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Overview

 Introduction
 Semiconductors

 Interaction of charged particles and photons with matter

 Charge carrier transport

 Hybrid pixel detectors
 Application in tracking / vertexing and imaging

 Readout (electronics)

 Radiation damage and tolerance

 Active pixel detectors
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Semiconductor Detectors (1)

 A solid state detector which is segmented into 
sensing elements
 A charged particle or a gamma ray produces a 

signal by ionisation

 Pulse processing electronics amplifies the signals 
and distinguishes signals from noise

 Signal gives true 1- or 2-dimensional spatial 
information
 i.e. the position information is not obtained by 

combinations of measurements (e.g. x/y, r/drift time)

 Typical segmentation: strip and pixels (will focus on 
the latter)
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Semiconductor Detectors (2)

 Different flavours of semiconductor detectors
 Construction type:

 Sensor and signal processing electronics in two separate 
chips with 1:1 cell correspondence → strips and hybrid 
pixel detectors

 (Part of the) Signal processing electronics in sensor chip 
→ active pixel detectors

 Signal processing:
 Single event readout
 Counting
 Integrating

imaging

tracking
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Applications
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Introduction: 

Semiconductors

(mostly actually: Silicon)
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Silicon

• In nature Si usually occurs as 
silicon dioxide (quartz) 

• For sensors pure crystalline 
silicon is used 

• Silicon crystals:

 Crystal structure: diamond lattice

 Each atom has 4 covalent bindings 
to its (equidistant) neighbours

 Lattice constant 5.43 Å

 Energy levels of atoms form a band 
structure

Smithsonian Magazine
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Semiconductors

Insulator

Valence band

Conduction band

Eg >4eV

Semiconductor

Valence band

Conduction band

Eg
~1-2eV

Conductor

Valence band

Conduction band

Conduction band

Valence band

Partially filled
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Band gap

• Band gap energies Eg at 

room temperature:

 Si 1.12 eV
Ge 0.67 eV
GaAs 1.42 eV
Diamond 5.5 eV

• Slight temperature dependence, e.g. Si at 0K: Eg = 1.17 eV

• At 0K: all states in the valence band filled, all states in the 
conduction band empty

• At higher temperatures: electrons can move to the conduction 
band, due to thermal excitation → Fermi-Dirac statistics

Valence band

Conduction band

Eg

E

EV

EC
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Electrons and Holes

• Moving an electron from the valence to the conduction band leaves an 
unoccupied state in the valence band = hole

• Electrons in the conduction band and holes in the valence band can be treated 
similar to free particles, however with a different effective mass mn or mp, resp.

• In the crystal this is equivalent to removing an electron from a covalent bond 
between two Si atoms

SiSi Si

SiSi Si

SiSi Si

e-

Valence band

Conduction band

EF

E
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Charge Carrier Concentration

 Concentration of electron and holes: n, p
 Defined by Fermi-Dirac statistics F(E) and state 

density N(E):

 Un-doped (intrinsic) semiconductor: n=p=:n
i

 From Fermi-Dirac: 

                                    and

 Example, in Si: N
C
 = 2.8×1019 cm-3, 

N
V
 = 2.65×1019 cm-3 → n

i
 ~ 1×1010 cm-3
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Fermi Level

 Fermi Level E
F
: from n = p follows

 i.e. E
F
 is typ. In the centre of the band gap 
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Extrinsic Semiconductors

• The property of semiconductors can be modified by 
adding impurities to the lattice (“doping”) 

• Typically the dopants are either

• Atoms with 5 valence electrons (donors), 
group V elements like phosphorous or arsenic
→ n-type silicon

• Atoms with 3 valence electrons (acceptors), 
group III elements like boron
 → p-type silicon

• Typ. doping concentrations: 1013 cm-3 to 1018 cm-3

• Due to n·p=const., increasing one type of charge 
carrier, the other decreases (majority and minority c.c.)
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N-type Doping

• Donor provides one weakly bound extra electron

• Equivalent to: 

 Additional energy levels very close to the conduction band

 EF closer to conduction band

SiSi Si

SiSi

SiSi Si

e-

D

Valence band

Conduction band

EF

+++++++

E
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P-type Doping

SiSi Si

SiSi

SiSi Si

A

h

Valence band

Conduction band

EF

- - - - - -

E

• Acceptors leave a “broken bond” (hole) that is free to move

• Equivalent to: 

 Additional energy levels very close to the valence band

 EF closer to valence band
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Doping Summary (1)

• Intrinsic

• n-type

• p-type

From Sze, Semiconductor Devices 1985
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Doping Summary (2)

• To summarise:

 In intrinsic semiconductors the Fermi-level is close to the 
middle of the band gap

 In p-type semiconductors the Fermi-level moves towards the 
valence band 

 In n-type semiconductors the Fermi-level moves towards the 
conduction band

• Helps understanding what happens at interfaces:

 Two sides go into thermal equilibrium

 → Fermi-level needs to line up
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Introduction: 

Interaction of particles with matter
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dE/dx: Bethe-Bloch
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Fluctuations in dE/dx

m.i.p. in Silicon
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-Electrons

Measurement in a gas-filled 
chamber

Simulation of δ-range with 
(dots) and without (circles) 
multiple scattering
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Absorption of Photons

Absorption in carbon

Absorption in lead
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Compton Scattering

e--energy (MeV)

re
l.
 i
n
te

n
si

ty

E

=0,5MeV

E

=1MeV

E

=1,5MeV
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Measured Photon Energy
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Shape of Created Charge

 High-energy charged particles: particle passes through the 
detector, leaves a track of e-h-pairs with uniform density

 X-rays: Leaves a nearly point-like charge cloud. A beam of 
X-rays is attenuated in intensity; the absorption length 
depends on the energy

 Visible light and UV: same as X-rays, but with very short 
absorption length (typically < 1 μm in Si), small signal

 α-particles: similar to high-energy charged particles, but 
with high ionisation, typically stopped after a few μm 
(energy dependent)

 β-particles: “between” high-energy charged particles and 
α-particles. Depending on energy, they can even pass 
through the sensor
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Introduction:

Charge carrier transport
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Drift-mobility
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Charge Carrier Transport

 Combining charge drift, diffusion and magnetic 
field effect:

 In a segmented detector all three effects 
determine the position and shape of the hit 
clusters
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Hybrid Detectors

the most common silicon detector type!
h_GWD0bp
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Repeat: Doping Summary

• Doping summary:

 In intrinsic semiconductors the Fermi-level is close to the 
middle of the band gap

 In p-type semiconductors the Fermi-level moves towards the 
valence band 

 In n-type semiconductors the Fermi-level moves towards the 
conduction band

• Use to understand what happens at pn-junction:

 Two sides go into thermal equilibrium

→ Fermi-level needs to line up
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pn Junction (1)

 Difference in charge carrier concentrations 
leads to diffusion current across junction

 Opposite carriers recombine and lead to fixed 
space charges in junction region
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pn-Junction (2)

 Generated electric 
field leads to drift 
current counteracting 
the diffusion current

 In thermal 
equilibrium: built-in 
voltage U

bi
 – can be 

calculated from lining 
up of Fermi levels or 
from space charges
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pn-Junction as Detector (3)

space-charge 
density

thin, highly doped p+ (~1019 cm-3) layer 
on weakly doped n- (~1012 cm-3) substrate 

p+ n-

electrical field

potential
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pn-Junction as Detector (4)

 Detection mechanism:
 pn-junction under 

reverse bias: depleted 
bulk

 Charged particle or 
photon can create free 
eh-pairs

 Field created by external 
bias voltage separates 
e,h and causes drift

 Charge can be 
measured on surface 
electrodes
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 One electrode 
segmented into strips
 Doping of opposite type 

applied to bulk: can be 
done with a mask

 pn-junction in each strip: 
isolated strips!

 Each strip is connected 
to one electronic 
readout channel

Strip Detectors (1)

 Strip pitch p = 10...100 μm, provides position 
information of precision σ ≤ p/√12
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Strip Detectors (3)

Read-out electronics Si detector with strip electrodes
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Strip Detectors (4)

 2D information 
by two layers of 
crossed strips
 Two separate 

Si-devices

 Strips in both 
electrodes
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Strips: Ambiguities

“ghost” hits



7-10 Apr '15 J. Große-Knetter, Semiconductor detectors 40

“ghost” hits

Strips: Ambiguities
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 Segment one electrode into 
pixels

 True 2D-information, no problem 
of ambiguities at high track 
densities, OK for photons

 Smaller electrode size brings 
other benefits

 Lower leakage current → lower 
noise, better radiation tolerance

 Lower capacitance → lower noise

 … but also complications

 Large number of channels, 
proportional to sensor area

 Signals of each channel needs to 
be processed

Pixel Detectors
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Concept realised as hybrid pixel detector

Pixel Detectors

Will now look at three main parts of a hybrid:

sensor  -  readout chip  -  interconnection
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Connection to Readout (1)

• AC-Coupling 
(in particular for strip sensors)

• (Fast) signal passes through a 
coupling capacitor to the 
electronics

• Potential is established via bias 
resistor

• Leakage current flows through 
the bias resistor and is not 
integrated

• Bias resistor and coupling 
capacitor usually integrated on 
the sensor

Vbias
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Connection to Readout (2)

• Bias resistor + coupling capacitor 
for each pixel is difficult

• AC-coupling not necessary in pixel 
detectors: leakage / pixel small

• DC-coupling: 

– Direct connection between 
sensor and electronics

– Ground potential is established 
by readout electronics

 Problem: testing before 
connection

– Leakage current needs to be 
compensated by electronics

Vbias
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Punch-through

• Consider two implants: one floating, one on fixed potential (e.g. ground) 

• If no (or a small) back side potential is applied both implants will be 
surrounded only by a small intrinsic depletion zone

• If the back side potential is increased 

 the floating implant will follow the potential

 the depletion region of the grounded implant will grow

• If the one depletion region reaches the other, a hole current will flow from the 
floating to the grounded implant 

• The potential of the floating implant is now determined by (not equal to) the 
grounded implant.

From Rossi, Fischer, Wermes, Rohe, Pixel Detectors
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Bias Grid

• Must test sensor for quality 
assurance

• Implement bias structure on 
segmented side, biasing all 
pixel implants via punch 
through

• Once connected toreadout, 
bias structure is not used any 
more 

• I-V-curves can be done with 
two probe needles

Design of an ATLAS Pixel sensor with bias grid

bias+punch-trough contact

Pixel contact
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Sensor Edge

• Bias voltage is applied at the back plane, pixel implants are 
grounded by the electronics

• Problem: the cutting edge of the sensor is mechanically 
damaged by the cutting and therefore conductive

• The surface between cutting edge and active area will therefore 
be between ground potential and the bias voltage

 The exact value depends on the conductivity but also on environmental 
conditions (humidity, dust etc.)

• Two extreme cases show the consequences for reliable 
detector operation (next slide)
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Sensor Edge

• First case (a): segmented side is at ground level

• In this case the depletion zone reaches the cutting edge

• The crystal defects inject a large leakage current into the depletion zone

• Second extreme (b): the surface adjusts to the bias potential

• A (conductive) electron accumulation layer forms due to the positive potential, 
such that the bias potential reaches up to the implant

• This leads to a high local electric field and the risk of breakdown

From Rossi, Fischer, Wermes, Rohe, Pixel Detectors
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Multi Guard Ring Structures

• Solution: guard ring structures

• Structure of several floating p+-rings around the active area

• The rings bias “themselves” via punch-through with a  potential 
drop between each ring and the next

• Ideally: outer ring at bias potential, such that the space charge 
region does not reach the cutting edge

From Rossi, Fischer, Wermes, Rohe, Pixel Detectors
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Sensor Production (1)

• Differences to microelectronics:

• Sensor needs silicon with low doping concentration

• Complete volume and backplane are important

• Substrate material:

• Resistivity (Neff) determines the voltage needed for full 

depletion 
→ high resistivity material needed

• Most sensors are from floatzone material (alt.: Czochralski, 
but difficult for low Neff)
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Sensor Production (2)

• Floatzone process • Wafer cutting
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Sensor Process Flow (Example)

From: Fischer, Rohe, Rossi, Wermes: Pixel Detectors
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Sensor – Schematic and Reality

P. Riedler

Four pixels of a CMS barrel pixel sensor
ALICE sensor wafer
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The Readout Chips

• Signal processing steps in the 
readout chips:
 Amplification of sensor signal

 Hit decision

 Hit storage / counting

 Trigger validation (HEP)

• First two steps are always done
in the pixel cell, in some 
designs more 
 Readout architecture depends on hit rate, 

trigger rate, trigger latency and geometric
constraints

•  Transfer of hit data (single hits with timestamp (tracking) or hit 
counts (imaging)) to periphery, periphery serialises digital 
information

From: Fischer, Rohe, Rossi, Wermes: Pixel Detectors
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 A Pixel Unit Cell

• Integration of signal charge

• In 250 μm Si: Most probable value 19000 e, but consider charge sharing 
between pixels, smaller charge depositions, radiation damage

• Hit decision

• Swiss army knife: many (conflicting) requirements: fast, low noise, low power 
consumption
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Readout Chip

13.5 mm

1
5

.8
 m

m
P.Riedler

Pixel cell (e.g. 50 µm x 425 µm)P. Riedler

ALICE

Bump bonding pad

ASIC, custom design

Peripheral region 
with wire bond pads

• Usually several smaller readout 
chips read out one sensor tile

– Sensor size is limited by wafer size and 
bump bonding requirements (flatness)

– Electronics chip size limited by yield 
considerations (+process rules)



7-10 Apr '15 J. Große-Knetter, Semiconductor detectors 57

Wire Bonding

• Connection between readout chip and further electronics (and 
for strips: readout chip and sensor) usually done with wire 
bonds

 Wires are typically made of Au, Al, Cu

 Wire diameters range from 15 to several 100 μm

 Two main types: ball bonding (~1970) and wedge bonding (~1960)

 Ball bonding uses gold or copper wires and usually requires heat. 
Wedge bonding uses gold or aluminium wires and requires heat (Au) or 
ultrasound (Al)

 In HEP / Imaging usually wedge bonding with Al wires is used. Typical 
wire diameters are in the order of ~25 μm
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Wire Bonding

Wire Bonding Sequence / I. McGill, CERN
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Wire Bonding

ALICE SPD/CERN
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Bump Bonding

• Connection between chip and 
sensor is established with bump 
bonds

• Process used in industry, but 
pitches needed in HEP are typically 
smaller than industry standard

• Two main process parts:

• Bump deposition

• Flip-chip assembly

• Bump deposition usually done on 
wafer-level

• Electronics wafers are thinned after 
bump deposition 
(e.g. 750 μm → 150 μm)

• Two main techniques in HEP:

• Electroplated solder bumps 

• Indium bumps

Fraunhofer IZM
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Solder Bumps

©VTT 

Pb-Sn

UBM

Chip

~20-25µm

Fischer, Rohe, Rossi, Wermes: Pixel Detectors
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Indium Bumps

Alenia Marconi Systems

Alenia Marconi Systems, Rome
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Indium with Reflow

• The standard In process does not include a reflow step

• One worry: small distance between readout chip and sensor could lead to 
noise injection

• Process used in CMS (pitch 100 μm): Indium bumps with reflow

→ distance sensor – readout chip approx. 15 μm 

Ch. Broennimann et al., NIM A 565 (2006) 303 – 308
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Bump Bonding
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What can go wrong

• Many possibilities for failures:

• Missing or merged bumps
(single dead pixels) 

• Mechanical defects, from chipped 
edges to broken wafers
(“best” case: increase of currents, 
worst case: complete chips lost)

• Incomplete removal of photo 
resist 
(if on wire bond pads, no bonding 
possible)

• …

→ Careful inspection and testing 
after all process steps

ALICE SPD/CERN

S. Savolainen-Pulli/VTT
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Interconnect

• Future trends in Interconnect:

 Smaller bump bond pitches

 Lead free bump bonds

 Reduce price per area

 Reduce the number of wire bonds 
→ 3D-Integration / vertical interconnect
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Hybrid Pixel Detectors

• Pros and Cons of Hybrid Pixel Detectors

 Chip and Sensor can be optimised independently (they are not produced 
in a common process, even different materials are possible)

 Fast, parallel matrix readout possible

 Radiation hardness 

 Relatively large signal (~20000 e in 250 μm) 

 Mature technology

 Challenging interconnect technology

 Material budget: sensor + electronics chip + cooling + support are in the 
active area

 Pixel cell size directly coupled to the electronics cell size
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• Example: ATLAS Pixels

 Module made of 1 sensor tile 
and 16 FE chips

 1.6 x 6.1 mm active area

 328 x 144 = 47232 pixels

 Most pixels: 50 x 400 μm2 size

 Digital readout, pulse height is 
measured with “time over 
threshold” (ToT)
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ATLAS Pixel FE Cell
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• Length of preamplifier (and discriminator) pulse depends on 

 Deposited charge: Used for charge measurement from ToT

 Feedback current: Can be used to homogenise the ToT Behaviour

 Threshold
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The ATLAS Pixel Detector

• Full detector consists of three 
barrel layers and two end 
caps with three discs each 

• 1744 modules

• ~ 2 m2 active area

• 80 Million channels
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Medipix

• Medipix 2: example of an imaging chip for hybrid pixel detectors

 Readout logic in the pixel cell substituted by counter

 Double discriminator for energy windowing

IEEE TNS 49, 5 (2002), 2279 - 2283
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X-Ray Transmission Radiography

• Medipix: X-ray transmission image of termite worker body (left) 
and detail of its head (right). 

 (Magnified 15x, time=30s, tube at 40kV and 70A)

• Soft tissue organism → Good model to test the sensitivity

  

100 m 

S. Pospisil, Vertex 2006



7-10 Apr '15 J. Große-Knetter, Semiconductor detectors 74

Applications

Charged Particles Photons

                      in     in

                 Tracking                           Imaging
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I) Hybrid Pixel Detectors in Tracking
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Aim of Trackers

• Measure trajectory of charged particles

• Measure several points along the track and fit curves to the points (helix)

• Extrapolate tracks to the point of origin

• Determine positions of primary vertices and identify interesting collision 
vertex 

• Find secondary vertices from decay of long-lived particles (lifetime 
tagging)

• Use the track curvature to determine the particle momentum
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Primary vertices
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Lifetime Tagging

• Tracks from secondary 
vertex have significant 
impact parameter with 
respect to primary vertex

• Example of a fully 
reconstructed event from 
LHCb with primary, 
secondary and tertiary 
vertex
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Tracking Requirements

• Spatial resolution

 Single point resolution

 Double track resolution

• Efficiency (100%) / Noise

• As little material as possible

 Multiple scattering 

 Photon conversion 

• Time resolution 

• Radiation hardness
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Vertex Resolution

• Simple case: Two tracking layers / measurement points d1/2 

at radii r1 and r2, extrapolation to r = 0

• Error propagation:

d0=d1−m⋅r1=d1−
d2−d1

r2−r 1

⋅r1

d1⋅(1+
r1

r2−r1
)−d2⋅

r1

r2−r1

d1⋅
r2

r2−r1

−d 2⋅
r1

r2−r 1

σ d 0

2
=

r2
2 σ d1

2 +r1
2 σ d2

2

( r2−r1 )
2

r1 r2
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• Error of inner point is weighted with outer (larger) radius 
→ Spatial resolution of inner layer particularly important

• For equal resolutions:

σd0

2 =
r2

2 +r1
2

(r2−r1)
2

σd
2

(
1

(1−r1/r2 )
2
+

1

(r2/r1−1 )2 )σ d
2

σ d 0

2
=

r2
2 σ d1

2 +r1
2 σ d2

2

( r2−r1 )
2
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• Tracker design:

 Vertex resolution suggests to make the inner radius as small as possible 
and the outer radius as large as possible

 Limit 1 (Inner radius): Beam pipe, track density, radiation damage

 Limit 2 (Outer radius): Cost
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Multiple Scattering

• Additional contribution due to multiple scattering

• For a track with θ ≠ 90o:

• This results in: 

Constant term depending on geometry, term depending on 
material, decreasing with pT

 

r→
r

sin θ
, x→

x
sin θ

θ0=
13 . 6 MeV

βcp
z √x /X0 [1+0. 038ln (x /X0) ]

σ d0√r2
2σd1

2 +r1
2 σ d2

2

(r2−r1)
2

⊕ r
p sin3/2 θ

13. 6 MeV √x
X0

a⊕b
pT sin1 /2 θ
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IP Resolutions

• CMS/ATLAS: 

 20μm @ 20 GeV

 100μm @ 1 GeV

• ALICE better resolution 
in particular at low pT, 

due to less material

S.Alekhin et al. HERA and the LHC -  A workshop on the implications of
HERA for LHC physics:Proceedings Part B, arXiv:hep- ph/0601013.
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Single Point Resolution

• Simplest example: 100% single hits; 
Only the pixel containing the track 
fires, independently of the track 
position inside the pixel

• Reasonable assumption: particle 
passage was in the middle of the hit 
pixel

• Reconstruction error depends on the 
true position of the track

• Assuming tracks are equally 
distributed over the width of 1 pixel: 
residual distribution is box distribution
with width equal to the pixel pitch

-
-

-
-

+

+

+
+

Hit

p

p/2

-p/2
xtrue

Δx=xrec-xtrue

Δx

dN/dΔx

p



7-10 Apr '15 J. Große-Knetter, Semiconductor detectors 86

Single Point Resolution

• Close to the pixel boundary charge 
will spread over two pixels and 
cause a hit in both pixels

 Reconstruction: assume centre between 
two pixels

• One can consider the residual 
distribution as the sum of two box 
distributions; one for double and 
one for single hits

 Their widths depend on the width of the 
region around the pixel border that 
creates double hits

 Nicely visible if the diffusion width is 
much smaller than the pixel size 
(example: 400 μm direction of ATLAS 
pixels)

 (Of course in reality the edges are 
smeared with the diffusion profile)

Δx

dN/dΔx

Single hits
Double hits
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Single Point Resolution

● Reconstruction error = std. deviation defined by probability 
distribution

● For a normalised box distribution centred around 0, with width p, 
this yields:

(note: by construction this is not a Gaussian error, e.g. strictly speaking there will not be 68% 
of the data within 1σ around the mean)

• This is what is usually quoted as resolution with binary readout; 
the value improves with double hits

 Optimal value: 50% double hits – in principle halves the pixel size

σ x=√ 1
p
∫
− p/2

p/2

x2 dx=
p

√12
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• Improve resolution with pulse height 
information

• Simplest method: linear inter-
polation, using the charge deposited 
in the edge pixels of the cluster:

• The hit position is reconstructed from 
the geometrical centre of the cluster 
and Ω:

with Δx calibrated from data (plotting 
the residual vs. the charge sharing)

Ω=
q last

q first +q last

x=xcentre +Δx(Ωx−
1
2 )

Analogue Readout
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η-Method

• Standard method in strip detectors: η-algorithm

• Use the signal of the two highest pixels S
left

, S
right

 and define

• η values range from 0 to 1; values are typically distributed non-uniformly

• Assuming the track positions are uniformly distributed, one needs a 
transformation from the measured η-distributions to a uniform distribution. 
This is given by integration of the measured η-distribution

• For a measured value η0 the corrected hit position is

η=
Sleft

S left +Sright

f (η0)=
1
N
∫
0

η0

dN
dη

dη

x=xleft +p⋅f (η0 )
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II) Hybrid Pixel Detectors in Imaging
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• Hybrid Pixel Detectors in Imaging

• Useful energy range for Si: ~ 4 – 35 keV

• Large dynamic range with linear response

• Low contrast detectability → Possible dose reduction

• No sensitivity to dark currents → no dark frame correction necessary
(and allows for measurements with low intensity and long exposure time)

• High maximum count rates possible, allows for high intensity 
measurements
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X-Ray Transmission Radiography

• Pixel detector in counting mode 
measures an intensity profile which 
can be used to calculate the 
absorption

• Absorption depends on 

• Radiation type and spectrum

• Object composition and density

• Possible sources:

• X-ray tube 

• Synchrotron radiation

• Tomography: rotate object and 
prepare 3D-image from 2D-
projections 

X-ray source

Object

Detector
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Point Spread Function

• Spatial resolution in imaging can be characterised by the point spread 
function PSF, i.e. by the image intensity I for a point-like object

• In a linear system the image of an arbitrary object O is a convolution

Where P is the point spread function:

I (x,y )=(O∗P ) (x,y )=∫
−∞

+∞

∫
−∞

+∞

O ( x ', y' )P (x−x ', y− y' )dx'dy'

O 0( x ,y )=δ ( x,y )

PSF ( x,y )=(O0∗P ) ( x,y )=∫
−∞

+∞

∫
−∞

+∞

δ (x ', y' )P ( x−x ', y− y' )dx'dy' =P (x,y )
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Test of Spatial Resolution

• Illuminating detector with known pattern

100
m

50m

=>Resolution about 65m!

S. Pospisil/Prague



7-10 Apr '15 J. Große-Knetter, Semiconductor detectors 95

Aliasing

• A pixelated system samples the image with a certain frequency which gives 
the problem of aliasing

• This can be avoided by “oversampling” with an angulated slit: putting the slit 
under a small angle w.r.t the segmentation yields several measurements 
with a slightly shifted phase

Source: wikipedia.org ;-)
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Flat Field Correction

• Uniform object does not necessarily result in a uniform image

• Example from photography: vignetting 

• Main problem in imaging: pixel-to-pixel variations of the 
threshold can change the count rates

• For low energies or

• When charge is split between several pixels (threshold variations 
effectively change the pixel size)

• Flat field correction: take image with uniform illumination to 
obtain correction factors for each pixel 

• Since the efficiency is energy dependent, this needs to be done 
for the same energy as the real exposure
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Beam Hardening

• Beam hardening: When polychromatic X-rays pass through an 
absorber, the soft part of the spectrum is absorbed more 
strongly
→ the higher the traversed absorber thickness the harder the 
spectrum

• Problem: The pixel efficiency is energy dependent

• Due to beam hardening the flat field correction needs to be 
done for different amounts of absorber 
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Beam Hardening Calibration

• The flat field correction has to be done with several absorbers of different 
thickness

• Absorber thickness should cover the range of the object to be inspected

IEAP, Czech Technical University, Prague
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Example: Flat Field Correction and Beam Hardening

• Left: flat field correction done without absorber – noise in dark regions

• Middle: flat field correction done with 0.16 mm Al – noise in bright regions

• Right: flat field correction adapted according to the measured attenuation

IEAP, Czech Technical University, Prague
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Imaging Readout

• Considerations for imaging readout chips:

 Change triggered readout to single photon counting (using a shutter)

 HEP pixels have the wrong shape (usually rectangular for momentum 
measurements in a magnetic field) → move to quadratic

 Chips for HEP applications (in particular their analogue parts) are usually 
tailored to high ρ Si and one charge carrier type. For imaging one should 
foresee use of other materials and both carrier polarities

• Some newer developments:

 Allow charge summing of several pixels around the hit one to improve 
spectroscopic performance (Medipix 3)

 Perform photon counting and charge integrating simultaneously in each 
pixel (CIX)
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Crystallography - PILATUS

Ch. Brönnimann / PSI
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Crystallography - PILATUS

Ch. Brönnimann / PSI
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Pilatus

• Pilatus detector system for 
x-ray crystallography

 Here: Pilatus 6M with 
~6 million pixels

 Total active area: 
424 x 435 mm2

• Pilatus chip:

 Fast counting chip with 20 bit 
dynamic range

 Count rate up to 1.5 MHz / pixel
PSI Villigen
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Crystallography - PILATUS

Ch. Brönnimann / PSI
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Readout

(signal formation & electronics)
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Small Pixel Effect

Considered 
electrode

weighting 
potential
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CMOS Amplifier

T
1

T
2
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Charge Sensitive Amplifier

T
2

T
1
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Thermal Noise

• Thermal noise

 Thermal fluctuations of electron distribution

 From thermodynamics: noise power spectrum in a resistor R:

 Ideal resistor with serial voltage noise source or parallel current noise 
source

 “white” noise, i.e. independent of frequency

(in2 / en2 often used to denote spectral current / voltage noise densities)

kTRe
f

U
n 4

d

d 2
2



R

kT
i

f

I
n

4

d

d 2
2


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Low Frequency Noise

• 1/f-noise

 Various sources depending on the component

 1/f behaviour is observed when noise sources include 
several processes with different time constants 
 E.g.: trapped charges that are released with different time constants 

depending on the trap depth 

1with
2

 
f

A

df

dU
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Shot Noise

• Shot Noise:

 Shot noise is due to the discrete nature of charge 

 Consider a current I in a short time interval Δt

 The number of electrons crossing a boundary along the current path is 
given by 

 Statistical fluctuation in the number of charge carriers:

 Spectral density: in2 = 2Ie

e

tI
N




 
t

eI

t

Ne

t

Ne
I

NN


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


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


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Shot Noise

• N.B.: Shot noise requires the charge carriers to be independent 
of each other

• Also, shot noise (differently than thermal noise) requires a 
current caused by an external voltage; thermal noise is present 
even without an external voltage
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ENC

• The output noise has to be set into relation with a typical signal 
amplitude.

• Raw noise values (rms output voltage) are 

• Difficult to interpret 

• Difficult (impossible) to measure 

• Use equivalent noise charge ENC

• Interpretation of noise values is now straightforward, 
measurement is easily possible if a calibrated charge deposition 
(injection) is possible

e 1 of chargeinput for  tageoutput vol

(rms) tageoutput vol
ENC
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Noise Filtering

• Total ENC filtered by shaping 
(time constant τ) has three 
contributions

 Different dependence on the 
shaping time constant (const, ~τ, 
~1/τ)
→ Noise as a function of the 
shaping time has a minimum / 
there exists an optimal shaping 
time

 Two of the contributions increase 
with increasing sensor 
capacitance, the third one with 
increasing leakage current 
→ Advantage of pixel detectors 
w.r.t. strip detectors, as both are 
much smaller

total

Shot noise

Thermal noise

1/f-noise
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Radiation damage and tolerance
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Classification of Defects

Si atoms

non-Si 
atoms

Cluster 
defects
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Displacement Damage Cross Section

Sums all 
processes

Cross-
sect.

Probability 
for PKA

Fract. of non-
ionising energy loss
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Leakage Current

 Increase in leakage current:
 Normalised to volume V: independent of Si-type

 Depends linearly on fluence

 Clear annealing effects
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Effective Doping Concentration (1)

 No. of acceptor-type states increase with fluence

 When starting n-type: type-inversion

μ

Φ
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Effective Doping Concentration (2)

 Also annealing effect here, but in addition 
reverse annealing
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n-in-n Sensors

• n-in-n sensor

 n-in-p after type inversion, allows underdepleted operation
(next slide)

 Reminder: voltage needed for full depletion increases for large fluences 
 At some point it might not be possible to fully deplete the sensor

 Pixels need to be isolated from each other

 Several possibilities: 
 P-stop: localized high-dose p-implant

 P-spray: low-dose p-implant over the full surface

 Criteria: avoid high local electrical fields that could lead to breakdown; 
consider situation before and after irradiation
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Different Sensor Options

• After type inversion p-in-n (then p-in-p) sensors can be 
operated only fully depleted; otherwise pixels are short-circuited
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Moderated p-spray

• Use two-step profile in the doping concentration: a higher concentration to 
guarantee the isolation and a lower concentration close to the n+-implant to 
reduce the maximum electric field

• Good high-voltage stability before and after irradiation

• Profile can be obtained by changing the process order: do p-spray implant 
after the adding e.g. the nitride layer (which is there anyway) 
→ no additional mask step

From Rossi, Fischer, Wermes, Rohe, Pixel Detectors
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Example Defect Engineering

 Measure energy levels in band gap, e.g.:
 Thermally Stimulated Current (TSC) – charge 

injected cold → heating under bias → charge 
released when T corresponds to E-level

 Oxygen-enrichment 
(DOFZ) beneficial
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Trapping

 Trapping time describes loss of signal

 Trapping time inversely prop. to fluence, little 
material dependency

5 101 5 102 5 103

annealing time at 60oC [min]

0.1

0.15

0.2

0.25

In
ve

rs
e 

tr
ap

pi
ng

 ti
m

e 
  1

/
 [n

s-1
]

data for holesdata for holes
data for electronsdata for electrons

24 GeV/c proton irradiation24 GeV/c proton irradiation
eq = 4.5.1014 cm-2 eq = 4.5.1014 cm-2 

[M.Moll; Data: O.Krasel, PhD thesis 2004, Uni Dortmund][M.Moll; Data: O.Krasel, PhD thesis 2004, Uni Dortmund]
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Charge Movement in MOS

 Charge from ionisation trapped at Si-SiO
2
 

boundary – if in operation

starts here
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Consequences for detector design

I) Radiation Damage in Electronics
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Radiation Damage in Electronics

• Radiation damage effects in electronics

• Oxide charges lead to threshold shifts in MOSFETs 

• For thick oxides (thickness > 12 nm) density of created interface states 
depends by a simple power law on oxide thickness

• For thin oxides (thickness < 12 nm) density of interface states is significantly 
below this power law (explanation: tunneling)
(see IEEE TNS, Vol. 33, No. 6 (1986)1185 – 1190)

• Improvement in this effect comes “for free” by deep submicron technologies 
(e.g. gate oxide thickness in .25 μm: ~ 5 nm)

 Oxide charges lead to conducting channels between drain/source of a 
transistor and between neighbouring transistors

 Radiation-induced change of charge carrier mobilities changes transistor 
parameters (transconductance)
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Radiation Tolerant Electronics

• Standard technology: use annular transistors with guard rings to 
suppress leakage current

 No leakage current path from source 
to drain without passing the (annular)
gate

 Difficulties: Need to develop own 
design rules and transistor models

drain/source
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Consequences for detector design

II) Pixel sensors for high fluences
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Consequences for detector design

II a) 3D pixel sensors for high fluences
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3D-Pixel Sensors

• 3D technology:

 Electrodes are not on the 
sensor surface but are 
processed nearly through the 
entire bulk

 Electrodes are made by etching 
holes in the silicon bulk; the 
borders of the hole can be 
doped with dopant gases and 
filled with polysilicon 

 Originally proposed to solve 
trapping-problem in GaAs 
sensors, turned out to be one 
possibility to increase the 
radiation hardness of Si sensors
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3D-Pixel Sensors

• 3D-architecture decouples electrode distance (drift length, 
depletion region) from device thickness (total signal / absorption 
probability)

• Shorter drift path → faster charge collection

• Lower voltage for full depletion
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3D-Pixel Layout

• Vertical electrodes are 
connected on the sensor 
surface to form the electrodes 
for biasing and readout

• Many different segmentation 
types implemented by now:

 Strips

 Rectangular pixels

 Quadratic pixels

• Connection to the electronics 
like for a planar sensor

Nucl. Instr. and Meth. in Phys. Res. A 531 (2004) 56–61
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Double-Sided 3D

• Two different approaches: 

• Etch all electrodes from one side only or n- and p-type from different 
sides
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Signal Height in 3D-sensors

• Measurement of signal 
efficiency vs. fluence for 
different geometries

 Signal efficiency: ratio of 
average signal at a given 
fluence devided by the pre-
irradiation value

 50% or more signal efficiency at 
1 x 1016 neq cm-2

100% signal defined by sensor 
thickness

ATLAS IBL Technical Design Report, CERN-LHCC-2010-013
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Inefficient Regions

• One problem of 3D sensors: column electrodes are dead 
regions

• But only a problem for exactly perpendicular tracks 

10o efficiency

0o efficiency

A. Micelli, Pixel 2010
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Active Edges

• The 3D technique can be used to implant a 
deep trench around the active area which acts 
as bias electrode and terminates the depletion 
region before the cutting edge

 Advantage: less dead area than for a multi-guardring 
structure (“active edge” sensors) 
Here: sensor active up to 6 μm from the cutting edge

P. Hansson, et al., Nucl. Instr. and Meth. A (2010), doi:10.1016/j.nima.2010.06.321
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Consequences for detector design

II b) Planar pixel sensors for high fluences
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Electric Field

• Alt. to 3D-approach: faster charge collection by achieving 
maximum possible electric field

• How to increase the electric field? → increase the bias voltage

• Problem: even if the sensor does not break through, often the 
services cannot deliver much higher bias voltages

• But: 

 <E> = U/d 

 At high fluences, large d does not increase the signal (trapping) 

→ Go for thin sensors: 
higher average field at same bias voltage, 
less strongly peaked weighting field
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Choice of Sensor Type

• Which sensor types to use: 
 We want electron collection (faster charge collection, less 

trapping), therefore we have to use n-side readout, i.e. n-type 
pixels on n- or p- substrate

 p-on-n is in addition ruled out by type inversion

 Both remaining options are currently investigated, e.g. for HL-LHC

 n-on-n: like current LHC detectors; has proven to work…

 n-on-p: no type inversion, p-n-junction is always on the pixelated 
side
→ can be done in a single-sided process, with the guard rings on 
the readout side
Difficulty: a large fraction of the bias voltage is present close to the 
electronics; together with the need for high bias voltages this 
requires a strong, high-quality passivation on top of the normal 
oxide
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Signal Charge vs. Fluence

• Charge collected in 300 μm sensors at 900 V

 At 5 x 1015 neq cm-2: ~ 8000 e

 Still possible to detect with low-noise electronics

ATLAS IBL Technical Design Report, CERN-LHCC-2010-013
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Sensor Thickness

• Comparison of different sensor thicknesses vs. bias voltage

 Higher signal in the thinner sensor as expected

ATLAS IBL Technical Design Report, CERN-LHCC-2010-013
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Charge Multiplication

• At high electric field the charge exceeds the expected signal … 
and even the total deposited charge

• Suspected effect: charge multiplication in the high-field regions close to 
the collecting electrodes. Currently under study…

G. Casse, Vertex 2010 
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(Semi-)Active Pixel Detectors
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p+-p and n+-n junction

• p+-p and n+-n junction:

• Also for same-sign doping the 
concentration difference leads to a 
diffusion current and therefore a space 
charge

• The built-in potential can be calculated 
from the difference of the Fermi-levels. 
The direction is such that, when going 
from lower to higher doping, minority 
carriers see a potential barrier of 
height

• Thermally moving charge carriers 
(E=3/2 kT) will be reflected at the 
barrier
(N+ and N- differ by several orders of 
magnitudes)




N

N

q

kT
V ln

EF

Ei

After: Lutz, Semiconductor Radiation Detectors
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CMOS MAPS

• Charged particle generates electron hole pairs in the epitaxial layer

• Electrons move by diffusion; they are reflected by the substrate and the p-wells 
and eventually reach the collecting n-well

• Small depletion region around n-well; complete charge collection only here

M. Winter et al., NIM A 473 (2001), 83-85
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Readout

• In-pixel electronics: simplest form: 3 
transistors: source follower, reset 
and select switch

• Of course also more electronics 
possible (shaper, discriminator)

• Design complication: in the pixel 
usually only one type of MOSFETs 
possible

• The n-well of a pMOS would collect 
charges 

• No real CMOS circuitry possible



7-10 Apr '15 J. Große-Knetter, Semiconductor detectors 149

CMOS on one substrate



7-10 Apr '15 J. Große-Knetter, Semiconductor detectors 150

Why CMOS?

No real digital circuits without CMOS!
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Matrix Readout (MIMOSA Family)

X- and Y- shift 
register to 
select pixels

Common 
Amplifier

IO-Signals, e.g. 
Clock, Reset, Synch

Rossi, Fischer, Rohe, Wermes: Pixel Detectors
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Radiation Damage (1)

• Charge collection does not depend on full depletion, no electric field

• Main effect of radiation damage: 

 Defect states in band gap lead to decrease of charge carrier lifetime

 Decrease in charge collection efficiency

 Decrease of S/N and therefore detection efficiency (and resolution)

• Main reason for the radiation damage is the slow charge 
collection; improvements in the charge collection speed would 
therefore reduce the sensitivity to trapping

 High resistivity epi-layer

 High voltage? (see later)
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MAPS in High Resistivity Epi Layer

High resistivity p-epi (1kΩ cm); size of 
depletion zone comparable to 
thickness of epi-layer

For comparison: standard CMOS 
technology: Low resistivity epi

A. Dorokhov, Pixel 2010
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Radiation Damage (2)
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Properties (1)

• Use of commercial CMOS processes

 Low cost, but dependence on availability of suitable commercial processes

• Signal processing integrated on sensor → compact, no bump bonding

• Very small pixel sizes possible; spatial resolution can be below 5 μm

• Charge is collected in the epitaxial layer

 Typical thicknesses up to ~ 15 μm → charge < 1000 e / low X-ray efficiency

 Low noise electronics needed

 Chip can be thinned down as most of the thickness is not needed for signal

• Small depletion zone around n-well

 Usually incomplete charge collection

 Collection by diffusion: slow signal development (~ 100 ns)

• Less radiation hard and slower (for tracking) than hybrid pixels
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Properties (2)

• Size of pixels is limited due to charge collection; electrode distance should 
not be too large

 Motivation would be power consumption (if extremely high spatial resolution is 
not needed, lower channel density would result in lower power density)
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• Examples
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State of the Art

• MIMOSA-26
(Minimum Ionising Particle MOS Active 
Pixel Sensor)

 0.35 μm process with high-resistivity 
epitaxial layer

 Column parallel architecture; in-pixel 
amplification, end-of-column 
discrimination

 1152 x 576 pixels, pitch 18.4 μm
(active area: 21.2 x 10.6 mm2)

 Charge sharing → σ ~ 4 μm

 Readout time ~ 100 μs (104 frames/s)

 ~250 mW/cm2 power consumption

Marc Winter, IPHC, Strasbourg
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MAPS Beam Telescope

• EUDET Beam telescope

• 2 arms of 3 planes each

• MIMOSA-26 thinned to 50 μm

• Used for sensor tests in several 
test beams at CERN and DESY

• Extrapolation error ~ 1-2 μm 
even with 3 GeV e- (DESY)

• Frame readout frequency 
O(104)Hz Marc Winter, IPHC, Strasbourg
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STAR Heavy Flavour Tracker

• Direct reconstruction of charm; detection of charm decays with small cτ, including 
D0→Kπ

• Resolve displaced vertices (100 – 150 microns)

• ≤ 30 μm IP resolution required for 750 MeV/c pion

 Pixel size ≤ 30 μm, material as low as possible, should be below 0.5% X0/layer (goal: 0.37)

STAR Collaboration
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Star PXL

• 2 Innermost layers (r = 2.5, 8 cm): MAPS Pixels thinned to 50 μm

• Air cooling (power dissipation ~ 170 mW/cm2) 

• Ladders made out of 10 MAPS chips

A. Dorokhov, Pixel 2010

20 cm 
(10 chips)

1 Ladder: 
50 μm Si on flex kapton/Al cable
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Stitched Sensors

• Variation 0: stitching

• Standard CMOS limited to 2.5 x 2.5 cm2

• Some foundries offer stitching

 Relatively new technique

 Allows to produce wafer scale chips

• Here: LAS (Large area sensor) for 
imaging

 5.4 x 5.4 cm2

 For x-ray imaging (with CsI:Tl scintillator grown 
on a fibre-optic plate)

 Large dynamic range (and large size) allows 
simultaneous diffraction and transmission 
imaging

Phys. Med. Biol. 53 (2008) 655–672

M. Stanitzki, Pixel 2010
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• Variations I: The INMAPS Process
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How much CMOS in a CMOS Sensor?

• 100% efficiency → only nmos in pixel → no complicated electronics

• Complicated electronics → nmos and pmos, i.e. cmos → low efficiency

NMOS

P-Well N-Well P-Well

N+ N+

P-substrate (~100s m thick)

N+ N+

N-Well

P+ P+

Diode NMOS PMOS

Renato Turchetta

epi-layer
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INMAPS Process

• Standard CMOS with additional deep p-well

• 100% efficiency and CMOS electronics

• Optimise charge collection and readout electronics

NMOS

P-Well N-Well P-Well

N+ N+

P-substrate (~100s m thick)

N+ N+

N-Well

P+ P+

Diode NMOS PMOS

Deep P-Well

Renato Turchetta

epi-layer
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Deep p-well

• Laser scan in pixels with and 
without deep p-well (DPW)

• Simulation and measurement 
show improved charge collection 
with DPW

M. Stanitzki, Pixel 2010
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• Variations II: High-Voltage CMOS 
(I. Peric et al., previously Heidelberg University) 

 The standard application of high-voltage CMOS processes is the 
combination of standard CMOS logic and special transistors, which can 
generate high output voltages, e.g. to steer electric motors or LCD 
displays

 Idea: use a high-voltage CMOS process to build CMOS pixel sensors
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Pixels in HV-CMOS (1)

• Twin well structure; allows implementation of NMOS and PMOS 
transistors

Deep n-well

Pixel electronics in the deep n-wellP-substrate

NMOS transistor
in its p-well

PMOS transistor

I. Peric, Pixel 2010
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Pixels in HV-CMOS (2)

P-substrate

NMOS transistor
in its p-well

PMOS transistor

Particle

E-field

Deep n-well

Pixel electronics in the deep n-well

I. Peric, Pixel 2010

• Deep well can be biased at high voltages with respect to the p-
substrate; transistors inside the well will “see” only low voltages
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High-voltage pixel

Potential energy (electrons)/e

collected
charge

p-substrate

NMOS

n-well

p-well

particles
PMOS

- 3.3 V

50 V

• Expected depletion 
depth at 100 V bias: 
14 μm 

 Mip: ~ 1000 e

Biasing HV-CMOS
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Radiation Tolerance

• After p-irradiation to 1015 neq cm-2

 40 e noise at -10 deg C

 Still good S/N for βs from 22Na (1.567 MeV)
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signal amplitude [V]

 22Na - 0V bias (0.075V or 1250e)

 22Na - 30V bias (0.18V or 3125e)

 22Na - 60V bias (0.22V or 3750e)

 55Fe - 60V bias (100mV or 1660e)
 RMS Noise (2.4mV or 40e)

Temperature: - 10C

Irradiated with protons to 1015n
eq

I. Peric, Pixel 2010
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Full Detector Concept (1)

• Advantages:

 Full CMOS capability

 Fast charge collection → advantages for radiation hardness

 Standard industrial process

 Full readout:

 Little room for full digital processing (limited by active area)

 Worry of analogue – digital cross-talk

 Solution: keep digital readout separate like for hybrid 
detectors, but use cheap interconnect methods
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Full Detector Concept (2)

• Interconnection

via e.g. glue – 

simple capacitive 

coupling is

sufficient

CMOS prototype with 

ATLAS readout chip

            Aim: wafer-to-wafer bondig
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• Silicon on Insulator: 
 Try to combine the advantages of on-sensor 

electronics with a completely depleted sensor
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Silicon-on-Insulator (SOI)

• Buried oxide (BOX) separates 
electronics layer from active 
sensor volume

• Contacts through the BOX are 
made with vias, e.g. to the p+-
pixel implants

• High resistive substrate with full 
charge collection and full CMOS 
circuitry

• Manufactured from two separate, 
bonded wafers

 Not yet industry standard

P. Giubilato, Pixel 2010
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Example: OKI SOI Process

Process 0.2m Low-Leakage Fully-Depleted SOI CMOS  (OKI)
1 Poly, 4 (5) Metal layers, MIM Capacitor, DMOS option

Core (I/O) Voltage = 1.8 (3.3) V

SOI Diameter: 200 mm, 
Top Si : Cz, ~18 Ω-cm, p-type, ~40 nm thick 
Buried Oxide: 200 nm thick
Handle wafer: Cz 、 ~700 Ω-cm (n-type), 650 m thick

Backside Thinned to 260 m and sputtered with Al (200 nm).

An example of a SOI 
Pixel cross section

Y. Arai, Pixel 2010
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SOI

• Complications in SOI-Sensors:

 Back-gate effect: the threshold voltage of transistors is influenced by the 
depletion voltage; the higher the substrate voltage the larger the 
threshold shift
→ design precautions, e.g. floating guard rings around transistors

 Radiation damage: the BOX is sensitive to ionising damage, which leads 
to a positive oxide charge and an increase in the transistor leakage 
current

 The effect is stronger for a depleted sensor because the strong field across the oxide 
separates the generated charge carriers and thus reduces immediate recombination
(Note: this is generally true for oxide damages; the extent of the damage depends on 
the bias conditions, e.g. in electronics chips it depends on whether the electronics is 
operated or not during irradiation)
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SOI

• Current fields of development:

 Deep n-wells and deep p-wells

 Reduce back gate effect

 Reduce crosstalk between electronics and sensor

 Thinning

 FZ SOI wafers → lower depletion voltage

 Double SOI wafers

 Additional SOI structure with middle-layer bias to reduce effect of oxide 
charges (shield sensor from readout)

 …

 Many different pixel chips produced (see next slide)
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SOI Chips

Y. Arai, Pixel 2010
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3D-Integration

 Extend SOI-idea: 3D-integration:
 Several tiers of thinned 

semiconductor layers 
interconnected to form a 
monolithic unity

 Different layers can be made in 
different technologies

 Industrial process!
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Via-processing

 3D-integration post-processing:
 ICV =Inter Chip Vias, TSV= Through Silicon Vias

 Hole etching and chip thinning via formation with W-
plugs → 2.5Ω per via
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Overview of Pixel Concepts
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