_{n l} \approx\left(n+\frac{l}{2}+\alpha\right) \Delta v_{0}-[A l(l+1)-\delta] \frac{\Delta v_{0}}{v_{n l}}+\ldots$
where $A=\frac{1}{4 \pi^{2} \Delta v_{0}}\left[\frac{c(R)}{R}-\int_{0}^{R} \frac{d c}{r}\right]$

Asymptotic analysis

small separations $\delta v_{n l}$

$v_{n l} \approx\left(n+\frac{l}{2}+\alpha\right) \Delta v_{0}-[A l(l+1)-\delta] \frac{\Delta v_{0}}{v_{n l}}+\ldots$
where $A=\frac{1}{4 \pi^{2} \Delta v_{0}}\left[\frac{c(R)}{R}-\int_{0}^{R} \frac{d c}{r}\right]$

$$
\delta v_{n l}=v_{n, l}-v_{n-1, l+2} \approx-(4 l+6) \frac{\Delta v_{0}}{4 \pi^{2} v_{n, l}} \int_{0}^{R} \frac{d c}{r}
$$

Schematic
Power
Spectrum
$n-1,2$

Δ

Asymptotic analysis

Sun as a star

