# Lecture 1: The Solar System



## "Planet formation" April 2016

#### Bertram Bitsch (Lund Observatory)

Graduate days (Lecture 1)

The Solar System

### Structure of the lectures

- 1 The Solar System
- 2 Protoplanetary discs
- 3 Growth of particles
- 4 Formation and migration of giant planets
- 5 Multiple planet systems

### Solar system





 Terrestrial planets: Mercury, Venus, Earth, Mars

- Gas giants: Jupiter, Saturn
- Ice giants: Neptune, Uranus

### Structure of the solar system



| Mercury | 0.39 AU | Jupiter | 5.20 AU  |
|---------|---------|---------|----------|
| Venus   | 0.72 AU | Saturn  | 9.54 AU  |
| Earth   | 1.00 AU | Uranus  | 19.2 AU  |
| Mars    | 1.52 AU | Neptune | 30.06 AU |

Graduate days (Lecture 1)

## Terrestrial planets



- Innermost four planets in the solar system
- Consist primarily of silicate rocks
- Focus on topics most relevant for planet formation and exoplanets (internal structure, surfaces, atmospheres)

### Earth



## <u>Earth</u>

$$a = 1.0 \text{ AU}$$

$$M = 6.0 \times 10^{24} \text{ kg}$$

$$R = 6371 \text{ km}$$

$$T_{
m surf}$$
 = 287 K

$$\rho \qquad = \quad 5.515 \ \mathrm{g/cm^3}$$

Water Plate tectonics Big moon Life Planet studied in most detail

### Internal structure of Earth

- Inner solid core of Fe-Ni
- Outer liquid core of Fe-Ni
- Si-rich solid mantle undergoing solid-state convection
- Thin *elastic* lithosphere (< 1400 K) sits on top of *plastic* asthenosphere (> 1400 K)





### Plastic versus elastic



- Heat produced by radioactive decay of  $^{235}$  U,  $^{238}$  U,  $^{232}$  Th and  $^{40}$  K is transported to surface by convection
- Rock at temperature above 1400 K is deformable (plastic) and can sustain convection flows
- Earth lithosphere is cold and can not sustain convection flows (elastic)

### Plate tectonics

- Lithosphere is cold and elastic and does not support convection flows
- Mantle and asthenosphere are *plastic*, meaning that they are solid, but can undergo deformation (convection) over geological time-scales
- Mantle convection flows penetrate lithosphere at mid-ocean ridges
- Oceanic crust created from cooling magma quickly (basalt)



### Plates and ridges



Graduate days (Lecture 1)

## Basalt and granite

• In order to understand terrestrial planets we need to know some basics about *igneous* rocks

 Igneous rocks form through solidification of magma (molten rock)

- Two major types of rock:
  - Basalt forms as magma cools rapidly after entering planetary surface
  - Granite forms from partial melting of basalt



## Partial melting



- Basalt can be separated into "mafic" and "felsic" components by heating and partial melting
- Molten "felsic" component separates from solid "mafic"

### Basalt



- Dark colour
- Contains 40%-50% Si
- Rich in heavy elements like Ti, Al, Fe
- Found on Earth, the Moon, Venus, Mars, Mercury, asteroids

### Granite



- Gray colour
- Contains 70% Si
- Formed by partial melting of basalt
- Makes up continental plates on Earth
- Not present on other planets

## Subduction



- Heavy oceanic plates subduct under lighter continental crust where plates converge
- Plates pulled down by own weight and pushed away from mid-ocean ridge by convection flow in mantle
- Partial melting separates granitic magma
- Ocean crust converted to continental crust

## Magnetic field





- Earth too hot to be a permanent magnet (Curie point at 800 K)
- Magnetic field maintained by convective motion in the fluid outer core
- Geodynamo requires a conductive fluid, convection, and rotation
- Magnetic field amplified until  $E_{\rm mag} = E_{\rm conv}$
- Magnetic field reversals approximately every 300,000 years

### Magnetic field reversals



- Cooling below the Curie point leaves imprint of magnetic field
- Instantaneous magnetic field freezes into new oceanic crust
- Magnetic field reversals recorded in mid-ocean ridge basalt
- Similar features seen on Mars

### Venus



# <u>Venus</u>

$$a = 0.7 \text{ AU}$$

$$M = 4.9 \times 10^{24} \text{ kg} (0.815 \ M_{\oplus})$$

$$R = 6052 \text{ km}$$

$$T_{\rm surf} = 735 \, {\rm K}$$

$$ho$$
 = 5.204 g/cm<sup>3</sup>

Thick atmosphere Slow rotation Young surface Similar mass and radius to Earth Very different surface and atmosphere

### Surface of Venus



- Thick clouds block visible radiation from surface
- Venera probes took pictures of basaltic surface (above image taken by Venera 14 in 1982)
- Mapped with radar by Magellan orbiter with 0.2–1 km accuracy
- Highlands, lowlands, volcanoes

### Surface of Venus



- Mapped with radar by Magellan orbiter with 0.2-1 km accuracy
- Highlands, lowlands, volcanoes

### Surface of Venus



- Minimum impact crater size of 3 km
- Crater counts show surface age of 200 1000 Myr
- No signs of active plate tectonics
- Global resurfacing event 300 Myr ago?

### Internal structure of Venus

- Very weak magnetic field caused by interaction between solar wind and ionosphere
- Must lack either convection or conducting fluid core
- Lack of plate tectonics causes build up of heat in mantle
- Convection not possible if temperature *decreases* with depth
- Periodic *global resurfacing* events when mantle temperature increases enough to weaken the lithosphere



#### Water and plate tectonics



- Need water to weaken oceanic crust in contact with continental crust and allow subduction?
- Need water to weaken lithosphere?
- Water lowers melting point of subducting plates, allows separation of granite into continents

Mars



### <u>Mars</u>

| а | = | 1.5 AU |  |
|---|---|--------|--|
|   |   |        |  |

$$M = 6.4 \times 10^{23} \text{ kg} (0.107 \ M_{\oplus})$$

$$R = 3390 \text{ km}$$

$$T_{\rm surf}$$
 = 214 K

$$ho$$
 = 3.934 g/cm<sup>3</sup>

#### Thin atmosphere Cold Very distinct northern and southern hemisphere Signs of water flow

### Surface of Mars



- Crustal dichotomy:
  - Low northern hemisphere with few impact craters
  - High southern hemisphere with many impact craters
- Tharsis region around equator seat of many shield volcanoes (including Olympus Mons)
- Vallis Marineris is 4000 km long, up to 7 km deep and 200 km wide

### Internal structure of Mars

Mars shows no dipole magnetic field
 Inner solid core?

• Thick lithosphere



## Evidence for past magnetism



- Northern lowland and impact craters show little magnetic field
- Ancient southern highland shows stripy magnetic field features
- Similar to magnetic field frozen into oceanic crust on Earth
- Evidence of magnetic field and plate tectonics in the first few 100 Myr on Mars

## Mars rivers



## Permafrost



- Neutron detector on Mars Odyssey (arrived 2001) detected water ice in the top meter of the surface
- Phoenix lander (arrived 2008) saw hexagonal structures associated with freezing and thawing of permafrost



### Water on Mars



(Di Achille & Hynek 2010)

- Atmospheric pressure too low for liquid surface water
- Polar ice caps of CO<sub>2</sub> and H<sub>2</sub>O ice partially sublimate in the summer and recondense in the winter
- Evidence for river deltas in the early Martian history

Mercury



## Mercury

.

$$a = 0.39 \text{ AU}$$

$$M = 3.3 imes 10^{23} ext{ kg} (0.055 ext{ } M_{\oplus})$$

$$R = 2440 \text{ km}$$

$$T_{\rm surf}$$
 = 443 K

$$ho$$
 = 5.427 g/cm<sup>3</sup>

No atmosphere Magnetic field like Earth's Rich in iron Mass dominated by core

## Internal structure of Mercury

- Mercury has dipole magnetic field like Earth
- High mean density implies 60% Fe
- Iron core extends to 60% of the planet's mass
- Thick 200 km lithosphere
- Mantle removed by giant impact?





## Thermal structure of planet atmospheres

- Effective temperature and thermal structure of planet atmospheres is an important area of study
- Implications for habitability and for observability of exoplanets
- Can also be used to understand the Earth's atmosphere and climate better
- ⇒ Need some basic knowledge of radiative transfer



IPCC



Intergovernmental Panel on Climate Change (IPCC)

### Atmospheres of Venus – Earth – Mars



Image by F. Bagenal

## CO<sub>2</sub> cycle

• CO<sub>2</sub> reacts with silicate minerals in soil to form carbonate

• Carbonate sediments are carried into the Earth by plate tectonics



• CO<sub>2</sub> recycled by volcanoes
# Climate evolution on Mars



- Channels document wet past (until  $\sim 3.8~{\rm Gyr})$
- Primordial oceans absorbed CO<sub>2</sub>, cooling down atmosphere
- Too small to sustain volcanism and plate tectonics



- No CO<sub>2</sub> recycling
- Water now present as ice below the surface and on poles

#### Run-away greenhouse effect



# Climate evolution on Venus



- Started out water rich like Earth?
- Closer vicinity to Sun caused run-away evaporation of oceans
- Water atmosphere destroyed by UV irradiation
- No CO<sub>2</sub> cycle without oceans and plate tectonics CO<sub>2</sub> stays in atmosphere

# Climate evolution on Earth



- Luminosity of young Sun was 30% lower than today giving  $T_{\rm eff}=233$  K (today  $T_{\rm eff}=255$  K)
- Still no geological evidence of increased glacial activity on young Earth
- Continual decrease in greenhouse gases over time can counteract increase in solar luminosity
- Alternatively the young Earth had a lower albedo, because the total surface area of continents was smaller

Graduate days (Lecture 1)

# Gas and ice giants



- Dominant mass of the solar system
- Jupiter and Saturn consist primarily of hydrogen and helium
- Uranus and Neptune consist primarily of ice
- Extensive moon systems

# Equatorial and polar radii

|                                   | Jupiter | Saturn | Uranus | Neptune |
|-----------------------------------|---------|--------|--------|---------|
| $P_{ m rot}/{ m hours}$           | 9.92    | 10.65  | 17.24  | 16.11   |
| $\overline{ ho}/({ m g~cm^{-3}})$ | 1.3275  | 0.6880 | 1.2704 | 1.6377  |
| $R_{ m eq}/(10^3~{ m km})$        | 71.492  | 60.268 | 25.559 | 24.766  |
| $R_{ m pol}/(10^3~ m km)$         | 66.854  | 54.364 | 24.973 | 24.342  |

- Giant planets come in two flavours:
  - Gas giants consisting mainly of hydrogen and helium
  - Ice giants consisting mainly of ices
- Substantial difference between equatorial and polar radii due to fast rotation
- Distortion depends on internal structure

#### Seismometer



- No seismic data like for Earth and Moon
- ⇒ Must rely on models and measured gravitational moments to derive internal structure of giant planets

### Gravitational moments

$$\Phi(r,\theta) = -\frac{GM}{r} \left[ 1 - \sum_{n=2}^{\infty} \left( \frac{R_{eq}}{r} \right)^n J_n P_n(\cos \theta) \right]$$

 Departure from spherical symmetry expanded with Legendre polynomials in x = cos(θ)

$$P_{0}(x) = 1$$

$$P_{1}(x) = x$$

$$P_{2}(x) = \frac{1}{2}(3x^{2} - 1)$$

$$P_{3}(x) = \frac{1}{2}(5x^{3} - 3x)$$

$$P_{4}(x) = \frac{1}{8}(35x^{4} - 30x^{2} + 3)$$

$$P_{5}(x) = \frac{1}{8}(63x^{5} - 70x^{3} + 15x)$$

$$P_{6}(x) = \frac{1}{16}(231x^{6} - 315x^{4} + 105x^{2} - 5x^{4})$$



Fig. 6.3. A few low-degree Legendre functions. (a) Functions  $P_0(\mu)$  through  $P_0(\mu)$  are shown on the interval  $-1 \le \mu \le 1$ . (b) Function  $P_0(\mu)$  is shown along the circumference of a circle; gray and white zones indicate areas where the function would be positive or negative, respectively, if wrapped around a sphere.

•  $J_n = 0$  for odd *n* due to hemispheric symmetry

The Solar System

# Sketch of rotationally distorted planets



- A probe orbiting the constant density planet will clearly feel non-spherically symmetric gravity
- A probe orbiting the extremely centrally condensed planet will feel gravity from approximately a point source

Graduate days (Lecture 1)

#### The Solar System

# Gravitational moments

• Gravitational moments determined by Pioneer/Voyager/Cassini:

|         | $J_2$                              | $J_3$ | J <sub>4</sub> | $J_5$ | J <sub>6</sub> |
|---------|------------------------------------|-------|----------------|-------|----------------|
| Jupiter | $14736\pm1$                        | 0     | $-587\pm5$     | 0     | $31\pm20$      |
| Saturn  | $16298 \pm 10$                     | 0     | $-915\pm40$    | 0     | $103\pm50$     |
| Uranus  | $\textbf{3343.4} \pm \textbf{0.3}$ | 0     | $-28.9\pm0.5$  |       |                |
| Neptune | $3411\pm10$                        | 0     | $-35\pm10$     |       |                |

• Rotation parameter

$$q_r = rac{E_{
m rot}}{E_{
m grav}} = rac{\omega_{
m rot}^2 R^3}{GM}$$

• Incompressible fluid of constant density has second harmonic

$$J_2 = \frac{1}{2}q_r$$

Response coefficient

$$\Lambda_2 = \frac{J_2}{q_r}$$

Graduate days (Lecture 1)

# Non uniform density



• Response coefficient

$$\Lambda_2 = \frac{J_2}{q_r}$$

- $\Lambda_2 = 0.5$ : constant density
- $\Lambda_2 < 0.5$ : centrally concentrated

| Planet  | Р      | $\Lambda_2$ | = | Planet  | Р      | $\Lambda_2$ |
|---------|--------|-------------|---|---------|--------|-------------|
| Mercury | 59 d   | 60          |   | Jupiter | 10 h   | 0.165       |
| Venus   | 243 d  | 73          |   | Saturn  | 10.5 h | 0.105       |
| Earth   | 23.9 h | 0.314       |   | Uranus  | 17.2 h | 0.113       |
| Mars    | 24.6 h | 0.429       |   | Neptune | 16 h   | 0.131       |

# Bulk composition

- Galileo atmospheric probe entered Jupiter's atmosphere in July 1995
- Measured pressure, temperature, composition down to 23 bar





# Helium separation



- Jupiter's troposphere is overabundant in C, N, S and in noble gases Ar, Kr, Xe compared to solar composition
- C, N, S brought to Jupiter in planetesimals of ice and rock
- Ar, Kr, Xe trapped in ice at low temperature and may have been delivered by planetesimals originating beyond 40 AU (*Owen et al. 1999*)
- Underabundant in He, Ne
- He droplets separate from H at high pressures
- Ne dissolved in droplets is also removed

# Galileo and oxygen



- Galileo probe landed in so-called hotspot in Jupiter's atmosphere
- Hot spots are dry and have no water clouds
- Radiation passes unhindered to space from deep layers
- $\Rightarrow$  Oxygen abundance of Jupiter still unknown
  - Juno mission will measure oxygen abundance from microwave spectroscopy
  - Juno was launched in 2011 and will arrive at Jupiter in July 2016

# Three-layer structure



- Molecular hydrogen envelope depleted in He
- Metallic hydrogen envelope enriched in He
- Central core of rock and ice

# Core mass of Jupiter and Saturn

- Uncertainty in core mass due to uncertainty in phase transition from molecular to liquid metallic hydrogen at high pressure
- Jupiter's density matched either by solid core or heavy elements mixed with gas





(Guillot 1999)

# Two ways to form giant planets

#### Core accretion scenario:



- Dust grains stick to form km-sized planetesimals
- Planetesimal collide and build up 10-Earth-mass core of rock and ice
- Run-away accretion of gas onto core

#### Disc instability scenario:



- Massive protoplanetary gas disc becomes gravitationally unstable
- Rapid formation of gas giants
- No need for a core

 $\Rightarrow$  Lectures on planet formation

## Interior structure of gas giants



#### Interior structure of ice giants



# Ice giants

#### Structure of ice giants

- Core of rock
- Mantle of ice (water ice, ammonia ice, methane ice)
- Thin gas atmosphere

- Uranus: 14.5 Earth masses, of which 13 Earth masses heavy elements
- *Neptune*: 17 Earth masses, of which 15 Earth masses heavy elements
- ⇒ Uranus and Neptune actually contain very little gas





# Condensable species in giant planets

- Aqueous solution clouds (liquid water mixed with NH<sub>3</sub> and H<sub>2</sub>S) condense deep in the atmospheres at 300-400 K
- **2** Water clouds condense higher up at T = 273 K
- Solution Ammonia condenses at T = 230 K through the reaction NH<sub>3</sub> + H<sub>2</sub>S  $\rightarrow$  NH<sub>4</sub>SH (ammonium hydrosulfide)
- Ammonia and hydrogen sulfide condense at T = 140 K whatever component has not been depleted in layer (3)
- $\textcircled{0} \quad \text{Methane condenses at } \mathcal{T} \sim 80 \text{ K}$

#### Atmospheric temperatures



## Ammonia and methane clouds



Jupiter and Saturn show mainly ammonia cloudsUranus and Neptune cold enough for methane clouds

Graduate days (Lecture 1)

# Overview of asteroids

- First asteroid (Ceres) discovered in 1801 by Guiseppe Piazzi and Carl Friedrich Gauss
- Originally considered a new planet
- 1 2 million asteroids larger than 1 km in main belt between Mars and Jupiter
- Total mass in asteroid belt 0.0005 *M*<sub>Earth</sub>
- Numbered by order of discovery, with additional name (e.g. 2 Pallas, 3615 Safronov)



# Orbits and rotation

 Asteroid orbits have significant eccentricities and inclinations compared to terrestrial planets

• The dwarf planet Ceres contributes with 32% of the mass of the asteroid belt

• Most asteroids rotate relatively fast

| Name   | Diameter | а     | е      | i     | $P_{ m rot}$ |
|--------|----------|-------|--------|-------|--------------|
|        | km       | AU    |        | 0     | hours        |
| Ceres  | 933      | 2.769 | 0.0780 | 10.61 | 9.075        |
| Pallas | 525      | 2.770 | 0.2347 | 34.81 | 7.811        |
| Juno   | 267      | 2.668 | 0.0258 | 13.00 | 7.210        |
| Vesta  | 510      | 2.361 | 0.0906 | 7.14  | 5.342        |



# Distribution in semi-major axis

 Semi-major axis distribution shows distinct gaps at resonances with Jupiter

 Jupiter excites eccentricities in asteroid orbits, causing them to cross





## Escape speed



• Escape speed:

$$v_{\rm esc} = \sqrt{\frac{2GM}{R}}$$

• Use mass  $M = (4/3)\pi\rho_{\bullet}R^3$  for constant density sphere:

$$v_{\rm esc} = 0.1 \, \frac{\rm km}{\rm s} \left(\frac{R}{100 \, \rm km}\right) \left(\frac{\rho_{\bullet}}{2 \, {\rm g \, cm^{-3}}}\right)^{1/2}$$

- Typical circular speed at  $r=3\,{
  m AU}$ :  $v_{
  m Kep}pprox 17\,{
  m km/s}$
- $\bullet$  Gives radial speed  $v_r = e \times v_{\rm Kep} \approx$  2–4 km/s
- Asteroids collide at speeds much higher than escape speed
- $\Rightarrow$  The asteroid belt is grinding down

# Collisional grinding

- Asteroid collision speeds far supersede the escape speed
- As small fragments collide with terrestrial planets or are expelled, the mass goes down and collision time-scale increases with time
- The few very large bodies left (Ceres, Vesta, etc.) were the lucky ones that never had catastrophic collisions with similarly large bodies
- $\Rightarrow\,$  Catastrophic collisions lead to random rotation at near break up speed
- $\Rightarrow$  Asteroid belt used to be much more massive



### Asteroid families



## Physical properties

- Mass of asteroids determined either from presence of moon or perturbations on other asteroids
- Radius, shape and albedo from reflected sun light and emitted infrared radiation or radar
- Measure  $F_{ref}$  and  $F_{IR}$ :

$$egin{array}{rcl} F_{
m in}&=&f_{\odot}\sigma_{
m proj}\ F_{
m ref}&=&A_{
m b}F_{
m in}\ F_{
m IR}&=&(1-A_{
m b})F_{
m in}\ F_{
m in}&=&F_{
m ref}+F_{
m IR} \end{array}$$

Isolate projected surface and albedo:

$$\begin{aligned} \sigma_{\rm proj} &= \frac{F_{\rm ref} + F_{\rm IR}}{f_{\odot}} \\ A_{\rm b} &= \frac{F_{\rm ref}}{F_{\rm ref} + F_{\rm IR}} \end{aligned}$$

# Taxonomic groups

- Carbonaceous (C)  $\overline{40\%}$  of all asteroids Low density ( $\rho \approx 1.2 - 2 \text{ g/cm}^3$ ) Low albedo ( $A_0 \approx 0.04 - 0.06$ ) Surface like "primitive" undifferentiated bodies
- Stony (S)  $\overline{30-35\%}$  of all asteroids Moderate albedo ( $A_0 \approx 0.14 - 0.17$ ) Igneous bodies (crystallised from melt)
- Iron and stony-iron asteroids (M) Rare High density Cores of differentiated bodies

# Spatial distribution of groups

- Moderate albedo igneous (i.e. stony) bodies primarily in inner asteroid belt
- Low albedo primitive bodies primarily in outer belt
- Surfaces of high albedo bodies may be an effect of *space weathering*
- 1 Ceres has C-type surface, but known to be differentiated



# 951 Gaspra



- S type asteroid
- $\bullet$  Dimensions 18.2  $\times$  10.5  $\times$  8.9 km
- Density  $\rho \approx 2.7 \, \mathrm{g \, cm^{-3}}$
- Too small for mass estimation as it did not perturb Galileo enough
- Surface dotted with small craters

# 243 Ida



- S type asteroid
- Dimensions 53.6  $\times$  24.0  $\times$  15.2 km
- Density  $\rho\approx 2.27-3.1\,{\rm g\,cm^{-3}}$
- Moon Dactyl first asteroid moon discovered (1.5 km diameter)
- Both probably formed by disruption of Koronis parent body about 2 Gyr ago

### 253 Mathilde



- C type asteroid
- Dimensions 66  $\times$  48  $\times$  46 km
- Density  $ho \approx 1.3\,{
  m g\,cm^{-3}}$
- Low density indicates loosely packed rubble pile

#### Dawn

- Launched in 2007 with aim to study 1 Ceres and 4 Vesta
- Left Vesta in September 2012 (arrived at Ceres in 2015)
- Interior structure of Vesta and Ceres will become known
- Much more astrophysically interesting to study large pristine asteroids than smaller break up products


# 4 Vesta with Hubble and Dawn



# Surface of Vesta



- Giant crater near south pole (*Rheasilvia*)
- Surface basaltic, but more metallic in crater
- Gravitational moment consistent with fully differentiated body with iron core, silicate mantle and basalt crust
- Like a terrestrial planet

# Rocks from the sky



Meteor witnessed in October 1992 at east coast of USA
Broke up into several pieces

# Peekskill meteorite



Meteorite hit parked car in Peekskill, New York12.4 kg

# Why are meteorites interesting?

- Rocks mostly from the asteroid belt
- Some are more exotic (parts of Moon/Mars)
- Nomenclature: meteoroid (in space), meteor (in the air), meteorite (on the ground)
- An estimated  $10^7-10^8$  kg of material hits Earth every year (mostly dust)
- Estimated  $10^4 10^5$  meteors make it to the ground as meteorites each year
- $\Rightarrow\,$  Meteorite ages are used to set the age of the solar system
- $\Rightarrow\,$  Properties of meteorites give important clues to how the solar system formed
- $\Rightarrow$  Elemental abundances in meteorites used for standard solar abundance

# Types of meteorites

- Iron meteorites
- Stony-iron meteorites
- Stony meteorites
  - Chondrites primitive
  - Achondrites basaltic



- All meteorites are parts of larger parent bodies broken up in collisions
- Differentiated parent bodies give rise to iron meteorites (core), stony-iron meteorites (between core and mantle) and basaltic achondrites (mantle)
- Chondrite parent bodies were never molten and thus did not differentiate

#### Iron meteorites





- Around 5.7% of falls
- Fe, Ni, Co make up 95% of the mass
- Giant Ni-Fe crystals (Widmanstätten) evidence for extremely slow cooling

# Stony-irons and stony (achondrites)



- Stony-irons have comparable amounts of metal and rock
- Achondrites are similar to basalt on Earth

#### Chondrites



- Chondrites are "primitive" meteorites
- Parent bodies never melted
- Contain variable amounts of 0.1 1.0 mm *chondrules* and cm *CAI* (Calcium-Aluminium rich inclusions)
- Fine-grained matrix between chondrules
- Presolar grains

# Ordinary chondrites

- 80% of all falls
- Depleted in Ca, Al, Ti
- Heated to above 500°C inside parent body
- Subclassification of ordinary chondrites:
  - H: high total Fe/high metallic Fe (42% of ordinary chondrites)
  - L: low total Fe (46% of ordinary chondrites)
  - LL: low total Fe, low metallic Fe (10% of ordinary chondrites)



# Fossil meteorites

- Fossil meteorites from Sweden and China show peak at approximately 480 Myr ago
- Work by Birger Schmitz from Lund University





# Asteroid collision



- Gas retention age of L chondrites around 500 Myr
- Peak in terrestrial craters around 480 Myr year ago
- Peak in fossil meteorites
- $\Rightarrow$  Major asteroid collision 480 Myr years ago

# Carbonaceous chondrites



- 5% of all falls
- Rich in carbon
- Parent bodies only moderately heated
- Contain organic compounds such as aminoacids
- Subclassification: CI, CO, CK, CM, CV, CR (Ivuna, Ornans, Karoonda, Michei, Vigarano, Renazzo)
- Most pristine bodies in the solar system

# Abundances in meteorites

- Elemental abundances of CI carbonaceous chondrites are very similar to the Sun's photosphere
- N, H, C, O too low in Cl meteorites – volatiles
- Li too low in the Sun destroyed as part of H fusion



- $\Rightarrow~$  The planets and the Sun formed from the same material
- $\Rightarrow$  Planet material was not expelled from the Sun

# Dating meteorites

Long-lived radionuclides

#### Extinct radionuclides

| Parent                                                                                                                                     | Daughter                                                                                                                                                    | Half-life                                                                    | : | Davant                                                                                                                                                                                                                | Doughton                                                                                                                                                                                                                 |                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                                                                                                            |                                                                                                                                                             |                                                                              |   | Parent                                                                                                                                                                                                                | Daughter                                                                                                                                                                                                                 | Half-life                                                                         |
| <sup>40</sup> K<br><sup>87</sup> Rb<br><sup>147</sup> Sm<br><sup>187</sup> Re<br><sup>232</sup> Th<br><sup>235</sup> U<br><sup>238</sup> U | $^{40}$ Ar, $^{40}$ Ca<br>$^{87}$ Sr<br>$^{143}$ Nd, $^{4}$ He<br>$^{187}$ Os<br>$^{208}$ Pb, $^{4}$ He<br>$^{207}$ Pb, $^{4}$ He<br>$^{206}$ Pb, $^{4}$ He | 1.25 Gyr<br>48.8 Gyr<br>106 Gyr<br>46 Gyr<br>14 Gyr<br>0.704 Gyr<br>4.47 Gyr |   | <ul> <li><sup>26</sup>AI</li> <li><sup>41</sup>Ca</li> <li><sup>53</sup>Mn</li> <li><sup>60</sup>Fe</li> <li><sup>107</sup>Pd</li> <li><sup>129</sup>I</li> <li><sup>182</sup>Hf</li> <li><sup>244</sup>Pu</li> </ul> | <ul> <li><sup>26</sup>Mg</li> <li><sup>41</sup>K</li> <li><sup>53</sup>Cr</li> <li><sup>60</sup>Ni</li> <li><sup>107</sup>Ag</li> <li><sup>129</sup>Xe</li> <li><sup>182</sup>W</li> <li><sup>131–136</sup>Xe</li> </ul> | 0.72 Myr<br>0.1 Myr<br>3.6 Myr<br>1.5 Myr<br>6.5 Myr<br>17 Myr<br>9 Myr<br>82 Myr |

 $\Rightarrow$  Long-lived radionuclides used for *absolute dating* of meteorites

 $\Rightarrow$  Short-lived (extinct) radionuclides used for preciser *relative dating* 

# Age of chondrules and CAI by lead-lead dating



- Both CAIs and chondrules are really old older than any rock on Earth
- CAIs are 2-3 million years older than chondrules
- The error in Pb-Pb dating is 0.5-1.5 Myr
- CAIs are used as t = 0 of the solar system

# The importance of <sup>26</sup>Al Decay of <sup>26</sup>Al:

$$^{26}$$
Al  $ightarrow$   $^{26}$ Mg ( $au_{1/2}$  =0.72 Myr)

- <sup>26</sup>Al decays by electron capture or positron emission and releases 1.8086 MeV gamma ray photon
- <sup>26</sup>Al created inside massive stars and injected in the solar nebula by supernovae and winds
- Life-time comparable to planet formation time-scale makes <sup>26</sup>Al excellent for relative ages
- Radioactive decay of <sup>26</sup>Al heated meteorite parent bodies to differentiation



Knödlseder et al. 2001

# Ages of chondrite components

- Long-lived radioisotopes give absolute age (but not very precise)
- Short-lived radioisotopes give relative age (very precise)



Sanders & Taylor 2005

# Chronology of meteorite parent bodies

- Need <sup>26</sup>Al to heat meteorite parent bodies
- Half-life of <sup>26</sup>Al is only 0.72 Myr

 $\Rightarrow$  Melting of meteorite parent bodies (planetesimals) by radioactive decay of <sup>26</sup>Al puts meteorite parent bodies in close connection with star formation

-4.567 Gyr: CAIs

• First condensations in the solar nebula

-4.566 Gyr: Differentiated parent bodies

- First > 30 km asteroids (or planetesimals) to form
- Melted and differentiated by decay of <sup>26</sup>Al

-4.565 Gyr: Chondrules

- Chondrite parent bodies formed when <sup>26</sup>Al no longer abundant enough for melting?
- Chondrules could form by shock heating or lightning, or from molten asteroids colliding in liquid rock splashes
- Droplets solidify into chondrules that are accreted on differentiated parent bodies

#### Solar nebula



# ⇒ Meteorites trace the first stages of planet formation

Graduate days (Lecture 1)

The Solar System