Chapter 8: Coulomb blockade and
Kondo physics
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8.1 Introduction
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In this chapter we focus on situations in which

h

> —
U

and therefore, the transport is dominated by
the Coulomb repulsion of the electrons inside
the molecule.

This situation is realized when the metal-
molecule coupling is relatively weak.




8.2 Charging effects in transport through

nanoscale devices

How small and how cold should a conductor be so that adding or
subtracting a single electron has a measurable effect?

1. The capacitance C of the island (or dot) has to be such that the charging
energy (e?/C) is larger than the thermal energy (kgT):

GZ/C > kT

2. The barriers have to be sufficiently opaque such that the electrons are
located on the dot:

MEAT = (€°/¢) (R.C) > H =>{R » h/e?

C.| Molecule C,

In molecular transistors these two Snurc:e\ / Drain

R [ G




8.2 Charging effects in transport through
nanoscale devices

To resolve the discrete electronic levels of a quantum dot: AE > kBT

The level spacing at the Fermi energy for a box of size L depends on the
dimensionality:

(N /4 (1D)
her?
AE = E x<1/7 (2D)
m
((37°N)™ (3D)

The level spacing of a 100 nm 2D dot is around 0.03 meV, which is large enough to be
observable at dilution refrigerator temperatures (100 mK = 0.0086 meV).

Using 3D metals to form a dot, one needs to choose a radius of around 5 nm in order
to see atom-like properties.

In the case of molecular junctions, the level spacing is essentially the HOMO-LUMO
gap and it is typically several electronvolts. Therefore, the level quantization is easily
observable in molecular transistor even at room temperature.



8.2 Coulomb blockade: a well-known
phenomenon in mesoscopic physics
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8.2 Coulomb blockade: a well-known

phenomenon in mesoscopic physics
Nanoparticles
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(a) I vs V and (b) (solid curve) dI/dV vs V for

tunneling via a single particle at 4.2 K and H = 0. (b) Dashed
curve: Theoretical fit discussed in the text, offset 100 GQ ',

Inset: Schematic diagram of device.
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FIG. 2. Signals due to the same device as Fig. 1, at 320 mE.

(a) £ vs V for superconducting and normal leads, The S-lead
curve has been displaced 10 pA in . (b and (c) dI/dV vs V
for positive and negative bias, with the S-lead data shifted in V,
as labeled, so as to align the maxima of &F /v with the N-lead
data, For ease of comparison, the amplitude of the S-lead dara
is reduced by a factor of 2 and offset on the «f /dV axis in (b)
and (c).



8.2 Coulomb blockade: a well-known
phenomenon in mesoscopic physics

Semiconductor quantum dots
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8.2 Coulomb blockade phenomenology Iin

carbon nanotubes

S.J. Tans et al., Nature 386, 474 (1997)
(i) Coulomb oscillations
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8.3 Single-molecule three-terminal devices
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8.4 Coulomb blockade theoru:
constant interaction model

Cs Cp
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oo (N)=U(N)+ D E,

E, (p=12,...) = single - electron energy levels
U(N) =(Ne)?/2C —NeV,_
C=C,+C,+C,

[”, I}” = tunneling rates

kgT,AE > h([,P + ,P)

V., = (CSVS +CgVs +CpV, )/C (weak coupling)



8.4 Coulomb blockade theory

Periodicity of the oscillations

* Dot chemical potential:
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8.4 Coulomb blockade theory

For small bias voltages, Vi, = 0:
2
Upo (N) = (N —%)%—eave +E,; (a=C,/C = gate coupling)

Thus, the addition energy is given by:

2 e2

e
Ap(N) = pipg (N +1) — 2154, (N) :E+ Ey.—Ey :E"'AE

In the absence of charging effects, the addition energy is determined by the irregular
spacing AE of the single-electron levels. The charging energy e2/C, in contrast, leads to
a regular spacing. When it is much larger than the level spacing (as in metallic islands),
it determines the periodicity of the Coulomb oscillations.

From an experimental point of view, the Coulomb oscillations are measured as a
function of the gate voltage and the peak spacing is given by:

AV, = Au(N)/ (ea) = (6°/C+AE)/ (ex)

while the condition eoNGN =(N —1/2)e2 IC+E, sgives the gate voltage of the N-th
Coulomb peak.



8.4 Coulomb blockade theory

Amplitude and line-shape of the oscillations

e Different tunneling processes (energy conservation):

State p in the dot (N electrons) — left lead at energy E " (N): L f------ 1 R
.l . 1 H
EM(N)=E, +U(N)=U(N -1) - (L-n)eV - i
Left lead at energy E}'(N) — state p in the dot (N electrons): Eol H-- T =
il _ ui P s e
EY(N)=E, +U(N +1)—U(N)—(1—7)eV H ------ B
State p in the dot (N electrons) — right lead at energy E ™" (N): % """ % E,
1N = = Beuleeebll ¢
E"(N)=E, +U(N)=U (N 1)+ eV N ;
Right lead at energy E;"(N) — state p in the dot (N electrons): 0 l 0
EL'(N)=E, +U(N +1)-U(N)+7neV nev-eVg

n: fraction of voltage

dropping at the right barrier
e Stationary current through the left barrier: PRINg '8 !
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8.4 Coulomb blockade theory

In equilibrium the probability distribution P({n}) is given by the Gibbs distribution
in the grand canonical ensemble:

P, ({n}) = ;exp{— le [Z En +U(N)- NEFH; Z = partition function
B i=1

The non-equilibrium probability distribution P is a stationary solution of the
kinetic equation:

£ P(ny) -0

== PAn}HS, [T F(EM(N)=E.) T f(EV(N) - Ep)]

-2 PAN}S, LIT7(A-F(EV(N)=E )+ (1~ f(E"(N)-Ep))]

+> P(n,..., np_l,l,np+1,...)5np,0[F(Lp) A-f(EM"(N+D-E.))+TPA-f(E"(N+1)-E.))]

+> P(n,....n,,0, npﬂ,...)anp,l[r{m f(E"(N-D)-E.)+ TP f(E""(N-1)-E.)]



8.4 Coulomb blockade theory

Linear response theory: P({n})=P, ({ni})(1+ EVT

‘P({ni})j
The joint probability that the quantum dot contains N electrons and that the

level is occupied is:
P (Non, =2) = 2 P (1013, 5, 6,
{ni} !

In terms of this probability the conductance is given by:

G=— ii rfp P (N,n, =1)[1- f(E, +U(N)-U(N-1)-E,) |

p p
e Limit: ’-G(\/G’T)/Gmax _ Coshz(ea(;/lf _I__VO)j
B
k. T e*/C,AE| _|
B . _(ezj - FENO)IE{NO)
" h )2k, T [N 4 (M)
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V,: gate voltage at Nyth resonance (maximum of the CB oscillation)



8.4 An example: Coulomb oscillations and

staircase
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8.4 An example: Stability diagrams and
Coulomb diamonds
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8.4 Coulomb blockade phenomenology in

carbon nanotubes
S.J. Tans et al., Nature 386, 474 (1997)
(i) Coulomb oscillations
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8.4 Single-molecule transistors:
Observation of Coulomb blockade
S. Kubatkin et al., Nature 425, 698 (2003).
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8.4 Single-molecule transistors:
Observation of Coulomb blockade

Source-Drain electrodes

Nanomechanical oscillations in a
single-Cy, transistor

Park et al., Nature 407, 57 (2000)
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8.4 Single-molecule transistors:
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e Elastic cotunneling process:
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8.6 Kondo effect

(a) initial state virtual state final state (b) density of states
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e Spin-flip cotunneling processes can change the spectrum of the dot leading to the
screening of the localized spin and to the appearance of the so-called Kondo resonance.

 The Kondo resonance lies exactly at the Fermi energy, independent of the position of the
original level. For this reason, the Kondo effect leads to an enhancement of the
conductance. The only requirement for this effect to occur is that the temperature is
below the Kondo temperature (see below).

 The width of the Kondo resonance is proportional to the characteristic energy scale for
Kondo physics, the so-called Kondo temperature. For a single-level model it reads:

vI'U ngy(g,+U)
Ks Ty = exp TU




Zero-bias line in the
stability diagram for
an odd number of
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8.6 Kondo effect

Transport signatures of the Kondo effect
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8.6 Single-molecule transistors:
Observation of the Kondo effect

Park et al., Nature 417, 722 (2002) "
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| 3.6 Single-molecule transistors:
Observation of the Kondo effect
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Summary: Chapter 8: Coulomb blockade and Kondo phusics

Different transport regimes

Open QD regime: I' » E.=¢?/C
— Quantum interference is important (classical analogon: Fabry-Perot)

Intermediate QD regime: I' < E,
— Interference, charging effects, higher order processes in the coupling

Closed QD regime: I' « E.
— Charging effects dominate (Coulomb blockade for: I" « kKgT « E()

I /'f"i_;f

SiO

S. Sapmaz et al., Phys. Rev.
B 71, 153402 (2005)
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Summary Chapter 8: Coulomb blockade and Kondo phuysics
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Figure 2.15: Spectroscopy showing different types of transport regimes [27]. For highly
transparent barriers between the QD and the metallic leads one gets the rhombic
structure specific to the Fabry Perot transport regime with broaden spacing between
the energy levels inside the nanotube. The distance between the centers of the adjacent
rhombus is equal to the double of the spacing between the energy levels of the quantum
dot and depends on the length of the nanotube. For low transparent barriers one gets a
Coulomb blockade regime with narrow spacing between the energy levels. Fabry-Perot
regime is observed at smaller gate voltages while the Coulomb blockade is in the higher
gate voltage area. Between the two regimes we have also the Kondo ridge.

T. Delattre, Current quantum fluctuations in carbon nanotubes, PhD Thesis, University Paris VI (2009)
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