Muons - how to get high intensity

Paul Scherrer Institute in Villigen, Switzerland

Example: Muons - how to get high intensity

Paul Scherrer Institute in Villigen, Switzerland

World's most intensive proton beam 2.2 mA at 590 MeV: 1.3 MW of beam power

Example: Muons - how to get high intensity

- Rotating carbon wheel as target
- Hit with proton beam

Pion production

Muon beamlines

- Target serves many beamlines
- Usable intensity ~ $10^8 \,\mu/s$

How to get higher intensities?

Niklaus Berger – HGSFP School 2018 – Slide 23

Lepton flavour violation experiments

Niklaus Berger – HGSFP School 2018 – Slide 25

Only limited by number of muons and background suppression:

Experimental/technical challenge

History of LFV experiments

(2008))

Niklaus Berger - HGSFP School 2018 - Slide 27

History of LFV experiments

(2008))

Niklaus Berger - HGSFP School 2018 - Slide 28

Lepton flavour violating T-decays

Belle II at Super KEKB

Expect 5×10^{10} T pairs - branching fractions of 10^{-9} achievable

Niklaus Berger - HGSFP School 2018 - Slide 30

History of LFV experiments

(2008))

Niklaus Berger - HGSFP School 2018 - Slide 31

LFV Muon Decays

LFV Muon Decays: Experimental Situation

MEG (PSI) $B(\mu^+ \rightarrow e^+\gamma) < 4.2 \cdot 10^{-13}$ (2016) SINDRUM II (PSI) $B(\mu^{-}Au \rightarrow e^{-}Au) < 7 \cdot 10^{-13}$ (2006) relative to nuclear capture SINDRUM (PSI) B($\mu^+ \rightarrow e^+e^-e^+$) < 1.0 \cdot 10⁻¹² (1988)

Niklaus Berger – HGSFP School 2018 – Slide 33

- 2-body decay
- Monoenergetic e^+ , γ
- Back-to-back

Kinematics

- 2-body decay
- Monoenergetic e^+ , γ
- Back-to-back

Kinematics

µ⁻N → e⁻N

- Quasi 2-body decay
- Monoenergetic e⁻
- Single particle detected

[]⁺

Kinematics

- 2-body decay
- Monoenergetic e^+ , γ
- Back-to-back

Kinematics

- Quasi 2-body decay
- Monoenergetic e⁻
- Single particle detected

Kinematics

 $\mu^+ \rightarrow e^+ e^- e^+$

- 3-body decay
- Invariant mass constraint
- $\Sigma p_i = 0$

Kinematics

- 2-body decay
- Monoenergetic e⁺, γ
- Back-to-back

Background

- Accidental background
- Radiative decay

Kinematics

μ⁻N

 $\rightarrow e^{-}$

- Quasi 2-body decay
- Monoenergetic e⁻
- Single particle detected Background
 - Decay in orbit
 - Antiprotons, pions, cosmics
 Accidental background

Kinematics

 $\mu^{+} \rightarrow$

3-body decay

e⁺e⁻e

- Invariant mass constraint
- $\sum p_{i} = 0$ Background
 - Internal conversion decay

"Classic" technology and incremental upgrade

Searching for $\mu \rightarrow e\gamma$ with MEG

Niklaus Berger – HGSFP School 2018 – Slide 39

MEG Signal and background

Kinematics

- 2-body decay
- Monoenergetic e^+ , γ
- Back-to-back

Rates and accidentals

- Muon lifetime 2.2 µs
- Single muon in target experiments limited to $<450'000\ \mu/s$
- Corresponds to few $10^{12}\,\mu$ decays a year

- New experiments operate at $10^7 + \mu/s$
- Many muons on target at any time
- Accidental background

MEG Signal and background

Kinematics

- 2-body decay
- Monoenergetic e^+ , γ
- Back-to-back

- Not exactly in time
- Not exactly same vertex
- e^+ , γ energies somewhat off
- Not exactly back-to-back

MEG Signal and background

Kinematics

- 2-body decay
- Monoenergetic e^+ , γ
- Back-to-back

- Not exactly in time
- Not exactly same vertex
- e^+ , γ energies somewhat off
- Not exactly back-to-back

- e^+ , γ energies somewhat off
- Not exactly back-to-back

The MEG Detector

J. Adam et al. EPJ C 73, 2365 (2013)

COBRA Magnet

Gradient field gives constant bending radius independent of

J. Adam et al. EPJ C 73, 2365 (2013)

Niklaus Berger – HGSFP School 2018 – Slide 45

MEG Results

- 2009-2013 data
- Blue: Signal PDF, given by detector resolution
- No signal seen
- Upper limit at 90% CL:

 $BR(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13}$

A. M. Baldini et al. Eur.Phys.J. C76 (2016) no.8, 434

 $\cos\Theta_{e^+\gamma}$

MEG Resolutions

Niklaus Berger – HGSFP School 2018 – Slide 53

How the sensitivity can be pushed down?

• More sensitive to the signal...

nigh statistics

high resolutions

Angela Papa (Mainz Seminar)

More effective on rejecting the background...

LXe Calorimeter

Higher resolutions and efficiency with higher granularity.

Target Thinner target Active target option

> Muon Beam More than twice intense beam

Drift chamber

Higher tracking performance with long single tracking volume **Tin**

Timing Counter

Higher time resolution with highly segmented detector

ALL CONTRACTOR OF ALL CONTRACTOR

Radiative Decay Counter

Identify muon radiative-decays

Ryu Sawada, SUSY 2014

MEG Upgrade - Calorimeter

- ~4000 VUV sensitive SiliconPMs on entry face (new development with Hamamatsu)
- Better position and energy resolution
- Better efficiency

Ryu Sawada, SUSY 2014

MEG Upgrade - Drift Chamber

- New single volume drift chamber
- Lower Z gas mixture
- More space points per track
- Better rate capability
- Less material in front of timing counters

Ryu Sawada, SUSY 2014

Niklaus Berger – HGSFP School 2018 – Slide 57

MEG Upgrade - Drift Chamber Ageing

MEG Upgrade - Drift Chamber Ageing

FIG. 24: Gain drop in 1-year od DAQ time at $7 \times 10^7 \ \mu^+$ /sec.

MEG Upgrade - Timing Counter

- Many small scintillators
- Read-out by SiliconPMs
- On average eight counters hit by track
- 30 ps timing resolution per track

Ryu Sawada, SUSY 2014

Support structure

Plastic scintillator plate

Niklaus Berger - HGSFP School 2018 - Slide 60

Plastic scintillator

~12 cm

SiPM

PCB

~5mm

Ê

Ĵ

Where we will be

Searching for $\mu \rightarrow e$ conversion with Mu2e, DeeMee, COMET, PRISM

High rates without seeing high rates

Conversion Signal and Background

• Single 105 MeV/c electron observed

Backgrounds:

Anything that can produce a 105 MeV/c electron

- Primary proton beam
- Decay in Orbit (DIO)
- Nuclear capture (AlCap effort at PSI)
- Cosmics

Limitations of last experiment: SINDRUM II

- Beam induced background
- Muon rates

Beam induced background

- Proton beam produces pions, photons, (antiprotons) etc.
- Wait until things become better...

Muons from Fermilab...

- Re-use part of the Tevatron infrastructure
- Proton pulses every 1700 ns
- > $10^{10} \, \mu/s$

 Project X would give another 2 orders of magnitude at an energy below the antiproton threshold

... and J-PARC

+ $10^{11} \,\mu$ /s from 8 GeV/c protons

Deacy-in-orbit background

μ Decay in Orbit Spectrum for ²⁷Al

- Calculation by Czarnecki, Garcia i Tormo and Marciano, Phys. Rev. D84 (2011)
- Requires excellent momentum resolution

Experimental concept - DeeMee

Yohei Nakatsugawa, NuFACT2014

Sensitivity - DeeMee

• Expect 2.1×10⁻¹⁴ single event sensitivity for one year running

Yohei Nakatsugawa, NuFACT2014

Niklaus Berger - HGSFP School 2018 - Slide 71

Experimental layout - Mu2e

Mu2e Tracker

- Straw tubes in vacuum
- Outside of radius of Michel electrons

Mu2e CDR

Film tube

End plug

Wire

Crimp pin

Gas tube

Electric contact

Attachment band with electric ground

Fixation ring

Experimental layout - COMET Phase I

Comet CDR

Curved solenoid

111

Em

Y. Kuno

Drift chamber

0

Experimental layout - COMET Phase II

Niklaus Berger – HGSFP School 2018 – Slide 79

Conversion: Expected sensitivities

- Comet Phase I and DeeMee might get to ~10⁻¹⁴ as early as 2019
- Both Comet Phase II and Mu2e will start around 2020
- Should get single event sensitivities well below 10⁻¹⁶
- Prism/Prime and Mu2e with Project X explore paths to 10⁻¹⁸

Tracking it all:

Searching for $\mu^+ \rightarrow e^+e^-e^+$ with Mu3e

Niklaus Berger – HGSFP School 2018 – Slide 81

The signal

- $\mu^+ \rightarrow e^+ e^- e^+$
- Two positrons, one electron
- From same vertex
- Same time
- $\Sigma p_e = m_{\mu}$
- Maximum momentum: $\frac{1}{2} m_{\mu} = 53 \text{ MeV/c}$

Accidental Background

- Combination of positrons from ordinary muon decay with electrons from:
 - photon conversion,
 - Bhabha (electron-positron) scattering,
 - Mis-reconstruction

 Need very good timing, vertex and momentum resolution

Internal conversion background

 Allowed radiative decay with internal conversion:

 $\mu^+ \rightarrow e^+ e^- e^+ \nabla \overline{\nabla}$

• Only distinguishing feature: Missing momentum carried by neutrinos

momentum resolution

2 Billion Muon Decays/s

50 ns, 1 Tesla field

Detector Technology

- High granularity (occupancy)
- Close to target (vertex resolution)
- 3D space points (reconstruction)
- Minimum material (momenta below 53 MeV/c)

Detector Technology

- High granularity (occupancy)
- Close to target (vertex resolution)
- 3D space points (reconstruction)
- Minimum material (momenta below 53 MeV/c)
- Gas detectors do not work (space charge, aging, 3D)
- Silicon strips do not work (material budget, 3D)
- Hybrid pixels (as in LHC) do not work (material budget)

High-Voltage Monolithic Active Pixel Sensors

Fast and thin sensors: HV-MAPS

High voltage monolithic active pixel sensors - Ivan Perić

 Use a high voltage commercial process (automotive industry)

Fast and thin sensors: HV-MAPS

High voltage monolithic active pixel sensors - Ivan Perić

• Use a high voltage commercial process (automotive industry)

Fast and thin sensors: HV-MAPS

- High voltage monolithic active pixel sensors Ivan Perić
 - Use a high voltage commercial process (automotive industry)

- Implement logic directly in N-well in the pixel - smart diode array
- Can be thinned down to < 50 μ m

(I.Peri**ć**, P. Fischer et al., NIM A 582 (2007) 876)

Mechanics

- 50 µm silicon
- 25 µm Kapton[™] flexprint with aluminium traces
- 25 µm Kapton™ frame as support
- About 1‰ of a radiation length per layer

Cooling

- Add no material: Cool with gaseous Helium (low scattering, high mobility)
- ~ 250 mW/cm² total ~3 kW
- Simulations: Need ~ several m/s flow

- Full scale heatable prototype built
- 36 cm active length
- Vibrations studied using Michelson-Interferometer
- Can keep temperature below 70°C

Cooling tests

How to build the detector?

Momentum measurement

- 1 T magnetic field
- Resolution dominated by multiple scattering
- Momentum resolution to first order:

$$\sigma_{P/P} \sim \theta_{MS/\Omega}$$

• Precision requires large lever arm (large bending angle Ω) and low multiple scattering θ_{MS}

Detector Design

Timing measurements

Pixels: O(50 ns)

Scintillating fibres O(1 ns); Scintillating tiles O(100 ps)

Timing Detector: Scintillating Fibres

- 3 layers of 250 μm scintillating fibres

 Read-out by silicon photomultipliers (SiPMs) and custom ASIC (MuTRiG)

• Timing resolution O(0.5 - 1 ns)

Timing Detector: Scintillating tiles

Back

- Test beam with tiles, SiPMs and readout ASIC
- Timing resolution ~ 80 ps

Mu3e data acquisition

Streaming Readout

Niklaus Berger – HGSFP School 2018 – Slide 135

Getting data out

 No space, cooling, power in detector for buffer, digitalization, trigger electronics

• Really?

Use custom integrated circuits!

Digital electronics is tiny....

Fast links on thin cables

• Up to 1.6 GBit/s over one differential pair to an FPGA

 Multiplex data and send via optical link 10 GBit/s easy, more possible

Data Acquisition

• Or: Additional selection
Online filter farm

Online software filter farm

- PCs with FPGAs and Graphics Processing Units (GPUs)
- Online track and event reconstruction
- 10⁹ 3D track fits/s achieved
- Data reduction by factor ~1000
- Data to tape < 100 Mbyte/s

Sensitivity - Mu3e Phase I

- Start 2020
- Phase II with a high intensity muon beam line at PSI under study

History of LFV experiments

(2008))

Beyond 10⁻¹⁶

- No point if we find something before
- Requires new technologies, new beams
- Start thinking now...

If we find something...

Z-dependence

Decay distributions!

Dipole operator $em_{\mu}A_{L}\overline{\mu_{L}}\sigma^{\mu\nu}e_{R}F_{\mu\nu}$

Efficiency is 13%

Ann-Kathrin Perrevoort

Decay distributions!

Vector 4-fermion operator $(\overline{\mu_R}\gamma^{\mu}e_R)(\overline{e_R}\gamma^{\mu}e_R)$

Efficiency is 22%

300

250

200

150

100

50

